
Multiobjective Particle Swarm Optimization

Jacqueline Moore
Department of Computer

Science and Software
Engineering

Auburn University
Auburn, Alabama 36849
jmoore@eng.aubum.edu

Richard Chapman
Department of Computer

Science and Software
Engineering

Auburn University
Auburn, Alabama 36849

chapman@eng, auburn.edu

Gerry Dozier
Department of Computer

Science and Software
Engineering

Auburn University
Auburn, Alabama 36849
gvdozier@eng.auburn.edu

Abstract-Evolutionary algorithms (EAs) are search
procedures based on natural selection [2]. They have been
successfully applied to a wide variety of optimization
problems [4]. Particle Swarm Optimization (PSO) [1,7] is a
new type of evolutionary paradigm that has been
successfully used to solve a number of single objective
optimization problems (SOPs). However, to date, no one
has applied PSO in an effort to solve multiobjective
optimization problems (MOPs). The purpose of our research
is to demonstrate how PSO can be modified to solve MOPs.
In addition to showing how this can be done, we
demonstrate its effectiveness on two MOPs.

1.0 Particle Swarm Optimization
PSO [6] is based on the hypothesis that members of a
population (swarm) can profit from their past experiences
and the experiences of other individuals (particles). During
the exploration of a search space, each particle has access to
two pieces of information: the best potential solution (PS)
that it has encountered and the best PS contained within its
neighborhood. This ,information is used to direct the
search.

The particles of a swarm are arranged in a ring
topology [6]. In this topology, the neighborhood of particle i
consists of particles i-l, i, and i+l. Figure 1 shows the
topology of a five particle swarm. Using Figure 1 as an
example, the neighborhood of 0 would be 4, 0, and 1. The
neighborhood of 4, would be 3, 4, and 0.

Figure 1: Swarm Topology

Figure 2 provides an illustration of a particle. A
particle is composed of three vectors, x, p and v [6]. The x-
vector contains the current PS. The value, Zi ,represents the
fitness assigned to xi by the objective function. Thep-vector

Permission to make digital or hard copies o f all or part o f this work for
personal or c lassroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permiss ion and/or a fee.
@2000 A C M 1-58113-250-6/00/0004 $5.00

contains the location of the best PS discovered by a particle.
The value, Pi, is the fitness assigned to the p-vector. Finally,
the v-vector, known as the velocity vector, is used to
determine the next PS to be evaluated.

x-vector:
Xi'~Xi,1 ,Xi,2,... ,Xi,m)
~= evaluate(xt)

p-vector:
pi=(Pi.i, Pi.2,...,pi,m)
pi = evaluate(pl)

v-vector:
vi=(vij, vi~.,...,vi.,,)

Figure 2: Elements Of A Particle

PSO begins by randomly initializing the x and v
vectors. Initially, the p-vector is set equal to the x-vector.
Each time the x-vector of a particle is updated, Zi is
compared to Pi. If Zi is less than Pi, Pi is set equal to xi.
Therefore, the p-vector always contains the best PS
discovered by a particle. To find the best PS in the
neighborhood of some particle i, the p values of i's
neighborhood are compared, and the index of the particle
that has the best p is returned. Each parameter, d, of the x-
vector is then updated using the following equation:
V~,d = Vi,d ~ ((~0i,d (pi,d-Xi,h) + (~ ,d (pg.,rX~,h)) [1,5]. In this
equation, ¢P~.d and ~,d are random numbers between 0.0 and
1.0, 1"1 represents the learning rate, and g represents the
particle in the neighborhood with the best p. The new
velocity value, Vi.d, is then checked to see if it is within the
bounds [-vmax, vmax]. The value, vmax, denotes the
maximum amount of change that can be applied to the
values of the parameters. The x-vector is then updated by
adding the v-vector. The updated x-vector represents a new
PS that is located somewhere between xi, Pi, and pg. Figure 3
provides a pseudocode version of PSO.

u N a ~ ' ~ c l e (i) {
~G = e v a] ~ (i) ;
Ifzi<plthen

{Pi = xi; pi= Xi;}
g = bcsLof((i-I +n) rood n, i, (i+l) rood n);

(Vd Vi.d = V~.~ ~ (((PLd (pLd-X~.d)) + (¥~(p~-x~)));
If v~,d > vmax Then vLa = vmax
Else If Vi,d < -vmax Then Vld = -vmax

xi~=xi.a+vi.a;
}

Figure 3: Particle Swarm Optimization Algorithm

56

1.1 A Multiobjective Particle Swarm
Optimizer
In multiobjective optimization, one is faced with the
problem o f simultaneously optimizing a set o f objective
functions. To accomplish this, the notion o f preference must
be initially established in order to determine when one PS
dominates (or is better than) another [10]. One type of
preference that has been widely used by many
multiobjective optimizers is known as Pareto preference [3].
In Pareto preference, a PS, q0, is said to dominate another
PS, ql, i f Vj fj!qo) -<fj(ql)^ 3k fk(qO) < fk(ql) where fj
represents the j objective to be optimized [10]. When
using Pareto preference, the set o f nondominated PSs
discovered is referred to as the Pareto set. In order to adapt
PSO for multiobjective optimization, the p-vector was
modified to keep track o f all nondominated solutions (using
Pareto preference) that a particle encountered as it explored
the search space.

2.0 Results and Conclusions
Two experiments were conducted in order to test the
effectiveness o f our multiobjective particle swarm optimizer
(MPSO). The functions used in the first experiment were
fl,l(x,y) = (x2+y2) l/s and fl,2(x,y) w ((X - 0 . 5) 2 + (y - 0 . 5) 2) 1/4

where x, y e(-5.0,10.0). Similarly the second experiment
also contained two functions. The first function f2,1(x) was a
piecewise function that returned - x when x<=l , x-2 when
l<x<=3, 4-x when 3<x<=4, and x-4 when 4<x. The second
function was f2.2(x) = (x-5) 2 • For both functions xe (0.0,
5.0). The functions for our experiments were taken from [8].

The performances o f our MPSO for the two
experiments are shown in Tables 1 and 2. In both
experiments, a swarm size o f 20 particles was used. In the
Tables, the leftmost column indicates the values that were
used for v m a x (1, 2, 4, 8, and 16) and the top row indicates
the values used for r I (again we chose the values 1, 2, 4, 8,
and 16). A total o f 25 instances o f our MPSO were
compared. The value within each cell o f the tables
represents the average number o f nondominated solutions
found over 121 runs. For both experiments, one run
consisted o f 296 iterations.

In Table 1, one can see that the greatest average
number o f nondominated solutions, 137, was found with
vmax =1, and rl=8. In [8], the authors report finding only
129 nondominated solutions to the MOP of Experiment 1
using a "traditional" EA. Table 2 contains the results
obtained from Experiment 2. The greatest average number
o f nondominated solutions, 4425, was found with vmax =16,
and rl=16. For Experiment 2, the authors o f [8] reported
finding only 494 nondominated solutions. Figures 4 and 5
show the graphed results o f one run o f our best MPSOs for
the two experiments. In the Figures, the x and y axes
correspond to the objective functions being optimized.

In this paper we have shown how PSO can be
modified to solve MOPs. We tested our MPSO on two

MOPs that were taken from [8]. Our results show that for
Experiment 1 our best MPSO produced results that are
comparable to those presented in [8]. The results for
Experiment 2 show that our best MPSO produced results
that are superior to those presented in [8]. Our future work
will be devoted towards the application o f our MPSO to
other real world problems, particularly those in the area o f
Hardware/Software Codesign [9].

1 ' 2 4 8 16

1 63 79 108 137 106
2 37 37 49 62 39
4 30 23 22 28 17
8 30 21 I 15 10 4
16 29 21 i 15 7 3

Table 1: Results 0fExperiment 1

1 2 4 8 16
1 2849 2770 2906 30t7 2957
2 3249 3287 3234 3230 3089
4 3233 3487 3817 4112 4406

I
8 3216 3477 3838 i 4160 4222
16 3211 3484 3838 4255 4425

Table 2: Results of Experiment 2

i----
0 ~ ~

Figure 4: Graphed Results of
Experiment 1

-I .5 -1 -0.5 0 05 1 1.5

Figure 5: Graphed Results of
Experiment 2

References
[1] Angeline, P. "Evolut ionary Opt imizat ion Versus Part icle Swarm
Optimization: Philosophy and Performance Differences", In 7 ~
International Conference on Evolutionary Programming, San Diego,
California, Springer, 1998, pp. 601-610.
[2] Back, T. Evolutionary Algorithms in Theory and Practice, Oxford
University Press, New Yolk, 1996, pp. 7-11.
[3] Coello Coello, C. "A Comprehensive Survey of Evolutionary-Based
Mulfiobjective Optimization Techniques", In Knowledge and Information
Systems, August 1999, pp. 269-308.
[4] Goldberg, D. Genetic Algorithms in Search. Ot~fimization &Machine
Learning, Addison-Wesley, Massachusetts, 1989, pp. 106-120.
[5] Kennedy, J. "The Behavior of Particles", In 7 t~ International Conference
on Evolutionary Programming, San Diego, California, Springer, 1998, pp.
582-589.
[6] Kennedy, J. "The Particle Swarm, Social Adaptation of Knowledge", In
Proceedings of the 1997 International. Conference on Evolutionary
Computation, IEEE, NJ, pp. 303-308.
[7] Kennedy, J., and Eberhart, R. "Particle Swarm Optimization", In
Proceedings of the 1995 IEEE International Conference on Neural
Networks, IEEE, NJ, pp. 1942-1948.
[8] Lis, J. and Eiben, A. "A MultiSexual Genetic Algorithm for
Multiobjective Optimization", In Proceedings of the 1997 International
Conference on Evolutionary Computation, Indianapolis, Indiana, 1997, pp.
59-64.
[9] Wolf, W. "Hardware-Software Co-Design of Embedded Systems", In
Proceedings of the IEEE, Vol. 82, No. 7, July 1994, pp. 967-989.
[10] Yu, P. Multivle-Criteria Decision Making, Plenum Press, New York,
1985, pp. 7-10.

57

