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Abstract-Evolutionary algorithms (EAs) are search 
procedures based on natural selection [2]. They have been 
successfully applied to a wide variety of  optimization 
problems [4]. Particle Swarm Optimization (PSO) [1,7] is a 
new type of evolutionary paradigm that has been 
successfully used to solve a number of single objective 
optimization problems (SOPs). However, to date, no one 
has applied PSO in an effort to solve multiobjective 
optimization problems (MOPs). The purpose of our research 
is to demonstrate how PSO can be modified to solve MOPs. 
In addition to showing how this can be done, we 
demonstrate its effectiveness on two MOPs. 

1.0 Particle Swarm Optimization 
PSO [6] is based on the hypothesis that members of a 
population (swarm) can profit from their past experiences 
and the experiences of other individuals (particles). During 
the exploration of a search space, each particle has access to 
two pieces of  information: the best potential solution (PS) 
that it has encountered and the best PS contained within its 
neighborhood. This ,information is used to direct the 
search. 

The particles of  a swarm are arranged in a ring 
topology [6]. In this topology, the neighborhood of particle i 
consists of particles i-l, i, and i+l. Figure 1 shows the 
topology of  a five particle swarm. Using Figure 1 as an 
example, the neighborhood of  0 would be 4, 0, and 1. The 
neighborhood of 4, would be 3, 4, and 0. 

Figure 1: Swarm Topology 

Figure 2 provides an illustration of a particle. A 
particle is composed of three vectors, x, p and v [6]. The x- 
vector contains the current PS. The value, Zi ,represents the 
fitness assigned to xi by the objective function. Thep-vector 
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contains the location of the best PS discovered by a particle. 
The value, Pi, is the fitness assigned to the p-vector. Finally, 
the v-vector, known as the velocity vector, is used to 
determine the next PS to be evaluated. 

x-vector: 
Xi'~Xi,1 ,Xi,2,... ,Xi,m) 
~= evaluate(xt) 

p-vector: 
pi=(Pi.i, Pi.2,...,pi,m) 
pi = evaluate(pl) 

v-vector: 
vi=(vij, vi~.,...,vi.,,) 

Figure 2: Elements Of A Particle 

PSO begins by randomly initializing the x and v 
vectors. Initially, the p-vector is set equal to the x-vector. 
Each time the x-vector of  a particle is updated, Zi is 
compared to Pi. If  Zi is less than Pi, Pi is set equal to xi. 
Therefore, the p-vector always contains the best PS 
discovered by a particle. To find the best PS in the 
neighborhood of some particle i, the p values of i's 
neighborhood are compared, and the index of the particle 
that has the best p is returned. Each parameter, d, of the x- 
vector is then updated using the following equation: 
V~,d = Vi,d ~ ( (~0i,d (pi,d-Xi,h) + (~ ,d (pg.,rX~,h) ) [1,5]. In this 
equation, ¢P~.d and ~,d are random numbers between 0.0 and 
1.0, 1"1 represents the learning rate, and g represents the 
particle in the neighborhood with the best p. The new 
velocity value, Vi.d, is then checked to see if  it is within the 
bounds [-vmax, vmax]. The value, vmax, denotes the 
maximum amount of change that can be applied to the 
values of the parameters. The x-vector is then updated by 
adding the v-vector. The updated x-vector represents a new 
PS that is located somewhere between xi, Pi, and pg. Figure 3 
provides a pseudocode version of PSO. 

u N a ~ ' ~ c l e ( i )  { 
~G = e v a ] ~ ( i ) ;  
Ifzi<plthen 

{Pi = xi; pi= Xi;} 
g = bcsLof((i-I +n ) rood n, i, (i+l) rood n); 

(Vd Vi.d = V~.~ ~ ( ((PLd (pLd-X~.d)) + (¥~(p~-x~) )); 
If v~,d > vmax Then vLa = vmax 
Else If Vi,d < -vmax Then Vld = -vmax 

xi~=xi.a+vi.a; 
} 

Figure 3: Particle Swarm Optimization Algorithm 
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1.1 A Multiobjective Particle Swarm 
Optimizer 
In multiobjective optimization, one is faced with the 
problem o f  simultaneously optimizing a set o f  objective 
functions. To accomplish this, the notion o f  preference must 
be initially established in order to determine when one PS 
dominates (or is better than) another [10]. One type of  
preference that has been widely used by  many 
multiobjective optimizers is known as Pareto preference [3]. 
In Pareto preference, a PS, q0, is said to dominate another 
PS, ql, i f  Vj fj!qo) -<fj(ql)^ 3k fk(qO) < fk(ql) where fj 
represents the j objective to be optimized [10]. When 
using Pareto preference, the set o f  nondominated PSs 
discovered is referred to as the Pareto set. In order to adapt 
PSO for multiobjective optimization, the p-vector  was 
modified to keep track o f  all nondominated solutions (using 
Pareto preference) that a particle encountered as it explored 
the search space. 

2.0 Results and Conclusions 
Two experiments were conducted in order to test the 
effectiveness o f  our multiobjective particle swarm optimizer 
(MPSO). The functions used in the first experiment were 
fl,l(x,y) = (x2+y2) l/s and fl,2(x,y) w ( ( X - 0 . 5 )  2 +  ( y - 0 . 5 ) 2 )  1/4 

where x, y e(-5.0,10.0).  Similarly the second experiment 
also contained two functions. The first function f2,1(x) was a 
piecewise function that returned - x  when x<=l ,  x-2 when 
l<x<=3,  4-x when 3<x<=4, and x-4 when 4<x. The second 
function was f2.2(x) = (x-5) 2 • For both functions xe  (0.0, 
5.0). The functions for our experiments were taken from [8]. 

The performances o f  our MPSO for the two 
experiments are shown in Tables 1 and 2. In both 
experiments, a swarm size o f  20 particles was used. In the 
Tables, the leftmost column indicates the values that were 
used for v m a x  (1, 2, 4, 8, and 16) and the top row indicates 
the values used for r I (again we chose the values 1, 2, 4, 8, 
and 16). A total o f  25 instances o f  our MPSO were 
compared. The value within each cell o f  the tables 
represents the average number  o f  nondominated solutions 
found over  121 runs. For both experiments, one run 
consisted o f  296 iterations. 

In Table 1, one can see that the greatest average 
number o f  nondominated solutions, 137, was found with 
vmax =1, and rl=8. In [8], the authors report finding only 
129 nondominated solutions to the MOP of  Experiment 1 
using a "traditional" EA. Table 2 contains the results 
obtained from Experiment 2. The greatest average number 
o f  nondominated solutions, 4425, was found with vmax =16, 
and rl=16. For Experiment 2, the authors o f  [8] reported 
finding only 494 nondominated solutions. Figures 4 and 5 
show the graphed results o f  one run o f  our best MPSOs for 
the two experiments. In the Figures, the x and y axes 
correspond to the objective functions being optimized. 

In this paper  we have shown how PSO can be 
modified to solve MOPs. We tested our MPSO on two 

MOPs that were taken from [8]. Our results show that for 
Experiment 1 our best MPSO produced results that are 
comparable to those presented in [8]. The results for 
Experiment 2 show that our best MPSO produced results 
that are superior to those presented in [8]. Our future work 
will be devoted towards the application o f  our MPSO to 
other real world problems, particularly those in the area o f  
Hardware/Software Codesign [9]. 

1 ' 2 4 8 16 

1 63 79 108 137 106 
2 37 37 49 62 39 
4 30 23 22 28 17 
8 30 21 I 15 10 4 
16 29 21 i 15 7 3 

Table 1: Results 0fExperiment 1 

1 2 4 8 16 
1 2849 2770 2906 30t7 2957 
2 3249 3287 3234 3230 3089 
4 3233 3487 3817 4112 4406 

I 
8 3216 3477 3838 i 4160 4222 
16 3211 3484 3838 4255 4425 

Table 2: Results of Experiment 2 
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Figure 4: Graphed Results of 
Experiment 1 
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Figure 5: Graphed Results of 
Experiment 2 
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