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Accelerating Differential Evolution
Using an Adaptive Local Search

Nasimul Noman and Hitoshi Iba, Member, IEEE

Abstract—We propose a crossover-based adaptive local search
(LS) operation for enhancing the performance of standard dif-
ferential evolution (DE) algorithm. Incorporating LS heuristics is
often very useful in designing an effective evolutionary algorithm
for global optimization. However, determining a single LS length
that can serve for a wide range of problems is a critical issue.
We present a LS technique to solve this problem by adaptively
adjusting the length of the search, using a hill-climbing heuristic.
The emphasis of this paper is to demonstrate how this LS scheme
can improve the performance of DE. Experimenting with a wide
range of benchmark functions, we show that the proposed new
version of DE, with the adaptive LS, performs better, or at least
comparably, to classic DE algorithm. Performance comparisons
with other LS heuristics and with some other well-known evolu-
tionary algorithms from literature are also presented.

Index Terms—Differential evolution (DE), global optimization,
local search (LS), memetic algorithm (MA).

1. INTRODUCTION

tion has been very active, producing different kinds of
deterministic and stochastic algorithms for optimization in the
continuous domain. Among the stochastic approaches, evolu-
tionary computation (EC) offers a number of exclusive advan-
tages: robust and reliable performance, global search capability,
little or no information requirement, etc. [1]. These character-
istics of EC, as well as other supplementary benefits such as
ease of implementation, parallelism, no requirement for a dif-
ferentiable or continuous objective function, etc., make it an at-
tractive choice. Consequently, there have been many studies re-
lated to real-parameter optimization using EC, resulting in many
variants such as evolutionary strategies (ES) [2], real coded ge-
netic algorithms (RCGASs) [3], [4], differential evolution (DE)
[5], particle swarm optimization (PSO) [6], etc.

Several studies have shown that incorporating some form of
domain knowledge can greatly improve the search capability of
evolutionary algorithms (EAs) [7]-[11]. Many problem depen-
dent heuristics, such as approximation algorithm, local search
(LS) techniques, specialized recombination operators, etc., have
been tried in many different ways to accomplish this task. In par-
ticular, the hybridization of EAs with local searches has proven
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to be very promising [12], [13]. Cultural algorithms are another
class of computational approaches that are related to EAs and
make use of domain knowledge and LS activity [14], [15].

EAs embedded with a neighborhood search procedure are
commonly known as Memetic algorithms (MAs) [9], [16]. MAs
are population-based heuristic search approaches, that apply a
separate LS process to refine individuals, i.e., to improve their
fitness [8]. The rationale behind MAs is to provide an effective
and efficient global optimization method by compensating for
deficiency of EA in local exploitation and inadequacy of LS in
global exploration. According to Lozano et al., real coded MAs
(RCMA ) have evolved mainly in two classes depending on the
type of LS employed [17].

1) Local improvement process (LIP) oriented LS (LLS): The
first category refines the solutions of each generation by ap-
plying efficient LIPs, like gradient descent or hill-climbers.
LIPs can be applied to every member of the population or
with some specific probability and with various replace-
ment strategies.

2) Crossover-based LS (XLS): This group employs crossover
operators for local refinement. A crossover operator is a
recombination operator that produces offspring around the
parents. For this reason, it may be considered as a move
operator in an LS strategy [17]. This is particularly attrac-
tive for real coding because there are some real-parameter
crossover operators that can generate offspring adaptively
(i.e., according to the distribution of parents) without any
additional adaptive parameter [18].

Adaptation of parameters and operators has become a very
promising research field in MAs. Ong and Keane proposed
meta-Lamarckian learning in MAs that adaptively chooses
among multiple memes during a MA search [19]. They pro-
posed two adaptive strategies, MA-S1 and MA-S2, in their
work and empirical studies showed their superiority over other
traditional MAs. An excellent taxonomy and comparative study
on adaptive choice of memes in MAs is presented in [20]. In
order to balance between local and genetic search, Bambha
et al. proposed simulated heating that systematically integrates
parameterized LS (both statically and dynamically) into EAs
[21]. In the context of combinatorial problems, Krasnagor and
Smith showed that self-adaptive hybridization between GA and
LS/diversification process gives rise to a better global search
metaheuristics [22]. Because of the superior performance of
adaptive MAs, in this paper, we investigate a new XLS with
adaptive capability for an EA, namely, DE.

DE is one of the most recent EAs for solving real-param-
eter optimization problems. Like other EAs, DE is a popula-
tion-based, stochastic global optimizer capable of working reli-
ably in nonlinear and multimodal environments [5]. Using a few
parameters, DE exhibits an overall excellent performance for a
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wide range of benchmark functions. Due to its simple but pow-
erful search capability, it has got many real-world applications:
pattern recognition, digital filter design, neural network training,
etc. [23]. The advantages of DE, such as a simple and easy-to-
understand concept, compact structure, ease of use, high con-
vergence characteristics, and robustness, make it a high-class
technique for real-valued parameter optimization.

Although DE was designed using the common concepts of
EAs, such as multipoint searching, use of recombination and se-
lection operators, it has some unique characteristics that make
it different from many others in the family. The major differ-
ences are in the way offspring are generated and in the selection
mechanism that DE applies to transit from one generation to
the next. DE uses a one-to-one spawning and selection relation-
ship between each individual and its offspring. Although these
features are the strength of the algorithm, they can sometimes
turn into weaknesses, especially if the global optimum should
be located using a limited number of fitness evaluations. Be-
cause, by breeding an offspring for each individual, DE some-
times explores too many search points before locating the global
optimum. In addition, though DE is particularly simple to work
with, having only a few control parameters, choice of these pa-
rameters is often critical for the performance of DE [24]. Again,
choosing the best among different learning strategies available
for DE is often not easy for a particular problem [25]. Therefore,
several researchers are now paying attention to the improvement
of the classic DE algorithm using different heuristics [24]-[27].

For real-world applications, the fitness evaluation is usually
the most expensive part of the search process; therefore, an EA
should be able to locate the global optimum with the fewest
possible number of fitness evaluations. Although DE belongs
to the elite EA class in consideration of its convergence ve-
locity, its overall performance does not meet the requirements
for all classes of problems. In accordance with the earlier
discussion, hybridization with a LS operation can accelerate
DE by improving its neighborhood exploitation capability.
We have already made a preliminary study on the use of LS
operation for improving the performance of DE, particularly
for high-dimensional optimization problems [28]. In this work,
we present a more generalized and efficient LS process in the
spirit of Lamarckian learning for accelerating classic DE.

The adaptive nature of the newly proposed LS scheme
exploits the neighborhoods more effectively, and thus signifi-
cantly improves the convergence characteristics of the original
algorithm. The performance improvement is shown using a set
of benchmark functions with different properties. The paper
also presents a performance comparison with some well known
MAs. The paper is organized as follows.

The next section of this paper contains a brief overview of DE.
The third section presents some contemporary research on DE.
In Section IV, the proposed new version of the DE algorithm,
with adaptive LS, is presented in detail. Section V reports the
experimental results comparing the proposed version of DE and
the classic DE algorithm. Comparisons between the proposed
adaptive LS strategy and other LS strategies, and between the
newly proposed DE algorithm and other MAs are also presented
in Section V. Section VI discusses the results focusing on the
proposed DE characteristics. Finally, Section VII concludes this

paper.

DE
1. Generate an Initial Population P¢
2. Evaluate PS¢
3. For each individual I in P¢
4. Reproduce an offspring J from /
5. PG+l =pG+iy Select (I, J)
6. Set G =G+1
7. Repeat Step 3 to 6 until termination criteria is met

Fig. 1. Generation alternation model of DE.

II. DIFFERENTIAL EVOLUTION

Like other EAs, DE is a population-based stochastic opti-
mizer that starts to explore the search space by sampling at
multiple, randomly chosen initial points [23], [29]. Thereafter,
the algorithm guides the population towards the vicinity of the
global optimum through repeated cycles of reproduction and
selection. The generation alternation model used in “classic
DE” for refining candidate solutions in successive generations
is shown in Fig. 1.

The different components of the DE algorithm are summa-
rized as follows.

Parent Choice: As shown in the DE model, each individual
in the current generation is allowed to breed through mating
with other randomly selected individuals from the population.
Specifically, for each individual z§',i =
denotes the current generation, three other random individuals
2§, f} and zf’ are selected from the population such that j, k
andl € {1,..., P} and i # j # k # [. This way, a parent pool
of four individuals is formed to breed an offspring.

Reproduction: After choosing the parents, DE applies a dif-
ferential mutation operation to generate a mutated individual
v¥, according to the following equation:

vf:a:f—l—F(a:g—le) (1)
where F', commonly known as scaling factor or amplification
factor, is a positive real number, typically less than 1.0 that
controls the rate at which the population evolves. To comple-
ment the differential mutation search strategy, DE then uses a
crossover operation, often referred to as discrete recombination,
in which the mutated individual v§ is mated with 2§ and gen-
erates the offspring or trial individual u& . The genes of u$' are
inherited from z§ and v, determined by a parameter called
crossover probability (C,. € [0,1]), as follows:

v, if r(t) < Cport =rn(i)
uly =13 , 2)
“ xfy, if r(t) > Cp and t # rno(i)
where t(= 1,...,N) denotes the tth element of individual

vectors. 7(t) € [0, 1] is the rth evaluation of a uniform random
number generator and rn(i) € {1,...,N} is a randomly
chosen index which ensures that u& gets at least one element
from viG . From the above description, another difference
between DE and GA becomes clear; that is in DE mutation
is applied before crossover, which is the opposite of GA.

Moreover, in GA, mutation is applied occasionally to maintain
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diversity in the population, whereas in DE, mutation is a regular
operation applied to generate each offspring.

Selection: DE applies selection pressure only when picking
survivors. A knockout competition is played between each indi-
vidual z¢ and its offspring u$ and the winner is selected deter-
ministically based on objective function values and promoted to
the next generation.

Many variants of the classic DE have been proposed, which
use different learning strategies and/or recombination opera-
tions in the reproduction stage [5], [23]. In order to distinguish
among its variants, the notation DE/a/b/c is used, where “a”
specifies the vector to be mutated (which can be random or
the best vector); “b” is the number of difference vectors used;
and “c” denotes the crossover scheme, binomial or exponen-
tial. The binomial crossover scheme is represented in (2) and in
case of exponential crossover, the crossover probability C,. reg-
ulates how many consecutive genes of the mutated individual
v¥, on average, are copied to the trial individual u§. Using
this notation, the DE strategy described above can be denoted
as DE/rand/1/bin. Other well-known variants are DE/best/1/bin,
DE/rand/2/bin, and DE/best/2/bin which can be implemented
by simply replacing (1) by (3)—(5), respectively. Again, each of
the above algorithms can be configured to use the exponential
Crossover

3
“)
)

G:x?—l—F(mf—x,G)—f—F(xg—xS)

K2

v,iG = ijest + F (a:]G — xf) + F (a:,G — :vG)

¥ =28  +F (QIJG — xf)
v

m

where z 7, represents the best individual in the current gener-
ation,mandn € {1,...,N},andi £ j A k£l #m#n. A

recent study that empirically compares some of the variants of
DE is presented in [30].

III. RELATED RESEARCH ON DE

Being fascinated by the prospect and potential of DE, many
researchers are now working on its improvement, which resulted
in many variants of the algorithm. A brief overview of these
contemporary research efforts is presented in this section.

Fan and Lampinen [26] proposed a new version of DE which
uses an additional mutation operation called trigonometric mu-
tation operation (TMO). This modified DE algorithm is named
trigonometric mutation DE (TDE) algorithm. In fact, TDE uses
a probabilistic mutation scheme in which the new TMO and the
original differential mutation operation are employed stochas-
tically. Introducing an additional control parameter M; for sto-
chastic mutation, they showed that the TDE algorithm can out-
perform the classic DE algorithm for some benchmarks and
real-world problems [26].

Sun et al. [31] proposed DE/EDA, a hybrid of DE and estima-
tion of distribution algorithm (EDA), in which new promising
solutions are created by DE/EDA offspring generation scheme.
DE/EDE makes use of local information obtained by DE mu-
tation and of global information extracted from a population of
solutions by EDA modeling. The presented experimental results
demonstrated that DE/EDA outperforms DE and EDA in terms
of solution quality within a given number of objective function
evaluations. Besides, some other hybrids of DE with PSO have

also been proposed [32], [33]. Noman and Iba have proposed a
DE variant where they applied EA-like generational model for
accelerating the search capability of the algorithm [34].

Recently, some studies on parameter selection for DE [24],
[35] found that the performance of DE is sensitive to its con-
trol parameters. Therefore, there has been an increasing interest
in building new DE algorithms with adaptive control param-
eters. Zaharie [36] proposed to transform F' into a Gaussian
random variable. Liu and Lampinen proposed a fuzzy adaptive
differential evolution (FADE) which uses fuzzy logic controllers
to adapt the mutation and crossover control parameters [24].
The presented experimental results suggest that FADE performs
better than traditional DE with all fixed parameters. Brest et al.
[27] proposed another version of DE that employs self-adaptive
parameter control in a way similar to ES. Their proposed algo-
rithm encodes the F' and C,. parameters into the chromosome
and uses a self-adaptive control mechanism to change them.
Their proposed algorithm outperformed the standard DE and
FADE algorithm. Das et al. [37] have proposed two variants of
DE, DERSF, and DETVSF, that use varying scale factors. They
showed that those variants outperform the classic DE algorithm.

Qin and Suganthan [25] have taken the self-adaptability of
DE one step further by choosing the learning strategy, as well as
the parameter settings, adaptively, according to the learning ex-
perience. Their proposed self-adaptive DE (SaDE) does not use
any particular learning strategy, nor any specific setting for the
control parameters F' and C,.. SaDE uses its previous learning
experience to adaptively select the learning strategy and param-
eter values, which are often problem dependent.

In our early work [28], we have proposed fittest individual re-
finement (FIR), a crossover-based LS method for DE for high-
dimensional optimization problems. The FIR scheme acceler-
ates DE by applying a fixed-length crossover-based search in
the neighborhood of the best solution in each generation. Using
two different implementations (DEfirDE and DEfirSPX), we
showed that the proposed FIR scheme increases the conver-
gence velocity of DE for high-dimensional optimization of well-
known benchmark functions.

IV. DIFFERENTIAL EVOLUTION WITH ADAPTIVE XLS

In order to design an effective and efficient MA for global
optimization, we need to take advantage of both the exploration
abilities of EA and the exploitation abilities of LS by combining
them in a well-balanced manner [38]. For successful incorpo-
ration of a crossover-based LS (XLS) in an EA, several issues
must be resolved, such as the length of the XLS, the selection
of individuals which undergo the XLS, the choice of the other
parents which participate in the crossover operation, whether
deterministic or stochastic application of XLS should be used,
etc. Depending on the way the search length is selected, dif-
ferent XLS can be classified into three categories.

Fixed length XLS generates a predetermined number of oft-
spring to search the neighborhood of the parent individuals. This
type of search has been used in [17], [28], and [39].

Dynamic length XLS varies the length of the LS gradually
with the progress of the search, e.g., by applying longer XLS
in the beginning, and gradually applying shorter length XLS
towards the end of the search [40].
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AHCXLS(/, n,) DEahcSPX

1. P[1]1=1 1. Generate an Initial Population P¢

2. Repeat i=2 to n,, times 2. Evaluate P°

3. Pli] = select random individuals 3. B = BestIndex(P°)

from the population 4. PS.[B] = AHCXLS (PY.[B], n,)

4. End Repeat 5. For each individual / in P¢

5. C =Crossover (P) 6. Reproduce an offspring J from /

6. If C is better than P[1] 7 PG+l = PG+ Select (I, J)
Pl1]=C 8. Set G =G+l

7. Else 9. Repeat Step 3 to 8 until termination
Return (P[1]) criteria is met

8. Gotostep S

(2) (b)

Fig.2. Proposed DEahcSPX algorithm and the adaptive LS scheme AHCXLS.
1 is the individual on which the AHCXLS is applied and n,, is the total number
of individuals that take part in the crossover operation. BestIndex return the
index of the best individual of the current generation. Other symbols represent
standard notations.

Adaptive length XLS determines the direction and length of
the search by taking some sort of feedback from the search [40].

In fixed length XLS, it is integral to identify a proper length
for the LS since an XLS that is too short may be unsuccessful at
exploring the neighborhood of the solution and therefore unsuc-
cessful at improving the search quality. On the other hand, too
long an XLS may backfire by consuming additional fitness eval-
uations unnecessarily. However, finding a single length for XLS
that gives optimized results for each problem in each dimension
is almost impossible [17]. Similarly, determining a robust ad-
justment rate is not easy for dynamic length XLS. Therefore, we
propose a Lamarckian LS that adaptively determines the length
of the search by taking feedback from the search. We call this LS
strategy adaptive hill-climbing XLS (AHCXLS) because it uses
a simple hill-climbing algorithm to determine the search length
adaptively. The pseudocode of AHCXLS is shown in Fig. 2(a).

Another issue in designing XLS is selecting the individuals
that will undergo the LS process. XLS can be applied on every
individual or on some deterministically/stochastically selected
individuals. In principle, the XLS should be applied only to
individuals that will productively take the search towards the
global optimum. This is particularly important because applica-
tion of XLS on an ordinary individual may unnecessarily waste
function evaluations and turn out to be expensive. Unfortu-
nately, there is no straightforward method of selecting the most
promising individuals for XLS. In EC, the solutions with better
fitness values are generally preferred for reproduction, as they
are more likely to be in the proximity of a basin of attraction.
Therefore, we deterministically select the best individual of the
population for exploring its neighborhood using the XLS, and
thereby we expect to end with a nearby better solution. The
other individuals that participate in the crossover operation of
XLS are chosen randomly to keep the implementation simple
and to promote population diversity. Finally, we have to choose
a suitable crossover operator for using in the XLS scheme.
Tsutsui ef al. have proposed simplex crossover (SPX) for
real-coded GAs [4]. The SPX operator uses n,, parental vectors
for recombination, as shown in Fig. 3.

SPX has various advantages: it does not depend on a coor-
dinate system, the mean vector of parents and offspring gen-

SPX
G . .
1. Choose n, parents X;, i=1,...,n, according to the generational
model used and calculate their center of mass O
1 Il,,
0O=— z xiG
n, iz

2. Generate random numbers 7,
1

=y (j=1.n —
p=ut (=10, -1)
where u is a uniform random number € [0,1]
3. Calculate y; and C;

Y, =0+e(xf=0), (i=1-n)
0, @i=1
C = .
L=y +Cl), ((=20,n,)
where £ =1.0 is the expansion rate, a control parameter in SPX.

4. Generate an offspring C
C=y, tC,

Fig. 3. The simplex crossover (SPX) operation.

erated with SPX are the same and SPX can preserve the co-
variance matrix of the population with an appropriate param-
eter setting. These properties make SPX a suitable operator for
neighborhood search. Besides, in our preliminary study [28], we
found that SPX was a promising operation for local tuning, and
therefore we use SPX as the fundamental crossover operation in
this study for comparison purpose. More details about the SPX
crossover can be found in [4]. The new version of DE with the
AHCXLS and SPX operation is titled as DEahcSPX and is de-
scribed in Fig. 2(b).

The primary difference between the newly proposed
DEahcSPX algorithm and our previously proposed DEfirSPX
algorithm is that we are no more required to look for a
good search length for the XLS operation. The simple rule
of hill-climbing adaptively determines the best length by
taking feedback from the search. Hence, using the best length
(according to the heuristics) for the LS adaptively, the new
algorithm makes best use of the function evaluations and
thereby identifies the optimum at a higher velocity compared
to the earlier proposal. Furthermore, the earlier DEfirSPX
is only suitable for high-dimensional optimization problems
because of its fixed-length XLS strategy that consumes a fixed
number of function evaluations in each call. Such fixed number
of function evaluations for local tuning can be considered as
negligible compared with the total number of function evalu-
ations allowed for solving higher dimensional problems. On
the other hand, because of the adaptive XLS-length adjustment
capability of AHCXLS, the newly proposed DEahcSPX algo-
rithm is applicable to optimization problems of any dimension.
Finally, because of the simple hill-climbing mechanism, the
new adaptive LS does not add any additional complexity or any
additional parameter to the original algorithm.

V. EXPERIMENTS

We have carried out different experiments to assess the
performance of DEahcSPX using the test suite described
in Appendix I. The test suite consists of 20 unconstrained
single-objective benchmark functions with different character-
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TABLE I
BEST ERROR VALUES AT N = 30, AFTER 300000 FEs

DE DEahcSPX DE DEahcSPX
Fspn 5.73E-17 £ 2.03E-16 1.75E-31 + 4.99E-31 Fy 3.87E-14 £ 2.71E-14 | 0.00E+00 + 0.00E+00
Fros | 5.20E+01 &+ 8.56E+01 | 4.52E+00 + 1.55E+01 Fy 8.50E-02 + 7.94E-02 6.52E-05 + 4.84E-05
Fock 1.37E-09 % 1.32E-09 2.66E-15 + 0.00E+00 F3 3.63E+06 £ 2.06E+06 | 1.29E+06 £ 9.22E+05
Fyrw 2.66E-03 + 5.73E-03 2.07E-03 + 5.89E-03 Fy 5.54E+01 £ 6.37E+01 | 4.62E+00 + 8.78E+00
Fras | 2.55E+01 =+ 8.14E+00 | 2.14E+01 £ 1.23E+01 F5 1.08E+03 £ 5.31E+02 | 9.00E+02 + 4.79E+02
Fsen, | 490E+02 £ 2.34E+02 | 4.70E+02 + 2.96E+02 Fs | 6.67E+01 £ 1.51E+02 | 3.84E+00 £ 3.7SE+00
Fsal 2.52E-01 + 4.78E-02 1.80E-01 + 4.08E-02 a4 7.59E-03 + 8.96E-03 7.39E-03 + 6.32E-03
Fyne | 3.10E+02 £+ 1.07E+02 | 3.06E+02 £ 1.10E+02 Fy 2.09E+01 £ 1.33E-01 2.09E+01 £ 1.12E-01
Fpna 4.56E-02 £ 1.31E-01 2.07E-02 + 8.46E-02 Fy 2.43E+01 £ 6.23E+00 | 2.04E+01 £ 8.19E+00
Fpn2 1.44E-01 & 7.19E-01 1.71E-31 + 5.35E-31 Fyo | 7.33E+01 & 6.62E+01 | 5.27E+01 + 4.84E+01

istics chosen from the literature. The focus of the study was
to compare the performance of the proposed DEahcSPX algo-
rithm with the original DE algorithm in different experiments.
We also studied the performance of DEahcSPX comparing
with other EAs, and the efficiency of AHCXLS comparing
with other XLS strategies. Here, we use DE to denote the
DE/rand/1/bin variant (if not otherwise specified) of the al-
gorithm and the DEahcSPX algorithm was implemented by
embedding the AHCXLS strategy in the same variant of DE.

A. Performance Evaluation Criteria

For evaluating the performance of the algorithms, several of
the performance criteria of [41] were used with the difference
that 50 instead of 25 trails were conducted, respectively. We
compared the performance of DEahcSPX with DE for the test
suite using the function error value. The function error value for
a solution z is defined as (f(z) — f(z*)), where z* is the global
optimum of the function. The maximum number of fitness eval-
uations that we allowed for each algorithm to minimize this error
was 10 000 x N, where N is the dimension of the problem. The
fitness evaluation criteria were as follows.

1) Error: The minimum function error value that an algo-
rithm can find, using 10 000 x N fitness evaluations at
maximum, was recorded in each run and the average and
standard deviation of the error values were calculated. The
number of trials, in which the algorithms could reach the
accuracy level € (explained in next paragraph) using max-
imum 10 000 x N fitness evaluations, were counted and
denoted by CNT. For this criterion, the notation AVGg, +
SDE,(CNT) was used in different tables.

2) Evaluation: The number of function evaluations (FEs) re-
quired to reach an error value less than e (provided that the
maximum limit is 10 000 x N FEs) was also recorded in
different runs and the average and standard deviation of the
number of evaluations were calculated. For the functions
F to F, the accuracy level e was fixed at 10~ and for the
functions Fs—F}o ¢ was fixed at 10~2, as in [41]. We fixed
the accuracy level ¢ for the rest of the functions at 1076,
For this criterion, the notation AVGgy &+ SDg,(CNT) was
used where CNT is the number of runs in which the algo-
rithms could reach this accuracy level e using 10 000 x N
FEs at maximum.

3) Convergence graphs: Convergence graphs of the algo-
rithms. These graphs show the average Error performance
of the total runs, in respective experiments.

B. Experimental Setup

In our experimentation, we used the same set of initial random
populations to evaluate different algorithms in a similar way
done in [28] and [42]. Though classic DE uses only three con-
trol parameters, namely, Population Size P, Scaling Factor F',
and Crossover Rate C,., choice of these parameters is critical for
its performance [24], [35]. F' is generally related to the conver-
gence speed. To avoid premature convergence, it is crucial for
F to be of sufficient magnitude [23]. F' = 0.9 is suggested as a
good compromise between convergence speed and convergence
probability in [43]. Between C,. and F', C,. is much more sensi-
tive to problem’s property and multimodality. For searching in
nonseparable and multimodal landscapes C,. = 0.9 is a good
choice [43]. Therefore, we chose F' = 0.9 and C,. = 0.9 for all
the functions in every experiment without tuning them to their
optimal values for different problems. These parameter settings
are also studied elsewhere [24], [43]. Population size is a crit-
ical choice for the performance of DE. In our experiments, we
investigate the performance of the DE and DEahcSPX with pop-
ulation size P = N. We also studied the effect of population
size. For the proposed DEahcSPX, no additional parameter set-
ting is required. For the SPX operation, we chose the number of
parents participating in the crossover operation to be n,, = 3 as
suggested in [4] and changes to this setting are also examined
later.

The experiments were performed on a computer with
4400 MHz AMD Athlon TM 64 dual core processors and 2 GB
of RAM in Java 2 Runtime Environment.

C. Effect of AHCXLS on DE

The results of this section are intended to show how the
proposed AHCXLS strategy can improve the performance of
DE. In order to show the superiority of the newly proposed
DEahcSPX, we compared it with DE carrying out experiments
on the test suite at dimension N = 30 and the results are
presented in Tables I and II. The functions for which no con-
vergence was achieved were removed from Table II. All the
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TABLE II
FES REQUIRED TO ACHIEVE ACCURACY LEVELS LESS THAN ¢(N = 30)

DE DEahcSPX DE DEahcSPX

Fapn | 148650.8 + 6977.7 (50) | 87027.4 + 3967.3 (50) t || Fpno | 156016.9 + 31515.8 (48) | 85360.2 + 6390.6 (50)
Fros - 299913.0 + 519.5 (2) F 153450.1 + 5780.4 (50) | 89417.8 + 4117.6 (50) 1
Faer | 215456.1 4 9721.4 (50) | 129211.6 + 5168.6 (50) Fs - 299279.4 + 3685.9 (3)
Fyrw | 1902925 + 63478.8 (38) | 121579.2 + 79563.4 43) t || Fr | 211778.8 4 70080.3 (33) | 148067.7 + 68996.3 (42)
Fpn1 | 160955.2 4 63176.3 (43) | 96149.0 + 61787.7 (46) - -

1 The t value is significant at a 1~94 level of significance by two-tailed t-test

settings are the same as mentioned in Section V-B. Some repre-
sentative graphs comparing the convergence characteristics of
DE with DEahcSPX are shown in Fig. 4.

Depending on the relative performance of DEahcSPX and
DE, we divided the functions into three classes. The first
class contains the functions (Fypn, Fack, Fgrw, Fpn1s Fpn2, F1,
and F7) for which DEahcSPX reached the target accuracy
level using fewer fitness evaluation, or achieved that in an
equal or higher number of trials compared with DE (Table II).
The second class consists of the functions in which none of
the algorithms achieved the desired accuracy level but the
newly proposed one reached at a smaller error value. This
class contains the functions Fi.s, F5, F3, Fy, F5, Fg, and Fg
(Table I). The third class contains the functions in which no
significant difference was observed in the achieved error values
attained by the algorithms. This class consists of the functions
Fras, Fsen, Fial, Fiwnt, and Fy. Although no significant differ-
ence was noticed in the error values, it was revealed by the
convergence curves that these error values were achieved using
fewer fitness evaluation in the DEahcSPX algorithm compared
with DE (Fig. 4). Only in the case of Fg, was no significance
difference observed in the algorithms’ performance. It seems
that the learning strategy of (1) and (2) used in DE was not
good enough to locate the global optimum for the functions
belonging to the second class and the third class. Since the
DEahcSPX algorithm depends mostly on the working principle
of DE, it is natural that it also could not locate the global optimal
using the same learning strategy. However, hybridization of
DE with the AHCXLS scheme notably speeds up the original
algorithm. In general, the overall results of Tables I and II and
the graphs of Fig. 4 substantiate our claim that the proposed
AHCXLS strategy accelerates the classic DE algorithm.

D. Sensitivities to Population Size

Performance of DE is always sensitive to the selected popula-
tion size [28], [35]. This is easily conceivable because DE em-
ploys a one-to-one reproduction strategy. Therefore, if a very
large population size is selected, then DE exhausts the fitness
evaluations very quickly without being able to locate the op-
timum. Storn and Price suggested a larger population size (be-
tween 5N to 10N) for DE [5], although later studies found that
DE performs better with a smaller population [28], [43]. To in-
vestigate the sensitivity of the proposed algorithm to variations
of population size, we experimented with different population
sizes at dimension N = 30. Results, reported in Table III, show

how drastically the performance of DE changes with the pop-
ulation size for a given maximum number of evaluations. For
some functions, DE converged for all trials using a smaller pop-
ulation size (e.g., P = N) but failed to reach even a single
convergence with a larger population (e.g., P = 10N). Since
DEahcSPX is just an improvement of basic DE using AHCXLS,
it is expected that its sensitivity to variation in population size
is more or less similar to that of the basic algorithm. How-
ever, Table III shows that in all experiments the error values
achieved by DEahcSPX were always better than those achieved
by DE. The graphs of Fig. 5 show that AHCXLS scheme has
improved the convergence characteristics of the original algo-
rithm, regardless to population size. Though for some functions
(Fras, Fsen, Fs, Fo, F1g), the performance of both algorithms
were more or less indifferent to population size, we believe
that it was because of the inadequacy of the learning strategy
used. Nevertheless, the results presented in this section confirm
that the proposed DEahcSPX algorithm exhibits a higher con-
vergence velocity and greater robustness to the population size
compared with DE.

E. Scalability Study

So far, we have experimented in N = 30 dimensional
problem space. In order to study the effect of problem di-
mension on the performance of the DEahcSPX algorithm, we
carried out a scalability study comparing with the original DE
algorithm. Since the functions F—F} are defined up to N = 50
dimensions, we studied them at N = 10 and 50 dimensions.
The other functions were studied at N = 10, 50, 100, and 200
dimensions. For N = 10 dimensions, population size was
chosen as P = 30 and for all other dimensions, it was selected
as P = N. The accuracy achieved using N x 10 000 fitness
evaluations are presented in Table IV, and some representative
convergence graphs are shown in Fig. 6. In order to focus on
the comparison between the proposed algorithm DEahcSPX
and its parent algorithm DE, in Table V we also compared the
fitness evaluations required by the algorithms to achieve the
accuracy level € at N = 10 dimensions. In general, the same
conclusion as in Section V-C can be drawn about the relative
performance of the algorithms, i.e., DEahcSPX outperformed
DE at every dimension. Moreover, the results also show that the
performance improvement becomes more substantial with the
increase in problem dimensionality. So, from the experimental
results of this section, we can conclude that the AHCXLS
scheme speeds up DE in general, but particularly significant
improvements are obtained at higher dimensionality.



NOMAN AND IBA: ACCELERATING DIFFERENTIAL EVOLUTION USING AN ADAPTIVE LOCAL SEARCH

1E+04
1E+03 -
1E+02 A
1E+01 A
1E+00 A
1E-01 A
1E-02 A
1E-03 A
1E-04 -
1E-05 A
1E-06 A
1E-07

—e—DE
——DEahcSPX

0 50000 100000 150000 200000 250000 300000

1E+00 A

(a)
—e—DE
——DEahcSPX

1E-02 A

1E-04

1E-06 A

1E-08 A

1E-10 A

1E-12

0 50000 100000 150000 200000 250000 300000

(¢
—e—DE
——DEahcSPX

0 50000 100000 150000 200000 250000 300000

1E+05

1E+04

1E+03

1E+02

1E+01

1E+00

8000
—o—DE
——DEahcSPX

(e
7000 -
6000
5000 -
4000 -
3000 -
2000 -
1000 .

0 50000 100000 150000 200000 250000 300000

(2

113

1E+03

—e—DE
——DEahcSPX

1E+02 -

1E+01 -

1E+00 |

1E-01

1E-02 T T T T T
0 50000 100000 150000 200000 250000 300000

1E+06
1E+05
1E+04
1E+03
1E+02
1E+01
1E+00 -
1E-01
1E-02 -
1E-03
1E-04
1E-05 T T T T T

0 50000 100000 150000 200000 250000 300000

—e—DE
—— DEahcSPX|

1E+11
1E+10
1E+09
1E+08 -
1E+07 -
1E+06 |
1E+05 |
1E+04
1E+03 -
1E+02
1E+01
1E+00

—e—DE
——DEahcSPX|

0 50000 100000 150000 200000 250000 300000

1E+18

1E+16

—e—DE

1E+14 1 — DEahcSPX

1E+12
1E+10 |
1E+08 |
1E+06 |
1E+04 -

=

1E+02

0 50000 100000 150000 200000 250000 300000

(h)

Fig. 4. Convergence curves of DE and DEahcSPX algorithm for selected functions (N = 30). X axis represents fitness evaluations (FEs) and Y axis represents
Error values. (a) Fi. (b) Fr. (¢) Fack. (d) F5. (&) Fi. () Fros. (2) Focn. (h) Fins.

F. Comparison With Other XLS

In order to show the superiority of the newly proposed
AHCXLS scheme, we also compared it with two other XLS
strategies applying in DE algorithm. The first one is the FIR
strategy proposed by Noman and Iba [28], and we denote this
memetic version of DE as DEfirSPX. The other algorithm,

denoted as DExhcSPX, was implemented by using the XHC
strategy proposed by Lozano ef al. [17]. Both FIR and XHC
belong to the fixed length XLS category and were implemented
using SPX crossover operation, in order to have an unbiased
comparison. Experiments were performed on the test suite at
dimension N = 30. Results are presented in Tables VI and
VIIL. The settings for FIR and XHC schemes were chosen, as
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TABLE III
BEST ERROR VALUES FOR VARYING POPSIZE AT N = 30, AFTER 300 000 FES

PopSize=50 PopSize=100
DE DEahcSPX DE DEahcSPX
Fspn | 2.31E-02 £ 1.92E-02 6.03E-09 + 6.86E-09 (50) Fspn | 3.75E+03 & 1.14E+03 3.11E+01 £ 1.88E+01
Fros | 3.70E+02 £ 4.81E+02 4.98E+01 £ 6.22E+01 Fros | 4.03E+08 £ 2.59E+08 1.89E+05 + 1.47E+05
Fock 3.60E-02 + 1.82E-02 1.89E-05 £ 1.19E-05 Focr, | 1.36E+01 £ 1.48E+00 3.23E+00 £ 5.41E-01
Fgrw | 5.00E-02 4+ 6.40E-02 1.68E-03 + 4.25E-03 (42) Fgrw | 3.57TE+01 £ 1.26E+01 1.29E+00 + 1.74E-01
Fras | 5.91E+01 &+ 2.65E+01 2.77E+01 + 1.31E+01 Fras 2.63E+02 4+ 2.79E+01 1.64E+02 + 2.16E+01
Fser, | 7.68E+02 £ 8.94E+02 2.51E+02 £ 1.79E+02 Fgep, | 6.56E+03 £ 4.25E+02 6.30E+03 =+ 4.80E+02
Foar 8.72E-01 + 1.59E-01 2.44E-01 + 5.06E-02 Foar 5.97E+00 £ 6.54E-01 1.20E+00 + 2.12E-01
Fune | 8.65E+02 & 1.96E+02 4.58E+02 + 7.56E+01 Fune | 1.29E+14 £ 1.60E+14 | 3.16E+08 & 4.48E+08
Fpn1 2.95E-04 + 1.82E-04 1.12E-09 + 2.98E-09 (50) Fpn1 | 6.94E+04 + 1.58E+05 2.62E+00 + 1.31E+00
Fpn2 | 9.03E-03 + 2.03E-02 4.39E-04 + 2.20E-03 (47) Fpn2 | 6.60E+05 + 7.66E+05 4.85E+00 + 1.59E+00
Fy 1.69E-02 £ 1.80E-02 1.67E-08 £ 2.19E-08 (50) Fy 5.68E+03 =+ 2.63E+03 4.31E+01 £ 2.16E+01
Fy 8.38E+02 £ 7.20E+02 1.55E+01 + 1.09E+01 Fy 5.79E+04 £ 1.53E+04 | 4.34E+03 + 1.57E+03
F3 5.86E+07 £ 2.61E+07 4.75E+06 £ 1.82E+06 F3 8.82E+08 £ 2.61E+08 1.97E+07 £ 4.84E+06
Fy 3.65E+03 £ 2.03E+03 2.31E+02 + 1.42E+02 Fy 9.45E+04 + 2.77E+04 | 9.55E+03 £ 3.93E+03
F5 3.20E+03 £ 1.31E+03 1.04E+03 £ 3.67E+02 Fy 2.33E+04 + 4.03E+03 5.88E+03 + 1.24E+03
Fs 5.64E+02 £ 7.58E+02 7.00E+01 £ 1.28E+02 Fs 7.27E+08 £ 5.08E+08 4.05E+05 £ 3.01E+05
Fy 9.54E-01 +£ 9.75E-02 3.19E-03 + 5.14E-03 (44) Fy 5.73E+02 £ 1.85E+02 1.18E+01 £ 5.78E+00
Fy 2.09E+01 + 5.94E-02 2.09E+01 + 5.25E-02 Fy 2.09E+01 =+ 3.84E-02 2.09E+01 =+ 5.89E-02
Fy 5.23E+01 =+ 2.36E+01 2.56E+01 + 1.48E+01 Fy 2.73E+02 £+ 1.53E+01 1.83E+02 + 2.25E+01
Fio 2.24E+02 £+ 1.85E+01 1.55E+02 + 4.53E+01 Fio 3.31E+02 =+ 3.53E+01 2.05E+02 + 1.55E+01
PopSize=200 PopSize=300
DE DEahcSPX DE DEahcSPX
Fepn | 401E+04 £ 6.26E+03 1.10E+03 + 2.98E+02 Fspn | 1.96E+04 £ 2.00E+03 6.93E+02 £ 1.34E+02
Fros | 1.53E+10 £ 4.32E+09 1.49E+07 £ 7.82E+06 Firos | 3.97E+09 £ 8.92E+08 5.35E+06 + 2.82E+06
Focr, | 2.02E+01 £ 2.20E-01 9.11E+00 + 7.81E-01 Fock 1.79E+01 + 3.51E-01 7.23E+00 + 4.50E-01
Fgrw | 3.73E+02 £ 6.03E+01 1.08E+01 =+ 2.02E+00 Fgrw | 1.79E+02 £ 1.60E+01 7.26E+00 + 1.74E+00
Fras | 3.62E+02 4 2.12E+01 2.05E+02 £+ 1.85E+01 Fras | 275E+02 £ 1.27E+01 2.03E+02 £ 1.49E+01
Fecp | 6.88E+03 £ 2.55E+02 6.72E+03 £ 3.24E+02 Fgcep, | 6.87E+03 £ 2.72E+02 6.80E+03 £ 3.37E+02
Fa 1.34E+01 £ 8.41E-01 3.25E+00 + 4.55E-01 Foa 1.52E+01 + 5.43E-01 3.59E+00 + 4.54E-01
Fynt | 2.29E+16 £ 1.16E+16 5.47E+10 £ 6.17E+10 Fynt | 2.96E+16 £ 1.09E+16 1.83E+11 + 1.72E+11
Fpn1 | 2.44E+07 £ 7.58E+06 9.10E+00 £ 2.42E+00 Fpn1 | 3.71E+07 £ 1.29E+07 1.09E+01 + 3.76E+00
Fpn2 | 8.19E+07 & 1.99E+07 6.18E+01 £ 6.30E+01 Fpn2 | 1.03E+08 £ 1.87E+07 3.42E+02 £ 4.11E+02
Fy 5.51E+04 £ 6.74E+03 2.04E+03 £ 5.09E+02 Fy 5.18E+03 £ 7.23E+02 | 4.37E+02 £ 8.16E+01
I3 1.16E+05 £ 1.60E+04 1.09E+04 £ 3.00E+03 Fy 2.88E+04 £ 3.54E+03 7.08E+03 + 1.22E+03
F3 1.19E+09 =+ 1.63E+08 4.02E+07 £ 1.48E+07 F3 1.56E+08 =+ 3.07E+07 2.69E+07 + 6.84E+06
Fy 1.43E+05 £ 2.63E+04 1.68E+04 + 3.80E+03 Fy 3.49E+04 + 4.96E+03 1.10E+04 £+ 1.93E+03
Fy 3.29E+04 £ 2.71E+03 9.12E+03 £ 1.63E+03 Fx 1.10E+04 £ 5.32E+02 | 7.64E+03 + 4.72E+02
Fs 2.61E+10 £ 9.11E+09 4.64E+07 £ 1.65E+07 Fs 1.86E+08 =+ 4.07E+07 1.48E+06 + 5.45E+05
Fr 3.46E+03 4 4.31E+02 1.50E+02 + 2.82E+01 Fr 4.01E+03 =+ 5.13E+02 2.57TE+02 + 5.97E+01
Fy 2.09E+01 + 6.07E-02 2.09E+01 + 5.99E-02 Fy 2.10E+01 =+ 4.44E-02 2.09E+01 + 5.22E-02
Fy 4.13E+02 + 2.46E+01 2.31E+02 + 2.10E+01 Fy 2.22E+02 + 1.03E+01 2.05E+02 + 1.35E+01
F1o 6.00E+02 £ 5.28E+01 2.65E+02 £ 1.61E+01 Fio 2.75E+02 + 1.30E+01 2.13E+02 £ 1.21E+01

suggested in [17] and [28], respectively. All the other settings
are the same, as mentioned in Section V-B.

The performance difference among these three XLS methods
is not obvious from Table VI because at the end of the search all
of them reached similar error values, though DEahcSPX found

slightly better error values in almost every case. However, the
results presented in Table VII reveals that the newly proposed
DEahcSPX algorithm was faster than the other two variants of
DE. Statistical analysis of the numbers of FEs needed to reach
the given accuracy level (i.e., the results of Table VII) was per-
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Fig. 5. Convergence curves to show the sensitivities of DE and DEahcSPX to population size for selected functions (N = 30). X axis represents FEs and Y axis
represents Error values. (a) Fipn (P = 50). (b) Fea(P = 200). (¢) Fune (P = 300).(d) Fpn2(P = 300).(e) F1 (P = 50).(f) F5(P = 100).(g) F5(P = 200).

(h) Fs(P = 100).

formed using two-tailed Student’s z-test, and it was found that
the differences between the results of DEahcSPX and the other
two algorithms are statistically significant at a level of 0.05 for
all the functions in which the algorithms found convergences
in at least 40 trials (i.e., Fiph, Fack; Fpn1, Fpn2, and F). Be-
sides, the most prominent advantage of the AHCXLS scheme
over the other two is that it is free from the lookup for the best
length for the LS and thereby does not need any additional pa-

rameter. In contrast, for best results, XHC and FIR schemes
need to tune two and one parameters, respectively, which in turn
should be determined experimentally. Moreover, AHCXLS is
also useful for lower dimensional problems, whereas the FIR
scheme is only suitable for high dimensional optimization. At
lower dimension (e.g., at N = 10), the performance of DE-
firSPX was not significantly different from that of DE, and even
poor in some cases. Furthermore, in our brief experimentations,
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TABLE 1V
SCALABILITY STUDY IN TERMS OF ERROR VALUES
N=10 N=50
DE DEahcSPX DE DEahcSPX
Fepn | 3.26E-28 + 5.83E-28 (50) 1.81E-38 + 4.94E-38 (50) Fepn | S591E-02 + 9.75E02 | 8.80E-09 + 2.80E-08 (50)
Fros | 478E-01 & 1.32E+00 (43) | 3.19E-01 + 1.10E+00 (46) || Fros | 1.13B+10 = 2.34E+10 L63E+02 £ 3.02E+02
Faon | 8.35E-15 & 8.52E-15 (50) 2.66E-15 £ 0.00E+00 (50) || F,.. | 2.39E-02 & 8.90E-03 1.69E-05 + 8.86E-06
Fyruw 575E-02 & 3.35E-02 4.77E-02 + 2.55E-02 Fyrw | 7.55E-02 & 114E-01 | 2.96E-03 + 5.64E-03 (36)
Fras | 1.85E+00 + 1.68E+00 (13) | 1.60E+00 + 1.61E+00 (18) || Fras | 6.68E+01 = 2.36E+01 347E+01 + 9.23E+00
Foen | 1421272743 + 39.28155167 | 4.73766066 + 23.68766692 || F.., | 1.07E+03 % 5.15E+02 9.56E+02 + 2.88E+02
Foa | 0.107873375 + 0.027688791 0.099873361 + 3.47E-08 Fy | 1.15E+00 + 1.49E-01 4.00E-01 + 1.00E-01
Fune | 18.11229734 & 15.85783313 | 18.00697444 + 13.11270338 || Fippne | 1.43E+05 £ 4.10E+05 1.41E+03 £ 2.90E+02
Fpni | 3.85E-29 + 7.28E-29 (50) 4.71E-32 + 1.12E-47 (50) Fpni | 3.07E-02 + 7.93E-02 | 2.49E-03 + 1.24E-02 (48)
Fyn2 | 1.49E-28 + 2.20E-28 (50) 1.35E-32 + 5.59E-48 (50) Fpno | 224E-01 + 335E-01 | 2.64E-03 + 4.79E-03 (38)
b 0.00E+00 = 0.00E+00 (50) | 0.00E+00 = 0.00E+00 (50) g 1.50E-02 & 1.09E-02 | 1.06E-08 = 1.22E-08 (50)
Fy 2.27E-15 £ 1.14E-14 (50) | 0.00E+00 % 0.00E+00 (50) Fy | 2.89E+04 = 1.03E+04 1.44E+03 & 5.95E+02
Fy 8.76E-06 - 2.78E-05 (38) 2.42E-06 + 7.11E-06 (40) F3 | 540E+08 & 2.62E+08 2.27E+07 + 8.01E+06
Fy 8.87E-14 & 1.24E-13 (50) | 0.00E+00 % 0.00E+00 (50) Fy | 6.04E+04 & 1.74E+04 1.04E+04 = 3.90E+03
I 1.07E-03 & 2.40E-03 1.12E-05 & 1.75E-05 (12) F5 | 5.81E+03 £ 1.12E+03 3.71E+03 £ 6.57TE+02
Fs 3.19B-01 = 1.10E+00 (46) 3.19E-01 = 1.10E+00 (46) Fs | 1.29E+03 & 1.98E+03 2.24E+02 + 3.99E+02
Fr 1.56E-01 & 1.63E-01 1.47E-01 £ L16E-01 (3) F; | 1.0SB+00 £ 6.24E-02 | 2.11E-02 £ 2.29E-02 (18)
Fy 2.04E+01 + 1.08E-01 2.04B+01 + 1.45E-01 Fy | 2.11E+01 + 2.93E-02 2.11B+01 + 3.63E-02
Fy 2.01E+00 =+ 1.41E+00 (5) 1.23E+00 £ 9.65E-01 (10) Fy | 7.65E+01 = 2.30E+01 5.23E+01 + 1.53E+01
Fio 1.26E+01 = 7.26E+00 1.06E+01 = 4.06E+00 Fio | 4.24B+02 + 2.98E+01 3.35E+02 + 2.80E+01
N=100 N=200
DE DEahcSPX DE DEahcSPX

Faph 428E+03 £ 1.27E+03 5.01E+01 + 8.94E+01 Fopn | 1.26B+05 £ 1.06E+04 7.01E+03 + 1.07E+03
Fros 3.33E+08 £ 1.67E+08 1.45E+05 £ 1.11E+05 Fros | 297E+10 £+ 3.81E+09 L11E+08 + 2.63E+07
Fac 8.81E+00 + 8.07E-01 1.91E+00 & 3.44E-01 Foer | 1.81B+01 + 2.26E-01 8.45E+00 + 4.13E-01
Fyruw 3.94E+01 + 8.01E+00 1.23E+00 + 2.14E-01 Fyrw | L15E+03 £ 9.22E+01 6.08E+01 + 9.30E+00
Fras 8.30E+02 =+ 6.51E+01 4.75E+02 + 6.55E+01 Fras | 2.37B+03 & 7.24E+01 1.53E+03 = 8.31E+01
Foen 2.54E+04 & 2.15E+03 2.48E+04 + 2.17E+03 Foon | 6.66E+04 £ 1.32E+03 6.61E+04 £ 1.44E+03
Foul 1.02E+01 =& 7.91E-01 3.11E+00 + 5.79E-01 Feq | 3.69E+01 + 1.80E+00 1.10E+01 £ 4.38E-01
Funt 544E+15 & 5.07E+15 4.06E+10 + 6.57E+10 Fune | 3.13E+18 + 9.48E+17 4.21E+13 + 1.74E+13
Fpn1 6.20E+05 & 7.38E+05 4.34E+00 + 1.75E+00 Fpn1 | 3.49E+08 + 7.60E+07 2.27E+01 + 5.73E+00
Fyn2 4.34E+06 =+ 2.30E+06 7.25E+01 + 2.44E+01 Fyn2 | 8.08E+08 + 1.86E+08 6.24E+04 + 4.77E+04

we found that the performance difference among the proposed
algorithm and the other two variants became more significant at
higher dimensions.

G. Comparison With Other EC

Many XLS-oriented EAs for real parameter optimization
are now available in the literature. This subsection presents a
performance comparison between the proposed algorithm and
some other hybrid GAs with LS. Two GA models, minimal
generation gap (MGG) [44] and generalized generation gap
(G3) [45], have drawn much attention. Both of these models,
in fact, induce an XLS on the neighborhood of the parents by
generating multiple offspring using some crossover operation
[17]. Over the past few years, substantial research effort has
been spent to develop more sophisticated crossover operations
for GA and many outstanding schemes have been proposed,

such as BLX-«a crossover [46], unimodal normal distribution
crossover (UNDX) [3], simplex crossover (SPX) [4], and
parent centric crossover (PCX) [45]. Respective researches
have shown that UNDX and SPX perform best with the MGG
and PCX performs best with the G3 generational models.
Therefore, in our experiments, we perform comparisons using
the algorithms MGG+UNDX, MGG+SPX, G3+PCX and
G3+SPX, and the results are shown in Tables VIII and IX. The
performance of G3+SPX was similar to or worse than that of
MGG+SPX. Therefore, only the results of MGG+SPX were
presented. The MGG model was setup with P = 300, A\ = 4
offspring, generated from p parents, where 4 = 6 was used
for UNDX and ¢ = 3 was used for SPX. For G3 model
P =100, = 3, and A = 2 were used.

In our experiments, the MGG+SPX algorithm could not
achieve the target accuracy levels for any function of the test
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Fig. 6. Convergence curves to compare the scalability of DE and DEahcSPX algorithm for selected functions. X axis represents FEs and Y axis represents Error
values. (a) Fipn(N = 100). (b) Fyrw (N = 200). (¢) Fras(N = 100). (d) Fea(N = 100). (e) Fpn1(N = 200). (f) Fpn2(N = 200). (g) F5(N = 50).

(h) Fs(N = 50).

suite. The MGG+UNDX algorithm achieved a slightly better
error average for some functions (Flyrw, Fras, Fsal, F3, F7,
and Fjp) but was outperformed by DEahcSPX for the other
functions. Moreover, according to Table IX, the average fitness
evaluations used by DEahcSPX were fewer than that used
by MGG+UNDX to achieve the target accuracy levels e.
The performance of G3+PCX was outstanding for unimodal

functions like Fpn, Fros, F1, and F». However, its performance
was poor for the multimodal functions. In most of the cases,
the algorithm converged quickly without reaching the error
accuracy level and without exhausting the maximum fitness
evaluations, as indicated in Tables VIII and IX. So, in general,
it can be concluded from Tables VIII and IX that the proposed
DEahcSPX exhibits overall better performance than the other
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TABLE V

DE DEahcSPX DE DEahcSPX
Fspn 31639.7 £ 1347.0 (50) 22926.4 + 1300.3 (50) Fy | 49683.4 £ 2184.3 (50) 34677.8 + 2203.9 (50)
Fros | 73803.8 £ 12550.9 (43) 59275.7 + 14998.0 (46) F3 | 94850.3 £ 4906.4 (38) 89217.0 + 9466.3 (40)
Focr 48898.2 £+ 1977.7 (50) 36389.3 + 1764.4 (50) Fy | 58143.8 & 3372.4 (50) 39192.2 + 2673.2 (50)
Fras | 94089.0 &= 12818.3 (13) 84309.0 = 22045.5 (18) Fy - 99328.9 + 1606.6 (12)
Fpna 28885.8 £ 2394.4 (50) 20543.5 & 1162.8 (50) Fs | 61808.5 & 18899.9 (46) 50167.7 £+ 19785.8 (46)
Fpno 30812.6 £ 1684.9 (50) 21633.5 £ 1293.9 (50) Fr - 97258.7 + 13794.1 (3)
I3 32165.7 £ 1415.3 (50) 22594.7 £+ 1255.7 (50) Fy 97860.2 £ 7475.7 (5) 89685.7 + 21519.0 (10)
TABLE VI

COMPARISON WITH OTHER XLS IN TERMS OF ERROR VALUES

DEahcSPX

DEfirSPX

DExhcSPX

Fsph

1.75E-31 + 4.99E-31

1.22E-27 £ 2.95E-27

7.66E-29 = 1.97E-28

F7‘os

4.52E+00 £+ 1.55E+01

4.84E+00 + 3.37E+00

5.81E+00 & 4.73E+00

Fack

2.66E-15 + 0.00E+00

8.35E-15 + 1.03E-14

5.22E-15 £ 2.62E-15

Fgrw

2.07E-03 + 5.89E-03

3.54E-03 £ 7.55E-03

3.45E-03 £ 7.52E-03

F’I‘(LS

2.14E+01 £ 1.23E+01

2.27E+01 + 7.39E+00

1.86E+01 + 7.05E+00

Fsch

4.70E+02 £ 2.96E+02

5.23E+02 £ 3.73E+02

4.91E+02 £ 4.60E+02

Fs al

1.80E-01 £ 4.08E-02

1.84E-01 & 7.46E-02

1.92E-01 + 4.93E-02

Funt

3.06E+02 £ 1.10E+02

3.11E+02 + 9.38E+01

2.84E+02 + 1.10E+02

Fpn,l

2.07E-02 + 8.46E-02

3.24E-02 + 3.44E-02

2.49E-02 + 8.61E-02

Fpn2

1.71E-31 + 5.35E-31

1.76E-03 + 4.11E-03

4.39E-04 + 2.20E-03

1y

0.00E+00 £ 0.00E+00

0.00E+00 £ 0.00E+00

0.00E+00 £ 0.00E+00

Fy

6.52E-05 + 4.84E-05

1.05E-03 + 1.29E-03

9.40E-04 + 1.80E-03

Fy

1.29E+06 + 9.22E+05

1.73E+06 £ 1.22E+06

1.54E+06 £ 1.15E+06

Fy

4.62E+00 + 8.78E+00

1.04E+01 £ 1.75E+01

6.69E+00 £ 1.06E+01

Fs

9.00E+02 + 4.79E+02

1.15E+03 £ 6.68E+02

1.01E+03 £ 4.31E+02

Fg

3.84E+00 + 3.7SE+00

1.65E+01 + 4.72E+01

1.41E+01 £ 1.86E+01

Fy

7.39E-03 + 6.32E-03

4.53E-03 £+ 6.92E-03

7.98E-03 + 9.48E-03

Fy

2.09E+01 £ 1.12E-01

2.10E+01 =+ 4.61E-02

2.09E+01 £ 7.41E-02

Fy

2.04E+01 + 8.19E+00

247E+01 £ 7.72E+00

2.80E+01 +£ 7.75E+00

Fio

5.27E+01 £ 4.84E+01

6.96E+01 £ 5.39E+01

6.79E+01 £ 4.80E+01

algorithms shown in the tables. These results also establish it
as a competitive alternative for real parameter optimization
problems.

We also compared the proposed DEahcSPX algorithm with
other MAs with binary coding and real coding using the pub-
lished results. To show that the proposed AHCXLS is equally
suitable for the exponential crossover scheme, in these compar-
isons, we used exponential crossover in DE and DEahcSPX in-
stead of binary crossover. First, we performed comparison with
self-adaptive MA scheme MA-S2, which is the best of the two
adaptive MAs proposed in [19], and also exhibited overall supe-
rior performance compared to nine other traditional MAs. The
comparative results are presented in Table X in terms of eight
benchmark functions used in [19], among which the Bump func-
tion (Frump) 18 a constrained maximization problem whether
all the others are unconstrained minimization problems. The
maximum FEs allowed to solve each function was 40000 ex-

cept for Fpump, where it was 100000. The results presented
are average of 20 repeated runs, as in [19]. From Table X, it
can be found that for FBump7 FRosenbrock7 FStep, and FRastrigin
functions, the DEahcSPX algorithm clearly outperformed the
MA-S2 algorithm. For the other four functions, it seems that
MA-S2 exhibited superior performance.

Then, we compared our algorithm with the results of the
RCMA presented in [17]. Comparing with the other 21 vari-
ants of real coded MAs, Lozano et al. showed that in general,
their proposed RCMA outperforms all the other algorithms
[17]. Table XI shows comparative results for five benchmark
functions and three real-world problems as used in [17]. We
used the same performance measure criteria as used in [17];
A: average of minimum fitness found in 50 repeated runs; B:
best of all minimum fitness in 50 runs or the percentage of
run in which the global optimum was found (if some runs
located the global minimum). The maximum FEs allowed
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TABLE VII

COMPARISON WITH OTHER XLS IN TERMS OF FES

DEfirSPX

DExhcSPX

96588.2 + 6260.4 (50)

92111.4 £ 4951.5 (50)

142169.88 £ 8137.9 (50)

139982.1 £ 7096.2 (50)

146999.76 + 87855.0 (38)

153119.1 £ 93613.4 (37)

126486.56 £ 66369.7 (44)

122129.1 £ 68013.8 (44)

135395.48 £ 73557.7 (43)

106820.1 £ 41154.6 (48)

101022.68 + 7656.8 (50)

97470.6 % 7700.0 (50)

169019.16 + 84155.5 (36)

175486.0 & 80658.6 (37)

COMPARISON WITH OTHER RCMAS IN TERMS OF ERROR VALUES (N = 30)

G3+PCX

MGG+SPX

3.58E-81 £+ 1.36E-81 f

8.75E+00 £ 2.87E+00

4.18E+00 £ 9.68E+01

1.38E+03 £ 6.45E+02

1.48E+01 4 4.17E+00 I

1.68E+00 + 2.99E-01

1.07E-02 £ 1.30E-02 §

1.09E+00 =+ 2.24E-02

1.75E+02 4+ 3.37E+01 f

5.78E+00 + 1.83E+00

4.04E+03 + 1.09E+03 }

8.70E+03 £ 2.41E+02

4.64E+00 £ 4.74E+00 }

3.82E-01 £ 4.29E-02

7.90E+02 £ 1.27E+02 }

3.28E+03 £ 2.77E+03

4.35E+00 + 6.94E+00 }

2.57E-01 =+ 6.90E-02

1.50E+01 4 1.58E+01 §

2.29E+00 £ 3.72E-01

3.52E-13 + 1.22E-13 §

4.71E+04 + 4.21E+03

4.14E-12 £+ 1.21E-12 §

3.96E+04 + 3.89E+03

1.07E+03 + 1.29E+03

7.16E+08 4 1.34E+08

9.35E+04 + 2.66E+04

4.45E+04 + 3.73E+03

8.13E+03 £ 2.65E+03 |

3.34E+04 £ 2.11E+03

1.34E+02 £ 2.48E+02

1.56E+10 4+ 1.47E+09

2.01E-02 + 1.85E-02

1.02E+04 £ 4.71E+02

2.11E+01 £ 6.67E-12 §

2.10E+01 £ 4.06E-02

2.44E+02 £ 3.98E+01 }

3.15E+02 4+ 1.04E+01

DEahcSPX
Feopn | 87027.4 + 3967.3 (50)
Fros 299913.0 + 519.5 (2) -
Faew | 1292116 + 5168.6 (50)
Fyrw | 121579.2 + 79563.4 (43)
Fyni | 96149.0 & 61787.7 (46)
Fona | 85360.2 & 6390.6 (50)
£ 89417.8 + 4117.6 (50)
F 299279.4 + 3685.9 (3) -
Fr | 148067.7 + 68996.3 (42)
TABLE VIII
DEahcSPX MGG+UNDX
Faph 1.75E-31 + 4.99E-31 1.37B-11 + 1.94E-11
Fros | 4.52E+00 + 1.55E+01 2.81E+01 + 1.23E+01
Facr | 2.66E-15 £ 0.00E+00 8.23E-07 + 4.64E-07
Fyrw | 207E-03 + 5.89E-03 2.96E-04 + 1.48E-03
Fras | 2.14B+01 + 1.23E+01 1.35E+00 + 1.03E+00
Foen | 470E+02 + 2.96E+02 | 4.12E+03 + 1.72E+03
Faal 1.80E-01 + 4.08E-02 1.50E-01 + 4.95E-02
Fune | 3.06E+02 & 1.10E+02 | 4.28E+02 & 3.82E+01
Fpn1 | 2.07E-02 + 8.46E-02 4.93E-02 + 3.50E-02
Fpn2 | L71E-31 + 5.35E-31 4.39E-04 + 2.20E-03
ba 0.00E+00 + 0.00E+00 2.83E-11 =+ 3.33E-11
> 6.52E-05 + 4.84E-05 1.41E+00 =+ 7.15E-01
F3 1.29E+06 + 9.22E+05 8.76E+05 + 2.98E+05
Fy 4.62E+00 + 8.78E+00 | 5.01E+01 + 3.62E+01
Fs 9.00E+02 + 4.79E+02 | 1.67E+03 + 6.01E+02
Fs 3.84E+00 + 3.75E+00 | 1.79E+02 + 2.38E+02
Fr 7.39E-03 + 6.32E-03 7.26E-03 + 8.19E-03
Fy 2.09E+01 + 1.12E-01 2.09E+01 + 5.62E-02
Fo 2.04E+01 + 8.19E+00 | 4.65E+01 + 541E+01
Fio | 527E+01 + 4.84E+01 | 4.76E+01 + 5.03E+01

3.89E+02 £ 9.96E+01 f

5.31E+02 £ 2.85E+01

1 Algorithm converged before using the maximum allowed fitness evaluations
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in each run was 100000. From Table XI, it can be found
that the performance of RCMA was better than DEahcSPX
only for Fs,, and Fscp, and in all other cases, the average
performance of the proposed algorithm was better than that
of RCMA. Hence, in an average, the DEahcSPX algorithm
outperformed the RCMA on the studied benchmark and on
the real-world problems.

Finally, we compared our proposed algorithm with the
dynamic multiswarm particle swarm optimizer with LS
(DMS-PSO) algorithm using the results reported in [47].
Table XII compares DMS-PSO, DE, and DEahcSPX for the ten
benchmark functions used in our suite (£'i—F'). The results are
the average of 25 runs under the same experimental conditions.
As shown in Table XII, for F}y, Fs, F5, and Fi9, DMS-PSO

outperformed DEahcSPX. In particular, the performance of
DMS-PSO was extraordinary for the first three unimodal
functions. In contrast, for Fj, Fg, F7, and Fy, DEahcSPX
outperformed DMS-PSO considerably. For the other two func-
tions F5 and Fg, no performance difference was observed. The
results of Table XII suggest that DMS-PSO is exceptional in
solving unimodal problems, and can also handle multimodal
problems competitively. On the other hand, DEahcSPX ex-
hibited superior performance in solving multimodal functions
compared with DMS-PSO.

In all of the above comparisons in Tables X—XII, DEahcSPX
consistently exhibited superior performance compared with the
original DE which establishes that AHCXLS scheme is equally
suitable for the exponential crossover scheme.
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TABLE IX

CoMPARISON WITH OTHER RCMAS IN TERMS OF FEs (N = 30)

DEahcSPX MGG+UNDX G3+PCX MGG+SPX

Fopn 87027.4 + 3967.3 (50) 200515.5 + 6743.2 (50) 2640.1 + 104.9 (50) i -

Fros 299913.0 £ 519.5 (2) - 177783.9 + 71145.1 (34) | -

Fock 129211.6 + 5168.6 (50) 294226.7 £ 4359.5 (40) - -

Fyrw 121579.2 + 79563.4 (43) | 238310.7 £ 13968.8 (42) 14560.6 £+ 12576.4 (20) I -

Fras - 299583.6 + 2102.0 (2) - -

Fpn1 96149.0 + 61787.7 (46) 185258.4 + 7436.3 (44) - -

Fpn2 85360.2 £+ 6390.6 (50) 209272.8 £ 19680.5 (48) - -

Fy 89417.8 + 4117.6 (50) 206630.6 + 5771.4 (50) 2649.2 + 121.3 (50) i -

Fy 299279.4 + 3685.9 (3) - 13290.7 + 569.1 (50) i -

Fs - - 177617.4 + 110147.4 (24) -

Fr 148067.7 + 68996.3 (42) 257533.8 + 34064.9 (35) 9314.4 + 4281.8 (20) § -

1 Algorithm converged before using the maximum allowed fitness evaluations
TABLE X
COMPARISON WITH MA-S2 [19]
Range MA-S2 DE DEahcSPX
Fsphere [-5.12,5.12]%° [Global min in 100% ] 7198 Evals | 4.27E-05 + 1.18E-05 | 2.56E-06 + 1.06E-06
Faricwank [—600, 600]*° 2.80E-04 + 8.28E-04 3.44E-02 + 2.05E-02 | 2.77E-02 + 1.24E-02
FBump [0,10]%° 7.34E-01 4+ 2.22E-02 0.7999 + 0.0024 8.02E-01 + 3.87E-03
FShekels FowHole | [—65.536,65.536)% | [Global min in 100% ] 9634 Evals 0.998 + 5.09E-16 0.998 + 7.20E-17

FSchwerfel [—500, 500]*° [Global min in 80% ] 1.27E-04 + 3.73E-13 | 1.27E-04 + 0.00E+00
FRrosenbrock [—2.048, 2.048]3° 2.57E+04 + 6.00E+01 2.44E+01 £ 7.32E-01 | 2.15E+01 + 7.35E-01
Fstep [-5.12,5.12]3° 1.63E-01 + 3.10E-02 [13967.7 + 738.07]% [13846.6 + 621.95]"
FRrastrigin [-5.12,5.12]%° 1.55E-01 + 7.10E-02 2.14E-01 & 1.53E-01 | 6.02E-02 + 1.00E-01

 Global optimum 0.0 found using these FEs counts

TABLE XI
COMPARISON WITH RCMA [17]

Range RCMA-XHC DE DEahcSPX
A B A B A B

Fspn [-5.12,5.12]%° 6.50E-101 | 1.10E-105 | 6.91E-18 | 8.63E-19 2.58E-20 6.16824E-21
Fros [-5.12,5.12]%° 220E+00 | 6.00E-04 | 1.32E-01 | 2.48E-02 | 1.20E-02 1.13E-03
Fsen | [—65.536,65.536)2° | 3.80E-07 | 4.50E-09 | 1.47E+01 | 5.53E+00 | 2.48E-01 4.98E-02
FRas [-5.12,5.12]%° 1.40E+00 2% 6.59E-11 | 6.09E-12 | 3.48404E-12 | 6.75016E-14
Fgri [—600, 600]2° 1.30E-02 30% 1.48E-04 | 1.54E-14 | 3.75566E-14 18%

Pye [—127,127)10 5.50E+01 | 7.90E-01 | 8.25E-04 | 1.98E-05 6.17E-04 8.76E-08
Pcheb [—6.4,6.35]% 1.40E+02 | 9.20E+00 | 0.00E+00 | 100% 0.00E+00 100%
Pims [-512,512)° 7.70E+00 40% 2.68E+00 | 1.10E-23 | 2.22E+00 1.43E-04

A: Average of the minimum fitness found; B: best of all minimum fitness or percentage of run that found global optimum

H. Other Studies of AHCXLS Scheme

In all experiments, we fixed I’ = 0.9 and C}. = 0.9 as the pa-
rameter setting for all algorithms. As mentioned earlier, because
of the sensitivity of DE to its control parameter, some variants
with adaptive control parameter have been proposed [24], [27],
[36]. In order to show that the proposed AHCXLS scheme can
also accelerate such adaptive DE variants, we incorporated itin a
recent DE variant with self-adaptive control parameters (DESP),
proposed in [27]. We call the new variant DESPahcSPX. The

comparative results (average of 25 runs) with the same settings
as in [27] (N = 30 and P = 100) are reported in Table XIII.
The results of Table XIII suggest that integration of AHCXLS
in DESP has certainly accelerated the algorithm. These results
also indicate that the acceleration of DE by AHCXLS scheme is
not influenced by the parameter settings. Hence, the AHCXLS
scheme can be similarly useful for performance enhancement of
other self-adaptive DE variants.

The only parameter AHCXLS scheme includes is n,,, the
number of parents participating in the crossover operation. The
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TABLE XII

COMPARISON WITH DMS-PSO [47] AT N = 30

DE

DEahcSPX

DMS-PSO
P [5026.3 + 72.463]

Fy [125520 + 17371] 1

F3 | 1.63E-06 + 3.92E-06 (84%)
Fy 2.55E+03 + 3.06E+02
Fx 2.19E+03 + 8.26E+02
Fs | 4.78E-01 + 1.32E+00 (98%)
Fr | 7.00E-03 + 4.54E-03 (96%)
Fy 2.00E+01 =+ 2.30E-04
Fy 1.76E+01 + 3.02E+00
Fio 3.74E+01 + 5.29E+00

[64546.85 & 1097.25]
1.33E-02 + 6.72E-03
1.85E+06 & 1.05E+06
9.16E+01 =+ 4.53E+01
3.27E+03 + 8.75E+02

[161762.1 + 3765.823] T

7.96E-02 + 5.99E-02 (16%)
2.09E+01 =+ 5.35E-02

[60441.55 4 2015.97]
1.20E+02 =+ 1.42E+01

[54959.52 + 1184.39]
4.87E-05 + 2.74E-05
9.80E+05 =+ 5.56E+05
1.14E+00 + 6.16E-01
2.15E+03 =+ 7.04E+02

[146963.32 + 5613.87] |

5.64E-04 + 2.03E-03 (98%)
2.10E+01 £ 5.52E-02

[57163.12 + 1879.38] |
9.51E+01 =+ 1.45E+01

T Target accuracy level achieved using these FEs counts

TABLE XIII

STUDY ON THE SUITABILITY OF AHCXLS FOR DESP
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DESP DESPahcSPX DESP DESPahcSPX

Fspn [50808.08 + 1178.07] [40956.12 + 967.89] 1 Fy [50269.24 + 1183.61] T [41245.92 + 1167.10] 1
Fros 1.42E+01 £ 1.61E+01 1.30E+01 + 1.72E+01 F> | 6.86E-07 £ 5.81E-07 (80%) 2.83E-07 + 3.94E-07 (92%)
Fock [71779.96 + 1507.12] [58920.68 + 1316.83] * F3 1.89E+05 £ 1.04E+05 1.74E+05 £+ 1.04E+05
Fyrw [53679.6 & 3113.15] 1 [43412.68 + 2199.17] 1 Fy 3.74E-02 + 8.86E-02 2.11E-02 + 3.17E-02
Fras | [108502.52 + 4027.63] [102456.6 + 4775.19] 1 Fs 4.25E+02 £ 4.07E+02 3.78E+02 + 4.37TE+02
Fgep 3.82E-04 + 0.00E+00 3.82E-04 + 0.00E+00 Fg 2.60E+01 £ 2.79E+01 2.20E+01 + 2.55E+01
Fsal 1.92E-01 £ 2.77E-02 1.36E-01 £ 4.90E-02 Fy 1.60E-02 £ 1.17E-02 (52%) 1.28E-02 + 8.51E-03 (76%)
Funt 3.47E+01 £ 5.88E+01 2.83E+01 £ 5.60E+01 (4%) Fg 2.09E+01 £ 3.66E-02 2.09E+01 £ 5.90E-02
Fpn1 [44659.36 + 1361.99] [36064.04 + 1181.63] Fy [83861.84 + 2510.90] * [81091.8 + 3372.61] T
Fpn2 [49224.72 + 1224.12] 1 [39508.88 + 1035.98] Fio 5.71E+01 £ 9.83E+00 5.35E+01 + 8.13E+00

T Target accuracy level achieved using these FEs counts

authors of SPX operation suggested that the number of parents
should be 3 or 4 [4], and hence we used n,, = 3 in this study.
However, we studied the effect of n,, on the performance using
np, = 4,5,6,8,10,12, and 15. Table XIV compares the perfor-
mance for some of the choices. From Table XIV, it seems that
in general, a higher number of parents n,, can slightly improve
the performance of the algorithm. However, the effect should be
studied in more detail by varying population size and problem
dimension which is out of the scope of this research.

Another issue in the AHCXLS scheme is the selection of
parents other than the best individual of the generation. In this
work, we have chosen them randomly. However, incorporating
the knowledge obtained during the search in selecting parents
(other than the best) for SPX operation can further improve
the performance. We briefly studied the effect of positive
assortative mating (PAM) and negative assortative mating
(NAM) on the algorithm performance. After selecting the first
parent, PAM (NAM) selects other individuals with most (least)
phenotype similarity [48]. Here, we used Euclidean distance
between chromosomes as a measure of similarity between
them. The results shown in Table XV suggest that NAM can
be useful to improve the performance of the algorithm, mostly
for unimodal functions. However, considering the performance
improvement achieved and the additional computational cost

incurred in NAM, the random mating used in this work can be
used as a computationally less expensive approach. Many other
sophisticated mechanisms available can be used for getting
online feedback from the search that can help to improve the
quality of the local tuning at the expense of some computational
effort [20]-[22].

VI. DISCUSSION

Most of the real-world problems involve variables in contin-
uous domain and thereby need fine tuning of these variables.
However, traditional GAs are often not efficient for fine-tuning
solutions close to optimum [49]. A more competitive form of
algorithm can be obtained through intelligent incorporation
of local improvement processes in EAs. Traditionally, these
hybrid EAs or MAs have been implemented by incorporating
problem dependent heuristics for refining individuals (i.e.,
improving their fitness through fine tuning). However, the
field of EA has always enjoyed the superior characteristic of
being problem independent. Therefore, a recent interest is to
include the LS in EA in a problem independent manner. The
availability of many sophisticated crossover operations, that are
capable of generating offspring according to the distribution of
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TABLE XIV

STUDY OF n,, FOR AHCXSL OPERATION (N = 30)

np =5 np =8 np =10 np =15
Fspn [83198.68 + 4951.30] [82987.64 + 3546.02] [80547.52 + 3112.62] 1 [77132.88 + 4603.41] 1
Fros 2.23E+00 £ 2.27E+00 1.56E+00 =+ 2.44E+00 1.87E+00 + 2.11E+00 1.49E+00 + 2.15E+00
Fock [124043.36 + 5526.48] T 4.62E-02 + 2.31E-01 (96%) [121583.2 & 5885.61] 1 [116291.16 + 4177.22] 1
Fyrw 2.76E-03 =+ 4.73E-03 (72%) 1.58E-03 + 4.91E-03 (88%) 3.44E-03 + 7.99E-03 (76%) 2.86E-03 + 4.48E-03 (68%)
Fras 2.09E+01 £ 6.72E+00 1.82E+01 =+ 5.42E+00 1.80E+01 =+ 5.47E+00 1.73E+01 + 6.32E+00
Fgen 5.50E+02 + 3.11E+02 5.26E+02 + 3.98E+02 4.91E+02 + 2.20E+02 5.73E+02 + 2.97E+02
Fgsqp 1.72E-01 + 8.91E-02 1.61E-01 £ 4.90E-02 1.50E-01 + 5.00E-02 1.54E-01 + 5.72E-02
Funt 3.03E+02 £ 1.00E+02 3.13E+02 + 1.02E+02 3.17E+02 £ 9.11E+01 2.81E+02 + 1.07E+02
Fpn1 1.66E-02 + 3.88E-02 (84%) 8.29E-03 £ 4.15E-02 (96%) 2.49E-02 £ 1.05E-01 (92%) 2.49E-02 + 8.61E-02 (88%)
Fpn2 6.54E-02 £ 3.18E-01 (80%) 1.45E-01 £ 7.19E-01 (88%) 1.44E-01 =+ 7.19E-01 (92%) 8.79E-04 + 3.04E-03 (92%)
Fy [84284 + 3930.25] * [81488.92 + 3881.04] [79089.92 + 3227.048] [78427.72 + 4491.97] 1
Fy 2.36E-05 4+ 3.78E-05 1.84E-05 + 2.73E-05 (4%) 3.62E-05 + 3.17E-05 2.35E-05 + 2.88E-05
F3 3.91E+05 & 1.93E+05 3.65E+05 + 2.03E+05 4.17E+05 £ 2.44E+05 4.05E+05 £ 1.80E+05
Fy 5.36E-01 £ 5.40E-01 5.01E-01 £ 7.05E-01 5.98E-01 £ 7.76E-01 1.38E+00 + 3.60E+00
Fy 8.20E+01 + 1.31E+02 1.19E+02 + 1.76E+02 7.41E+01 £ 8.41E+01 6.98E+01 + 7.52E+01
Fg 1.55E+00 + 2.49E+00 (20%) 9.37E-01 £ 1.56E+00 (12%) 1.65E+00 + 3.22E+00 (24%) | 7.18E-01 + 1.16E+00 (16%)
Fr 6.89E-03 £ 9.63E-03 (76%) 4.63E-03 + 6.45E-03 (84%) 3.16E-03 + 4.90E-03 (92%) 4.83E-03 £ 7.22E-03 (92%)
Fg 2.10E+01 + 4.69E-02 2.09E+01 + 4.26E-02 2.09E+01 =+ 4.18E-02 2.09E+01 =+ 4.29E-02
Fy 1.98E+01 + 6.45E+00 1.86E+01 + 4.91E+00 1.98E+01 + 6.95E+00 1.99E+01 + 8.55E+00
Fio 5.22E+01 + 6.11E+01 5.96E+01 4 6.69E+01 5.79E+01 + 6.67E+01 4.55E+01 + 5.69E+01
t Target accuracy level achieved using these FEs counts
TABLE XV
COMPARISON WITH DIFFERENT MATING SELECTION MECHANISMS FOR THE SPX OPERATION IN DEAHCSPX
PAM NAM PAM NAM
Fsph [71637.24 + 3602.63] [57435.96 + 3656.022] 3} [93801.62 4 4809.75] T [78479.86 + 4113.097] T
Fros 1.16E+00 4+ 1.53E+00 2.55E-01 + 7.90E-01 Fy 2.27E-04 + 2.59E-04 9.34E-05 + 1.53E-04
Fack [139184.34 + 6239.022] T [118600.28 + 5720.94] T F3 4.38E+05 + 2.52E+05 5.16E+05 + 2.27E+05
Fyrw | 4.87E-03 £ 9.30E-03 (66%) 1.72E-03 + 5.19E-03 (88%) Fy 6.51E+00 + 3.38E+01 7.74E-01 + 1.05E+00
Fras 2.38E+01 4+ 7.81E+00 1.88E+01 + 6.08E+00 Fs5 1.52E+02 £ 1.73E+02 5.14E+01 + 5.60E+01
Fscn 6.28E+02 + 3.82E+02 5.10E+02 + 2.94E+02 Fg 4.78E+00 + 1.06E+01 (10%) | 2.07E+00 + 2.39E+00 (10%)
Foal 2.45E-01 &+ 5.71E-02 1.90E-01 + 3.64E-02 Fr 9.50E-03 + 9.31E-03 (33%) 5.42E-03 + 7.71E-03 (78%)
Fount 2.80E+02 + 1.11E+02 3.39E+02 + 6.35E+01 Fy 2.09E+01 + 5.37E-02 2.09E+01 + 5.80E-02
Fpn1 | 5.62E-02 & 2.00E-01 (86%) 6.22E-03 + 2.49E-02 (94%) Fy 2.11E+01 + 6.01E+00 1.97E+01 + 5.62E+00
Fpn2 | 8.79E-04 £ 3.01E-03 (92%) 4.39E-04 + 2.17E-03 (96%) Fio 8.65E+01 + 7.53E+01 7.62E+01 + 7.42E+01

T Target accuracy level achieved using these FEs counts

the parents, has opened the door for designing such problem in-
dependent LS process. By producing offspring densely around
the parents, these crossover operators are capable of exploring
the neighborhood of the parents in the continuous search space.
Taking advantage of this characteristic, some very successful
EAs have been designed.

Success of a MA depends considerably on balancing of LS
and global search capability [38]. However, the depth of the
LS, best suited for the exploration of an individual’s neighbor-
hood, is essentially problem dependent and even varies with the
problem dimension or with the progress of the global search
(i.e., the EA under consideration). Therefore, it is very diffi-
cult to find a single length for the LS that performs best for all

sort of problems in all dimensions, and such problem dependent
tuning of the LS length is not easy and makes the LS heuristics
problem dependent again. In an attempt to design a completely
problem independent crossover-based LS process, we proposed
the AHCXLS scheme in this work. The AHCXLS scheme was
designed by borrowing concepts from both LLS and XLS, to
take the advantages of both paradigms.

DE is one of the most prominent new generation EAs for
global optimization over continuous spaces. The intense re-
search in the field of DE has shown that the algorithm can
be improved in many different ways. Therefore, in this work,
we attempt to accelerate DE algorithm using the AHCXLS
process. Since we want to increase the convergence velocity
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of DE without sacrificing the convergence probability, it is
safe to allow some additional fitness evaluations to explore the
neighborhood of the most promising individuals. Therefore, we
applied AHCXLS on the best individual of the generation in
the proposed DEahcSPX algorithm.

In order to study the performance of the proposed algorithm,
we experimented using a test suite consisting of functions with
different characteristics. The size and the diversity of the test
suite is adequate enough to make a general conclusion about
the performance of the algorithms. In different experimental re-
sults presented in this paper, the proposed DEahcSPX outper-
formed the classic DE algorithm. The speedup of the algorithm
has been also demonstrated. The scalability study and the pop-
ulation size study highlighted the robustness of the proposed al-
gorithm over the original DE algorithm. Different experimental
results and comparison with other MAs show that the perfor-
mance of DEahcSPX is superior to, or at least comparable to,
many of the state-of-the-art EAs, particularly for multimodal
problems, but it can also deal with the unimodal problems very
competitively.

Generally, incorporation of a LS cannot modify the overall
behavior of an algorithm; but can improve some of its charac-
teristics. More or less the same phenomenon was observed in
the case of DEahcSPX. From different experimental results, and
from the shape of the convergence graphs, it was found that for
a particular class of problem, the proposed memetic version of
DE behaves like its parent algorithm. However, in almost every
case it exhibited a higher convergence velocity compared with
DE.

We compared the proposed AHCXLS with other XLS ap-
plying in DE and showed that the newly proposed LS scheme
performs better. We hypothesize that the adaptive nature of the
AHCXLS guides the algorithm to explore the neighborhood of
each individual most effectively and locate the global optimum
at a minimum cost. Furthermore, the scheme sets us free from
the search for the best length for LS.

The principle of AHCXLS is so simple and generalized
that it can be hybridized with any of the newly proposed DE
variants without increasing the algorithm complexity, and in
a brief study, we found that AHCXLS scheme can accelerate
some other variants of basic DE algorithm proposed by Storn
and Price. Experimental results also showed the potential of the
AHCXLS scheme in accelerating the self-adaptive variants of
DE.

In our experiments, we used SPX as the crossover operation
in the proposed XLS because it is one of the elite crossover
operations with adaptive quality. We also experimented with
other crossover operations like UNDX [3], PCX [45], BLX-«
[46], parent centric BLX-a (PBX-a) [17], and we found that
the performance of those XLS were influenced by the adap-
tive capability of the crossover schemes. For more sophisticated
crossover schemes, such as SPX, UNDX, and PCX, the perfor-
mance of the XL.S was better than the others. This reestablishes
that crossover operations with adaptive capability can be used
for the exploration of the neighborhood of an individual and our
AHCXLS scheme used this characteristic of the SPX operation
for modeling a successful LS scheme for DE algorithm.

VII. CONCLUSION

DE is a reliable and versatile function optimizer over con-
tinuous search spaces. Due to its simple and compact structure,
ease of implementation and use of few parameters, DE has al-
ready seen many real-world applications in various fields such
as pattern recognition, communication, mechanical and chem-
ical engineering, and biotechnology. In real-world applications,
the optimization algorithm should be able to locate the global
minimum using as few fitness evaluations as possible, because
the fitness evaluation is often the most expensive part of the
search. Therefore, in an attempt to accelerate the classic DE al-
gorithm, we proposed an adaptive crossover-based LS in this
work.

We investigated the performance of the proposed version of
the DE algorithm using a benchmark suite consisting of func-
tions carefully chosen from the literature. The experimental
results showed that the proposed algorithm outperforms the
classic DE in terms of convergence velocity in all experimental
studies. The overall performance of the adaptive LS scheme
was better than the other crossover-based LS strategies and
the overall performance of the newly proposed DE algorithm
was superior to or at least competitive with some other MAs
selected from literature. The proposed LS scheme was also
found prospective for adaptive DE variants. We hope that this
work will encourage further research into the self-adaptability
of DE.

In our future study, we will apply the proposed algorithm to
solve some real-world problems. We will also want to verify the
potential of the adaptive LS algorithm for other EAs.

APPENDIX |
BENCHMARK FUNCTIONS

The test suite that we have used for different experiments con-
sists of 20 benchmark functions. The first ten test functions of
the suite are functions commonly found in the literature and the
other benchmarks are the first ten functions from the newly de-
fined test suite for CEC 2005 Special Session on real-parameter
optimization [41]. Our test suite was as follows.

1) Fypn: Sphere Function.

2) F,os: Rosenbrock’s Function.
3) F,ek: Ackley’s Function.
4) Fgrw: Griewank’s Function.
5) Fias: Rastrigin’s Function.
6) Ficn: Generalized Schwefel’s Problem 2.26.
7) Fy.1: Salomon’s Function.
8) Fynt: Whitely’s Function.
9) Fpni: Generalized Penalized Function 1.
10) Fyno: Generalized Penalized Function 2.
11) Fi: Shifted Sphere Function.
12) F5: Shifted Schwefel’s Problem 1.2.
13) F3: Shifted Rotated High Conditioned Elliptic Function.
14) Fjy: Shifted Schwefel’s Problem 1.2 With Noise in Fitness.
15) F5: Schwefel’s Problem 2.6 With Global Optimum on
Bounds.
16) Fj: Shifted Rosenbrock’s Function.
17) F7: Shifted Rotated Griewank’s Function Without Bounds.
18) Fjg: Shifted Rotated Ackley’s Function With Global Op-
timum on Bounds.
19) Fjy: Shifted Rastrigin’s Function
20) Fip: Shifted Rotated Rastrigin’s Function.
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Definitions of the first ten functions are as follows:

Fsr)h(f)

N
=> af; =100 < z; < 100;
=1
s*ph
= Fypu(0,...,0) =0
Flos(T)

N-1
(100 (i42 = 23)” +

00 < z; < 100;

(1- xl)2) :

<.

Frt)s
:Fros(17"'71) =0
Fack(f)

=20 + exp(1l) — 20exp | —0.2
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—exp (N Z COS(27TLL’Z‘)) ;
i=1

F*(‘,k == Fack(o,....
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—32 < 2; <32
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— — grw

0)=0

— 10 cos(2mx;));
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Functions Fj—Fyo are designed by modifying classical
benchmark functions to test the optimizer’s ability to locate
a global optimum under a variety of circumstances such
as translated and/or rotated landscape, optimum placed on
bounds, Gaussian noise, and/or bias added, etc. [41]. A com-
plete definition of these functions are available online at
http://www.ntu.edu.sg/home/epnsugan and in [41], and a more
detailed description of the other functions can be found in
[23] and [50]. In our test suit, F; to F, Fypn, and Fios are
unimodal and the rest are multimodal functions. All the chosen
benchmarks are minimization problems.
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