
Ann Oper Res (2007) 156: 99–127
DOI 10.1007/s10479-007-0224-y

Memetic particle swarm optimization

Y.G. Petalas · K.E. Parsopoulos · M.N. Vrahatis

Published online: 9 August 2007
© Springer Science+Business Media, LLC 2007

Abstract We propose a new Memetic Particle Swarm Optimization scheme that incorpo-
rates local search techniques in the standard Particle Swarm Optimization algorithm, result-
ing in an efficient and effective optimization method, which is analyzed theoretically. The
proposed algorithm is applied to different unconstrained, constrained, minimax and integer
programming problems and the obtained results are compared to that of the global and local
variants of Particle Swarm Optimization, justifying the superiority of the memetic approach.

Keywords Global optimization · Particle swarm optimization · Memetic algorithms ·
Local search

1 Introduction

Particle Swarm Optimization (PSO) is a stochastic, population-based search algorithm that
gained a lot of attention since its development in 1995. Its popularity can be attributed to
its easy implementation and its ability to solve efficiently a plethora of problems in science
and engineering, including optimal design of power systems (Abido 2002), feature selection
for structure-activity correlations in medical applications (Agrafiotis and Cedeno 2002), bio-
logical applications (Cockshott and Hartman 2001), size and shape optimization (Fourie and
Groenwold 2002; Ray and Liew 2002), environmental applications (Lu et al. 2002), analysis
in chemical processes (Ourique et al. 2002), bioinformatics (Parsopoulos et al. 2004), task
assignment problems (Saldam et al. 2002), industrial control (Papageorgiou et al. 2004) and
numerical optimization (Parsopoulos and Vrahatis 2002c, 2004).

Y.G. Petalas · K.E. Parsopoulos · M.N. Vrahatis (�)
Computational Intelligence Laboratory (CI Lab), Department of Mathematics, University of Patras
Artificial Intelligence Research Center (UPAIRC), University of Patras, 26110 Patras, Greece
e-mail: vrahatis@math.upatras.gr

Y.G. Petalas
e-mail: petalas@math.upatras.gr

K.E. Parsopoulos
e-mail: kostasp@math.upatras.gr

100 Ann Oper Res (2007) 156: 99–127

The main inspiration behind PSO springs from the simulation and analysis of social
dynamics and the interactions among the members of organized colonies, therefore, it is
categorized as a swarm intelligence algorithm. PSO has many common key characteristics
with Evolutionary Algorithms (EAs), such as Genetic Algorithms (Holland 1975), Evolu-
tion Strategies (Schwefel 1995) and Differential Evolution (Storn and Price 1997), thereby
sharing many aspects of their behavior.

EAs have proved to be very useful in many applications. However, there is a well-known
problem regarding their local search abilities in optimization problems (Angeline 1998).
More specifically, although most EAs are capable of detecting the region of attraction of the
global optimizer fast, once there, they cannot perform a refined local search to compute the
optimum with high accuracy, unless specific procedures are incorporated in their operators.
Some versions of PSO also exhibit this deficiency.

The aforementioned drawback of EAs triggered the development of Memetic Algorithms
(MAs), which incorporate local search components. MAs constitute a class of metaheuris-
tics that combines population-based optimization algorithms with local search procedures
(Dawkins 1976; Moscato 1989, 1999). More specifically, MAs consist of a global com-
ponent, which is responsible for a rough search of the search space and the detection of
the most promising regions, and a local search component, which is used for probing the
detected promising regions, in order to obtain solutions with high accuracy. EAs have
been used as the global component in MAs with Simulated Annealing and random local
search (Moscato, 1999). MAs have proved to be an unrivaled methodology in several prob-
lem domains (Moscato, 1999; Petalas and Vrahatis 2004a, 2004b).

We propose a new algorithm that combines PSO with local search methods, resulting
in an efficient Memetic PSO scheme. The performance of the new scheme is investigated
on different test problems, including unconstrained, constrained, minimax and integer min-
imization problems. The results are compared with the corresponding results of both the
local and global variants of PSO. The rest of the paper is organized as follows: a description
of Memetic PSO is provided in Section 2, along with descriptions of Memetic Algorithms,
PSO and the proposed approach. Section 3 is devoted to the experimental results, as well
as to a description of the Random Walk with Directional Exploitation local search that is
employed to investigate the performance of the proposed scheme. The paper concludes in
Section 4.

2 Memetic particle swarm optimization

Memetic PSO (MPSO) is a hybrid algorithm that combines PSO with local search tech-
niques. MPSO consists of two main components, a global one that is responsible for the
global search of the search space, and a local one, which performs more refined search
around potential solutions of the problem at hand. In the following, the Memetic Algo-
rithms, Particle Swarm Optimization, as well as the proposed MPSO scheme are described,
along with a convergence analysis of the proposed MPSO scheme.

2.1 Memetic algorithms

MAs comprise a family of population-based, heuristic search algorithms, designed to per-
form global optimization. The main inspiration behind their development was Dawkins’
“meme” (Dawkins 1976), which represents a unit of cultural evolution that can exhibit
refinement, as well as models of adaptation in natural systems that combine evolutionary

Ann Oper Res (2007) 156: 99–127 101

adaptation of individuals with individual learning within a lifetime. MAs include a stage of
individual optimization or learning (usually in the form of a local search) as part of their
search operation.

MAs were first proposed in 1989 (Moscato 1989), where Simulated Annealing was used
for local search with a competitive and cooperative game between agents, interspersed with
the use of a crossover operator, to tackle the traveling salesman problem. The method gained
wide acceptance, due to its ability to solve difficult problems.

Although MAs bear a similarity with Genetic Algorithms (GAs) (Goldberg 1989), they
mimic rather cultural evolution than biological evolution. GAs are a way of solving prob-
lems by mimicking the same processes nature uses. To evolve a solution of a problem, GAs
employ the same combination of selection, recombination and mutation that is applied to
genes. In nature, genes are usually not modified during an individual’s lifetime, whereas
memes are. Therefore, most MAs can be interpreted as a cooperative–competitive algorithm
of optimizing agents.

In general, an MA can be described through the following abstract description:

Begin
Population Initialization
LocalSearch
Evaluation
Repeat

Recombination
Mutation
LocalSearch
Evaluation
Selection

Until termination criterion is satisfied
Return best solution

End

In particular, at the beginning, the population is initialized within the search space. The
LocalSearch function takes an individual as input, and performs a local search. The Evalu-
ation function plays the role of the objective function. After the initial population has been
created, the recombination process takes place for selected individuals. A new individual is
created by recombining the selected individuals according to the Recombination function.
The Mutation function performs the mutation operation on some individuals of the popu-
lation. The Selection function chooses the individuals that will survive in the next popula-
tion. The termination condition can include various criteria, such as time-expiration and/or
generation-expiration.

MAs have been successfully applied in combinatorial optimization, and especially for
the approximate solution of NP-hard optimization problems. Their success can be attributed
to the synergy of the different search approaches that are combined in the MA (Krasnogor
2002; Land 1998; Merz 1998).

The first implementations of MAs were hybrid algorithms that exploit GAs as an evo-
lutionary algorithm and a local search at each iteration (GA–LS) (Belew et al. 1991;
Hart 1994; Hinton and Nowlan 1987; Geesing and Stork 1991; Muhlenbein et al. 1988).
The GA–LS hybrid scheme is interesting due to the interaction between the local and global
search components of the algorithm. An important aspect of this phenomenon is the Bald-
win effect (Belew 1990; Hinton and Nowlan 1987), in which learning in natural systems

102 Ann Oper Res (2007) 156: 99–127

speeds up the rate of evolutionary change. Similar effects have been observed by a num-
ber of authors that used GA–LS hybrids (Belew et al. 1991; Hinton and Nowlan 1987;
Geesing and Stork 1991).

2.2 Particle swarm optimization

PSO is a stochastic optimization algorithm that exploits a population of individuals to syn-
chronously probe the search space. The inspiration behind its development springs from
the study of the collective behavior in decentralized systems, where populations of sim-
ple agents interact among them, as well as with their environment (Kennedy and Eberhart
2001). In PSO’s context, the population is called a swarm and the individuals (i.e., the search
agents) are called particles.

Each particle moves with an adaptable velocity within the search space, and retains a
memory of the best position it has ever encountered. There are two main variants of PSO
with respect to the information exchange scheme among the particles. In the global variant,
the best position ever attained by all individuals of the swarm is communicated to all the
particles at each iteration. In the local variant, each particle is assigned to a neighborhood
consisting of some of the particles. In this case, the best position ever attained by the particles
that comprise a neighborhood is communicated among them (Kennedy and Eberhart 2001).
Neighboring particles are determined based on their indices rather than their actual distance
in the search space.

Assume an n-dimensional search space, S ⊂ R
n, and a swarm consisting of N particles.

The ith particle is an n-dimensional vector,

xi = (xi1, xi2, . . . , xin)
� ∈ S.

The velocity of this particle is also an n-dimensional vector,

vi = (vi1, vi2, . . . , vin)
�.

The best previous position encountered by the ith particle in S is denoted by

pi = (pi1,pi2, . . . , pin)
� ∈ S.

If r is the neighborhood’s radius, then the neighborhood of xi is defined as

{xi−r , xi−r+1, . . . , xi, . . . , xi+r−1, xi+r}.
The particles are assumed to lie on a ring topology, i.e., x1 is the immediate neighbor of xN .
Assume gi to be the index of the particle that attained the best previous position among all
the particles in the neighborhood of xi , and t to be the iteration counter. Then, the swarm is
manipulated by the equations (Clerc and Kennedy 2002):

v
(t+1)
i = χ

[
v

(t)
i + c1r1

(
p

(t)
i − x

(t)
i

)+ c2r2

(
p(t)

gi
− x

(t)
i

)]
, (1)

x
(t+1)
i = x

(t)
i + v

(t+1)
i , (2)

where i = 1, . . . ,N ; χ is a parameter called constriction factor; c1 and c2 are two positive
constants called cognitive and social parameter, respectively; and r1, r2, are random vectors
with components uniformly distributed within [0,1]. All operations between vectors are
performed componentwise.

Ann Oper Res (2007) 156: 99–127 103

The constriction factor is a mechanism for controlling the magnitude of the velocities. It
is derived analytically through the formula (Clerc and Kennedy 2002),

χ = 2κ

|2 − ϕ −√ϕ2 − 4ϕ| , (3)

where ϕ = c1 +c2. The values received for ϕ > 4 and κ = 1 are considered the most common
settings of χ due to their good average performance (Clerc and Kennedy 2002). Different
settings of χ , as well as a thorough theoretical analysis of the derivation of (3), can be found
in (Clerc and Kennedy 2002; Trelea 2003).

The performance of a population-based algorithm depends on its ability to perform global
search of the search space (exploration) as well as more refined local search (exploitation).
Proper balance between these two characteristics results in enhanced performance. In the
global variant of PSO, all particles are attracted by the same overall best position, converging
faster towards specific points. Thus, the global variant of PSO emphasizes exploitation over
exploration. On the other hand, in the local variant, the information of the best position of
each neighborhood is communicated slowly to the other particles of the swarm through their
neighbors. Therefore, the attraction to specific best positions is weaker, hindering the swarm
from getting trapped in locally optimal solutions. Thus, the local variant of PSO emphasizes
exploration over exploitation. Proper selection of the neighborhood’s size affects the trade-
off between exploration and exploitation. The selection of the appropriate neighborhood
size is an open problem. In practice, it is up to the practitioner and it is based solely on his
experience.

The initialization of the swarm and the velocities, is usually performed randomly and
uniformly in the search space, although more sophisticated initialization techniques can
enhance the overall performance of the algorithm (Parsopoulos and Vrahatis 2002a).

2.3 The proposed algorithm

MPSO constitutes a combination of the PSO algorithm with a local search method. Thus,
various different schemata can be obtained such as:

Scheme 1: Local search is applied on the overall best position, pg , of the swarm, where g

is the index of the best particle.
Scheme 2: For each best position, pi , i = 1, . . . ,N , a random number, r , is generated, and,

if r < ε, where ε > 0 is a prescribed threshold, then local search is applied on pi .
Scheme 3a: Local search is applied both on the best position, pg , of the swarm, as well as

on some randomly selected best positions, pi , i ∈ {1, . . . ,N}.
Scheme 3b: Local search is applied both on the best position, pg , of the swarm, as well as on

some randomly selected best positions, pi , i ∈ {1, . . . ,N}, for which, ‖pg − pi‖ > c�(S),
where c ∈ (0,1) and �(S) is the diameter of the search space S.

The above three schemata can be applied either in every iteration of the algorithm or at
some iterations. Of course, many other related schemata can be considered such as those
that apply local search to all particles. However, as we have noticed in experiments, the
latter schemata are costly in terms of function evaluations, and, in practice, only a small
percentage of the particles (say 5%) has to be considered for applying local search. The same
conclusions were derived also by Hart (1994), based on investigation on GA–LS hybrid
schemes.

A pseudocode for the MPSO algorithm is given below.

104 Ann Oper Res (2007) 156: 99–127

Input: N , χ , c1, c2, xmin, xmax (lower & upper bounds), F (objective function).
Set t = 0.
Initialize x

(t)
i , v

(t)
i ∈ [xmin, xmax], p

(t)
i ← x

(t)
i , i = 1, . . . ,N .

Evaluate F(x
(t)
i).

Determine the indices gi , i = 1, . . . ,N .
While (stopping criterion is not satisfied) Do

Update the velocities v
(t+1)
i , i = 1, . . . ,N , according to (1).

Set x
(t+1)
i = x

(t)
i + v

(t+1)
i , i = 1, . . . ,N .

Constrain each particle xi in [xmin, xmax].
Evaluate F(x

(t+1)
i), i = 1, . . . ,N .

If F(x
(t+1)
i) < F(p

(t)
i) Then p

(t+1)
i ← x

(t+1)
i .

Else p
(t+1)
i ← p

(t)
i .

Update the indices gi .
When (local search is applied) Do

Choose (according to one of the Schemata 1–3) p(t+1)
q , q ∈ {1, . . . ,N}.

Apply local search on p(t+1)
q and obtain a new solution, y.

If F(y) < F(p(t+1)
q) Then p(t+1)

q ← y.
End When
Set t = t + 1.

End While

2.4 A convergence analysis of memetic PSO

A proof of convergence in probability can be given for the MPSO scheme, assuming that a
stochastic local search method is applied on the best particle of the swarm at each iteration of
the algorithm. The proof follows the analysis of Matyas (1965) for stochastic optimization
algorithms. Assume that F : S → R is a unimodal objective function, xopt is its unique
minimizer in S, and Fopt = F(xopt). Let also g be the index of the best particle of the swarm
in the kth iteration, i.e., p(k)

g is the best solution seen by the algorithm since its start up to
iteration k. The level set of F at a constant value, K , is defined as G[K] = {x : F(x) < K}.
We assume that G[K] �= ∅, for all K > Fopt. Let f (z) be the probability distribution of
the points generated by the stochastic local search. The proof holds for any probability
distribution with f (z) �= 0, for all z. We define as a successful step of MPSO at iteration k,
the fact that

F
(
p(k+1)

g

)
< F

(
p(k)

g

)− ε,

for a prescribed ε > 0. The probability of a successful step from p(k)
g is given by

PF (x) =
∫

G[F(pg)−ε]
f (z − pg)dz.

Then, based on the analysis of Matyas (1965), the following theorem is straightforwardly
proved:

Theorem 1 Let F(x) have a unique minimum in S, G[K] �= ∅, for all K > Fopt, and
f (z) �= 0 for all z. Then, the sequence of best positions, {p(k)

g }, of the swarm in MPSO
tends in probability to xopt.

Ann Oper Res (2007) 156: 99–127 105

Proof Let δ(x) = {z: �(z, x) < δ}, δ > 0, be the δ-neighborhood of a point x, where �(z, x)

denotes the distance between the points x, z. We will prove that for any δ > 0 it holds that

lim
k→∞

P
{
�
(
p(k)

g , xopt
)
> δ
}= lim

k→∞
P
{
p(k)

g /∈ δ(xopt)
}= 0,

i.e., the probability that the distance �(p(k)
g , xopt) > δ, or equivalently that p(k)

g /∈ δ(xopt),
tends to zero. If we denote by Fδ the minimum value of F on the boundary of δ(xopt),
we shall have Fδ > Fopt. We can now define ε = ε(δ) such that 0 < ε(δ) < Fδ − Fopt.
For all previous best positions, pg /∈ δ(xopt), of the particle under consideration, the in-
equality F(pg) − ε > Fopt, is valid. Furthermore, from the assumptions of the theorem,
G[F(pg) − ε] is a non-empty region. Since f (z) > 0 for all z, there will exist an α > 0,
such that PF (pg) ≥ α, i.e., the probability of a successful step from pg is positive (although
in some cases it may become very small).

Let F(p(1)
g) be the function value of the best position, p(1)

g , in the first iteration of the
algorithm. We denote,

τ = (F (p(1)
g) − Fδ)

ε
,

and m = �τ
, i.e., m is the largest integer less than τ . From the design of the PSO and MPSO
algorithm, if even m+ 1 steps turn out to be successful, then all the subsequent points of the
sequence {p(k)

g } lie in δ(xopt). Consequently, the probability P {p(k)
g /∈ δ(xopt)} is less than or

equal to the probability that the number of successful steps does not exceed m, i.e.,

P
{
p(k)

g /∈ δ(xopt)
}≤ P

{
k∑

i=1

y(i) ≤ m

}

,

where, y(i) = 1, if there was a successful step in iteration i, and y(i) = 0, otherwise. The
latter probability increases with a decrease in the probability of successful steps, and since
PF (pg) ≥ α, it obeys the well-known Newton’s theorem (on the binomial probability distri-
bution),

P

{
k∑

i=1

y(i) ≤ m

}

≤
m∑

i=0

(
k

i

)
αi(1 − α)k−i ,

where k is the number of steps (iterations) taken. Further, when k > 2m and α < 0.5,

m∑

i=0

(
k

i

)
αi(1 − α)k−i < (m + 1)

(
k

m

)
(1 − α)k

= m + 1

m! k(k − 1)(k − 2) · · · (k − m + 1)(1 − α)k

<
m + 1

m! km(1 − α)k.

Consequently, P {�(p(k)
g , xopt) > δ} < m+1

m! km(1 − α)k. Thus, for α > 0, it is clear that

lim
k→∞

km(1 − α)k = 0,

and the theorem is proved. �

106 Ann Oper Res (2007) 156: 99–127

We must note that alternative local search schemes may require modifications in the proof
in order to remain valid.

3 Experimental analysis

This is our first attempt to experimentally show that there always exists an MPSO scheme
that outperforms the standard PSO method. To achieve this, we have considered a large
number of benchmark problems from various categories and we have experimentally con-
figured the parameters used by the proposed approach. In particular, MPSO was tested
on 29 well-known and widely used unconstrained, constrained, minimax and integer op-
timization benchmark problems. For all test problems, the PSO parameters were set to
their default values, χ = 0.729, c1 = c2 = 2.05 (Clerc and Kennedy 2002). The remain-
ing parameters, such as the number of iterations and the step length of the local search
method used, were problem dependent and, thus, individually specified for each test prob-
lem. For the local search component of MPSO, the Random Walk with Direction Exploita-
tion, which is described in the following, was employed. The derived scheme is denoted as
RWMPSO.

3.1 Random walk with direction exploitation

Random Walk with Direction Exploitation (RWDE) is an iterative, stochastic optimization
method that generates a sequence of approximations of the optimizer by assuming a random
vector as a search direction. RWDE can be applied in discontinuous and non-differentiable
functions, and it has been proved effective in cases where other methods fail due to difficul-
ties posed by the form of the objective function, e.g., sharply varying functions and shallow
regions (Rao 1992).

Let x(t) be the approximation of the minimizer at the t th iteration. Then, the new value
(approximation), x(t+1), at the (t + 1)th iteration, is computed through the equation,

x(t+1) = x(t) + λz(t),

where λ is a prescribed scalar step-length, and z(t) is a unit-length random vector. The work-
ings of RWDE are summarized in the following steps:

Step 1. Initialize the iteration number, t = 0. Start with an initial point, x(1), and a scalar
step length, λ = λinit. Compute the function value, F (1) = F(x(1)), where F is the objective
function.

Step 2. Set t = t + 1 and check whether t is greater than a threshold, tmax, and if so termi-
nate; otherwise generate a unit-length random vector, z(t), and continue.

Step 3. Compute the value of the objective function,

F ′ = F
(
x(t) + λz(t)

)
.

Step 4. Compare the values F ′ and F (t). If F ′ < F(t), then set x(t+1) = x(t) + λz(t); set
t = t + 1, λ = λinit, F (t) = F ′, and check whether t is greater than tmax and if so terminate;
otherwise go to Step 3. If F ′ > F(t), set x(t+1) = x(t), reduce the scalar step length λ = λ/2,
and repeat Steps 2–4. If F ′ = F (t), set x(t+1) = x(t) and repeat Steps 2–4.

Ann Oper Res (2007) 156: 99–127 107

Instead of RWDE, we could use different, more sophisticated stochastic local searches
(Hoos and Stützle 2004). The reason for choosing RWDE was to show that our approach can
be efficient and effective without a thorough investigation of the efficiency of the stochastic
local search used. Additionally, the selection of RWDE as the local search component of
MPSO was based on its simplicity and its relative efficiency. RWDE does not make any
continuity or differentiability assumptions on the objective function, thus, it is consistent
with the PSO framework that requires function values solely. Therefore, it was preferred
over gradient-based local search algorithms. Moreover, it is easily implemented and it can
be modified with minor effort to suit different problems.

3.2 Unconstrained optimization problems

The benchmark problems that were used are:

Test Problem 1 (Trelea 2003) (Sphere). This problem is defined by

F1(x) =
n∑

i=1

x2
i , (4)

where n is the dimension of the problem. The global minimizer is x∗ = (0, . . . ,0)� with
F1(x

∗) = 0.

Test Problem 2 (Trelea 2003) (Generalized Rosenbrock). This problem is defined by

F2(x) =
n−1∑

i=1

(
100
(
xi+1 − x2

i

)2 + (xi − 1)2
)
, (5)

where n is the dimension of the problem. The global minimizer is x∗ = (1, . . . ,1)� with
F2(x

∗) = 0.

Test Problem 3 (Trelea 2003) (Rastrigin). This problem is defined by

F3(x) = 10n +
n∑

i=1

(
x2

i − 10 cos(2πxi)
)
, (6)

where n is the dimension of the problem. The global minimizer is x∗ = (0, . . . ,0)� with
F3(x

∗) = 0.

Test Problem 4 (Trelea 2003) (Griewank). This problem is defined by

F4(x) =
n∑

i=1

x2
i

4000
−

n∏

i=1

cos

(
xi√
i

)
+ 1, (7)

where n is the dimension of the problem. The global minimizer is x∗ = (0, . . . ,0)� with
F4(x

∗) = 0.

108 Ann Oper Res (2007) 156: 99–127

Test Problem 5 (Trelea 2003) (Schaffer’s f6). This problem is defined by

F5(x) = 0.5 −
(
sin
(√

x2
1 + x2

2

))2 − 0.5

(1 + 0.001(x2
1 + x2

2))
2

. (8)

The global minimizer is x∗ = (0,0)� with F5(x
∗) = 0.

Test Problem 6 (Storn and Price 1997) (Ackley). This problem is defined by

F6(x) = −20 exp

(
−0.02

√∑n

j=1 x2
j

n

)
− exp

(∑n

j=1 cos(2πxj)

n

)
+ 20 + exp(1), (9)

where n is the dimension of the problem. The global minimizer is x∗ = (0, . . . ,0)� with
F6(x

∗) = 0.

Test Problem 7 (Storn and Price 1997) (Corana). This problem is defined by

F7(x) =
4∑

j=1

{
0.15

(
zj − 0.05sign(zj)

)2
dj , if |xj − zj | < 0.05,

djx
2
j , otherwise,

(10)

where xj ∈ [−1000,1000], (d1, d2, d3, d4) = (1,1000,10,100), and

zj =
⌊∣∣∣

xj

0.2

∣
∣∣+ 0.49999

⌋
sign(xj)0.2.

All points with |x∗
j | < 0.05, j = 1,2,3,4, are global minimizers with F7(x

∗) = 0.

Test Problem 8 (Lee and Yao 2004). This problem is defined by

F8(x) = 0.1

{
sin2(3πx1) +

n−1∑

i=1

(xi − 1)2
[
1 + sin2(3πxi+1)

]
(11)

+ (xn − 1)2
[
1 + sin2(2πxn)

]
}

+
n∑

i=1

u(xi,5,100,4),

where n is the dimension of the problem and

u(z, a, k,m) =
{

k(z − a)m, z > a,
0, −a ≤ z ≤ a,
k(−z − a)m, z < −a.

(12)

The global minimizer is x∗ = (1, . . . ,1)� with F8(x
∗) = 0.

Test Problem 9 (Lee and Yao 2004). This problem is defined by

F9(x) = π

n

{
10 sin2(πx1) +

n−1∑

i=1

(xi − 1)2
[
1 + 10 sin2(πxi+1)

]+ (xn − 1)2

}

+
n∑

i=1

u(xi,10,100,4), (13)

Ann Oper Res (2007) 156: 99–127 109

Table 1 Parameters for the
unconstrained optimization
problems

Problem Dimension Range Error Goal

TP1 30 (−100,100)30 10−2

TP2 30 (−30,30)30 102

TP3 30 (−5.12,5.12)30 102

TP4 30 (−600,600)30 10−1

TP5 2 (−100,100)2 10−5

TP6 30 (−32,32)30 10−3

TP7 4 (−1000,1000)4 10−6

TP8 30 (−50,50)30 10−6

TP9 30 (−50,50)30 10−2

Table 2 Parameter setting of
RWMPSOg for the unconstrained
problems

Problem SS Iter Step Best Prob Freq

TP1 15 5 1.0 yes – 1

30 5 1.0 yes – 1

60 5 1.0 yes – 1

TP2 15 10 1.0 yes – 1

30 5 1.0 yes – 1

60 5 1.0 yes – 1

TP3 15 5 1.0 – 0.2 1

30 5 1.0 – 0.2 1

60 5 1.0 – 0.1 1

TP4 15 5 4.0 yes – 1

30 5 4.0 yes – 1

60 5 4.0 yes – 1

TP5 15 8 1.0 – 0.3 1

30 8 1.0 – 0.2 1

60 8 1.0 – 0.1 1

TP6 15 5 1.0 – 0.5 1

30 5 1.0 – 0.5 1

60 5 1.0 – 0.4 1

TP7 15 5 1.0 yes – 20

30 5 1.0 yes – 20

60 5 1.0 yes – 20

TP8 15 5 1.0 – 0.8 1

30 5 1.0 – 0.5 1

60 5 1.0 – 0.3 1

TP9 15 5 1.0 – 0.6 1

30 5 1.0 – 0.5 1

60 5 1.0 – 0.3 1

110 Ann Oper Res (2007) 156: 99–127

where n is the dimension of the problem and u is defined by (12). The global minimizer is
x∗ = (1, . . . ,1)� with F9(x

∗) = 0.

The dimension of each test problem, the range in which the particles were constrained,
as well as the error goal are reported in Table 1 (Lee and Yao 2004; Storn and Price 1997;
Trelea 2003). The maximum number of iterations for every problem was equal to 104. For
all problems, three different swarm sizes (denoted as SS) were considered, namely 15, 30,
and 60, following the setup of Trelea (2003). The global and the local PSO variants (denoted
as PSOg and PSOl, respectively), were equipped with RWDE, resulting in the global and
local RWMPSO variants (denoted as RWMPSOg and RWMPSOl, respectively), and applied
on all test problems. For each test problem, 50 independent experiments were conducted.
An experiment was considered successful if the desired error goal was achieved within the
maximum number of iterations.

The configuration of RWDE was problem dependent. The parameter settings of RWMP-
SOg and RWMPSOl for the unconstrained problems are reported in Tables 2 and 3, respec-
tively. The first column of the tables denotes the problem, while second column stands for
the swarm size. The third and fourth column report the number of iterations and initial step
size used by RWDE, respectively. The fifth column has the value “yes” in the cases where
RWDE was applied only on the best particle of the swarm. On the other hand, if RWDE was
applied on the best position of each particle with a probability, then this probability is re-
ported in column six. Finally, the last column shows the frequency of application of the local
search. Thus, the value “1” corresponds to application of the local search at every iteration,
while “20” corresponds to application every 20 iterations.

The results of RWMPSOg and RWMPSOl for the unconstrained problems are reported
in Tables 4 and 5, respectively, while the corresponding results of the standard PSO are
reported in Tables 6 and 7, respectively. More specifically, the number of successes (out
of 50 experiments), the minimum, mean, maximum, and standard deviation of the required
function evaluations (evaluated only on the successful experiments) are reported. In order to
take full advantage of its exploration properties, small neighborhood sizes were selected for
the local PSO. Thus, for Test Problems 1–6 and Test Problem 8, the neighborhood radius
was equal to 1, while, in Test Problems 7 and 9, a neighborhood radius equal to 2 was used
due to its superior performance.

Comparing the global variants, it is clear that RWMPSO improves significantly the per-
formance of PSO. In all problems, the number of successes of RWMPSO is equal or higher
than PSO. Even in cases where PSO had no successes (TP6 with swarm size 15) RWMPSO
succeeded in 42 out of 50 experiments. Naturally, in some cases, this comes at the cost
of some extra function evaluations, although in most cases the required number of func-
tion evaluations of RWMPSO is smaller than PSO. The influence of larger swarm sizes in
RWMPSO seems to be similar to that in the standard PSO, with larger swarms requiring
more function evaluations but having better success rates.

Similar conclusions can be derived also for the local variants of RWMPSO and PSO. The
PSOl variant is significantly better with respect to its success rate than its global variant, and
this holds also for RWMPSO. RWMPSOl performed in almost all cases better than PSOl,
achieving high success rates and requiring (in most cases) significantly smaller number of
function evaluations. RWMPSOl had better success rates than RWMPSOg in all test prob-
lems, although it was slower. This is also an indication that the neighborhood radius has the
same effect on RWMPSO as in the standard PSO.

Interestingly, RWMPSOg outperformed in many cases even PSOl, which is a promis-
ing indication that the use of local search in PSOg can enhance significantly its exploration

Ann Oper Res (2007) 156: 99–127 111

Table 3 Parameter setting of
RWMPSOl for the unconstrained
problems

Problem SS Iter Step Best Prob Freq

TP1 15 10 1.0 yes – 1

30 10 1.0 yes – 1

60 5 1.0 yes – 1

TP2 15 8 0.5 yes – 50

30 5 1.0 yes – 30

60 5 1.0 yes – 1

TP3 15 5 1.0 yes – 20

30 10 1.0 yes – 20

60 5 1.0 yes – 1

TP4 15 10 8.0 yes – 1

30 10 8.0 yes – 1

60 10 8.0 yes – 1

TP5 15 8 1.0 – 0.3 2

30 8 1.0 – 0.1 1

60 8 1.0 – 0.1 2

TP6 15 5 1.0 yes – 20

30 5 1.0 yes – 20

60 5 1.0 yes – 20

TP7 15 5 1.0 yes – 20

30 5 1.0 yes – 20

60 5 1.0 yes – 20

TP8 15 5 1.0 yes 0.3 1

30 5 1.0 yes – 2

60 5 1.0 yes – 2

TP9 15 3 1.0 – 0.5 1

30 5 1.0 – 0.1 1

60 10 1.0 yes – 2

capabilities. For some problems, where the superiority of an algorithm over another was
not clear, t-tests were performed to verify the statistical significance of the results. The hy-
pothesis testing was conducted using the null hypothesis that the mean number of required
function evaluations between the two algorithms is equal, at a statistical significance level of
99%. Thus, in Test Problem 1, RWMPSOg was compared with PSOl (they both achieved 50
successes), rejecting the null hypothesis, i.e., RWMPSOg was better than PSOl, for swarm
size equal to 15. The same holds also for the RWMPSOl against PSOl, and for the RWMP-
SOg against RWMPSOl (this seems a natural conclusion if we consider the simplicity and
unimodality of Test Problem 1). RWMPSOg was proved to be statistically better than PSOl
also for Test Problem 7. Overall, RWMPSO outperformed PSO, improving significantly its
performance in most test problems.

112 Ann Oper Res (2007) 156: 99–127

Table 4 Results of RWMPSOg for the unconstrained problems

Problem SS Min Mean Max StD Suc

TP1 15 5324 6009.7 6713 342.9 50

30 7507 8615.2 9616 492.0 50

60 11757 13604.8 15153 660.0 50

TP2 15 3233 9275.5 62928 11272.3 50

30 4944 10534.2 95361 13234.9 50

60 6915 15515.3 54052 20835.7 50

TP3 15 4042 14121.2 43767 9229.6 33

30 6669 18234.5 50466 10670.7 46

60 6812 19494.8 80063 15016.4 50

TP4 15 5115 5956.5 6602 344.5 50

30 7062 7954.6 9188 446.5 50

60 10488 12142.2 13876 786.7 50

TP5 15 4166 17962.7 70755 17727.2 50

30 265 12425.4 63487 9827.5 50

60 4826 11019.3 37069 6057.7 50

TP6 15 33726 42746.1 69092 7086.1 42

30 50051 58797.6 69792 4651.9 48

60 69607 79473.6 95133 5080.0 50

TP7 15 1560 2094.3 3428 458.0 50

30 2110 3412.2 6635 825.8 50

60 4569 5781.5 8238 629.4 50

TP8 15 57145 74845.6 110259 10848.2 47

30 63590 78764.5 93710 6701.0 49

60 77465 89876.7 106207 7017.4 49

TP9 15 12882 20300.4 41456 5209.8 49

30 22377 34710.7 50848 5818.2 50

60 34611 54114.9 144452 19734.5 50

3.3 Constrained optimization problems

The benchmark problems that were used are:

Test Problem 10 (Himmelblau 1972). This problem is defined by

F10(x) = (x1 − 2)2 + (x2 − 1)2, (14)

subject to

x1 = 2x2 − 1,
x2

1

4
+ x2

2 − 1 ≤ 0,

with xi ∈ [−100,100], i = 1,2.

Ann Oper Res (2007) 156: 99–127 113

Table 5 Results of RWMPSOl for the unconstrained problems

Problem SS Min Mean Max StD Suc

TP1 15 6526 7318.3 8746 458.6 50

30 10021 11129.9 12834 658.5 50

60 16116 18208.7 20323 947.2 50

TP2 15 3814 7679.0 24288 3846.9 50

30 7879 12220.5 20581 2554.3 50

60 10458 20687.0 37905 5662.9 50

TP3 15 2213 8999.1 139085 19172.8 49

30 4050 13815.3 155611 21787.9 50

60 4622 16489.6 75139 12050.7 50

TP4 15 5370 6588.2 7698 465.4 50

30 8379 9881.4 11880 726.2 50

60 14520 16858.4 21845 1417.6 50

TP5 15 2628 21386.1 86842 21344.6 50

30 174 18300.2 113044 17947.4 50

60 271 18080.2 56900 12403.9 50

TP6 15 9844 12978.2 27297 2487.5 50

30 19879 24600.1 30381 2378.5 50

60 36395 48110.9 59773 5710.3 50

TP7 15 1922 2685.8 3290 314.6 50

30 3738 4710.6 5759 562.9 50

60 7230 8765.1 10001 739.1 50

TP8 15 27995 38248.6 60191 6308.8 49

30 32514 38916.5 44470 2958.3 50

60 62821 74476.9 83195 5460.9 50

TP9 15 12116 17579.2 28755 3315.0 50

30 11422 19030.9 56181 8005.8 50

60 8951 20441.7 74149 13287.7 50

Test Problem 11 (Floudas and Pardalos 1987). This problem is defined by

F11(x) = (x1 − 10)3 + (x2 − 20)3, (15)

subject to

100 − (x1 − 5)2 − (x2 − 5)2 ≤ 0,

(x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0,

13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100.

114 Ann Oper Res (2007) 156: 99–127

Table 6 Results of PSOg for the unconstrained problems

Problem SS Min Mean Max StD Suc

TP1 15 6585 10824.8 24060 3408.4 43

30 9060 11242.3 17850 1508.1 47

60 14280 16360.0 19140 933.3 48

TP2 15 4830 14898.3 84735 15417.8 36

30 6450 12469.7 35100 5877.1 29

60 8880 26420.0 156900 27337.6 39

15 2370 3282.3 6105 1109.8 11

TP3 30 3270 5097.3 8250 1276.8 22

60 5340 10042.5 22860 3103.7 40

TP4 15 6030 8785.9 18885 2567.2 29

30 8280 9718.1 11910 914.8 47

60 12240 14891.0 18360 1176.4 49

TP5 15 1230 7727.4 59250 11973.9 31

30 2100 18210.0 271350 44027.4 37

60 3120 11877.3 66600 12168.4 44

TP6 15 – – – – 0

30 15090 16395.0 17700 1305.0 2

60 21840 25116.0 30300 2171.2 20

TP7 15 1365 1896.7 2685 244.8 47

30 2370 3272.4 4350 336.7 49

60 4620 5616.0 6720 401.1 50

TP8 15 17325 29893.8 41955 7954.4 13

30 19110 24277.9 35370 4173.8 19

60 26100 30172.7 33840 1770.7 33

TP9 15 2070 8546.0 48555 10426.9 30

30 4740 17416.6 179490 29615.7 38

60 6300 39581.1 427680 91879.1 38

Test Problem 12 (Hock and Schittkowski 1981). This problem is defined by

F12(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+ 10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7, (16)

subject to

−127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0,

−282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0,

−196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0,

4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0,

−10 ≤ xi ≤ 10, i = 1, . . . ,7.

Ann Oper Res (2007) 156: 99–127 115

Table 7 Results of PSOl for the unconstrained problems

Problem SS Min Mean Max StD Suc

TP1 15 6195 8467.5 10335 907.7 50

30 13200 16716.0 20250 1573.7 50

60 24780 34054.8 40920 3769.3 50

TP2 15 3795 8004.9 38940 6441.3 50

30 7440 14337.6 38100 6673.5 50

60 14040 26443.2 76740 10755.0 50

TP3 15 2820 10759.0 81195 12830.5 45

30 3720 16848.0 141600 22935.6 50

60 10020 24465.6 58560 9765.0 50

TP4 15 6105 8006.4 10890 1042.3 50

30 11850 16132.8 20940 2203.4 50

60 23520 31506.0 39600 3796.8 50

TP5 15 45 27170.0 117975 28745.1 45

30 90 28363.2 201450 38115.6 50

60 180 27240.0 135960 27689.4 50

TP6 15 9420 12733.5 39990 4123.7 50

30 17670 24231.6 45810 3791.3 50

60 39120 47902.8 60420 4924.5 50

TP7 15 2175 2686.2 3540 312.1 50

30 3180 4657.8 5550 520.9 50

60 7020 8769.6 10800 714.3 50

TP8 15 15840 19353.8 27060 2027.4 43

30 30300 36608.6 42300 2478.8 49

60 64080 74986.8 120360 7833.0 50

TP9 15 4080 14011.7 58575 13167.1 45

30 9570 21287.1 97830 19328.5 49

60 17280 25918.8 59520 6634.4 50

Test Problem 13 (Hock and Schittkowski 1981). This problem is defined by

F13(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141, (17)

subject to

0 ≤ 85.334407 + 0.0056858T1 + T2x1x4 − 0.0022053x3x5 ≤ 92,

90 ≤ 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 ≤ 110,

20 ≤ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 ≤ 25,

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45, i = 3,4,5,

where T1 = x2x5 and T2 = 0.0006262.

116 Ann Oper Res (2007) 156: 99–127

Test Problem 14 (Hock and Schittkowski 1981). This problem is defined exactly as Test
Problem 13, but with

T1 = x2x3, T2 = 0.00026.

Test Problem 15 (Michalewicz 1996). This problem is defined by

F15(x) = −10.5x1 − 7.5x2 − 3.5x3 − 2.5x4 − 1.5x5 − 10x6 − 0.5
5∑

i=1

x2
i , (18)

subject to

6x1 + 3x2 + 3x3 + 2x4 + x5 − 6.5 ≤ 0,

10x1 + 10x3 + x6 ≤ 20,

0 ≤ xi ≤ 1, i = 1, . . . ,5, 0 ≤ x6 ≤ 50.

For these test problems, the non-stationary penalty function employed in (Parsopoulos
and Vrahatis 2002b) was adopted. More specifically, the penalty function is defined as (Yang
et al. 1997),

f (x) = F(x) + h(t)H(x), (19)

where F(x) is the original objective function of the constrained problem; h(t) is a dynami-
cally modified penalty value, where t is the algorithm’s current iteration number; and H(x)

is a penalty factor defined as

H(x) =
m∑

i=1

θ
(
qi(x)

)
qi(x)γ (qi (x)), (20)

where qi(x) = max{0, gi(x)}, i = 1, . . . ,m, and gi(x) are the problem’s constraints (assum-
ing they are in the form gi(x) ≤ 0). The function qi(x) is a relative violated function of
the constraints; θ(qi(x)) is a multi-stage assignment function (Homaifar et al. 1994); and
γ (qi(x)) is the power of the penalty function.

The functions h(·), θ(·) and γ (·), are problem dependent. We used the same values that
are reported in (Yang et al. 1997), i.e., the relative violated function of the constraints was,

γ (qi(x)) =
{

1, if qi(x) < 1,
2, otherwise,

the assignment function was

θ(qi(x)) =

⎧
⎪⎨

⎪⎩

10, if qi(x) < 0.001,
20, if 0.001 ≤ qi(x) < 0.1,
100, if 0.1 ≤ qi(x) < 1,
300, otherwise,

and

h(t) =
{√

t, for Test Problem 10,
t
√

t, otherwise.

Ann Oper Res (2007) 156: 99–127 117

Table 8 Parameter setting for
the constrained optimization
problems

Problem Algorithm Iter Step

TP10 RWMPSOg 5 2 × 100

RWMPSOl 5 2 × 100

TP11 RWMPSOg 5 10−4

RWMPSOl 5 10−3

TP12 RWMPSOg 10 10−1

RWMPSOl 10 10−1

TP13 RWMPSOg 8 2 ×10−5

RWMPSOl 4 10−8

TP14 RWMPSOg 5 10−8

RWMPSOl 5 10−8

TP15 RWMPSOg 4 5 ×10−5

RWMPSOl 8 2 ×10−5

A constraint of the form gi(x) ≤ 0, was assumed to be violated only if gi(x) > 10−5. In all
test problems, a swarm of size 100 was used. For each test problem, each algorithm was
executed until it reached 105 function evaluations. Then, the best feasible detected solu-
tion was reported. For each test problem, 30 independent experiments were performed. An
experiment was considered to be successful only if a feasible solution was detected.

Here, we must point out a difference between PSO’s implementation in constrained and
unconstrained problems. Penalty functions may assign quite low function values to unfea-
sible solutions. These solutions can be stored as particles’ best positions, thereby attracting
the swarm towards them. In order to prevent the swarm from being attracted to unfeasible
regions, the indices gi of the best particles in PSO were selected after looking at the cur-
rent positions of the particles, instead of their best positions. This approach was adopted
in Parsopoulos and Vrahatis (2002b) with promising results. The alternative approach of
accepting only feasible solutions as particles’ best positions is not valid unless there is a
mechanism that can ensure that each particle will take at least one feasible position during
the experiment, otherwise no best position for some or all particles can be determined. Even
in the case that such a mechanism exists, the best positions’ change rate is usually very slow,
thereby leading to search stagnation. Thus, it is not recommended.

In Table 8, the values of the parameters used by RWMPSOg and RWMPSOl, respec-
tively, are given. All results for the constrained problems are reported in Table 9. More
specifically, the number of successes in 30 experiments, the mean and the standard devia-
tion of the function value of the obtained feasible solutions (for the successful experiments
only) are reported. For the RWMPSO variants, RWDE was applied at each iteration of the
algorithm on the best detected feasible solution, if any, otherwise, each particle of the current
swarm was selected for local search with probability 0.1.

With the exception of Test Problem 13, where the performance of all algorithms was
equal, in all test problems RWMPSO exhibited a better performance than PSO. More specif-
ically, RWMPSOg had a better success rate than PSOg in Test Problems 10 and 11, while the
quality of its solutions was superior in all problems. The same holds for RWMPSOl, which
had a better performance than PSOl in all test problems. Moreover, the standard deviations
of the RWMPSO variants were always smaller than the corresponding standard deviations
of the PSO variants, indicating its robustness.

118 Ann Oper Res (2007) 156: 99–127

Table 9 Results for the constrained optimization problems

Problem RWMPSOg RWMPSOl PSOg PSOl

TP10 Suc 30/30 30/30 24/30 22/30

Mean −6961.283 −6960.717 −6960.668 −6939.627

StD 0.380 1.798 1.043 58.789

TP11 Suc 25/30 30/30 24/30 30/30

Mean 1.832 1.427 2.042 1.454

StD 0.474 0.061 0.865 0.078

Suc 30/30 30/30 30/30 30/30

TP12 Mean 680.915 680.784 681.254 680.825

StD 0.178 0.062 0.245 0.077

TP13 Suc 30/30 30/30 30/30 30/30

Mean −30665.550 −30665.550 −30665.550 −30665.550

StD 0.000 0.000 0.000 0.000

TP14 Suc 30/30 30/30 30/30 30/30

Mean −31021.173 −31026.435 −31021.140 −31026.440

StD 11.506 0.000 12.617 0.000

TP15 Suc 30/30 30/30 30/30 30/30

Mean −212.616 −213.047 −211.833 −212.933

StD 1.043 0.002 1.840 0.365

3.4 Minimax problems

The general form of the minimax problem is (Xu 2001):

min
x

F (x), (21)

where

F(x) = max
i=1,...,m

fi(x), (22)

with fi(x) : S ⊂ R
n → R, i = 1, . . . ,m. Also, nonlinear programming problems of the form:

min
x

F (x),

gi(x) ≥ 0, i = 2, . . . ,m,

can be transformed and solved as minimax problems,

min
x

max
1≤i≤m

fi(x), (23)

where

f1(x) = F(x),

fi(x) = F(x) − αigi(x), (24)

αi > 0,

Ann Oper Res (2007) 156: 99–127 119

for 2 ≤ i ≤ m. It can be proved that for large values of αi , the optimal points of the two
problems coincide (Bandler and Charalambous 1974). The benchmark problems that were
used in our experiments are:

Test Problem 16 (Xu 2001). This problem is defined by

min
x

F16(x),

F16(x) = max{fi(x)}, i = 1,2,3,

f1(x) = x2
1 + x4

2 , (25)

f2(x) = (2 − x1)
2 + (2 − x2)

2,

f3(x) = 2 exp(−x1 + x2),

and the desired error goal is F16(x
∗) = 1.9523.

Test Problem 17 (Xu 2001). This is a nonlinear programming problem that can be trans-
formed to a minimax problem according to (23) and (24), and it is defined by

F17(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

g2(x) = −x2
1 − x2

2 − x3
3 − x2

4 − x1 + x2 − x3 + x4 + 8,

g3(x) = −x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4 + 10,

g4(x) = −x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 + 5.

(26)

The desired error goal is F17(x
∗) = −40.10.

Test Problem 18 (Xu 2001). This is a nonlinear programming problem that can be trans-
formed to a minimax problem according to (23) and (24), and it is defined by

F18(x) = (x1 − 10)2 + 5(x2 − 12)2 + 3(x4 − 11)2 + x4
3

+ 10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7,

g2(x) = −2x2
1 − 3x4

3 − x3 − 4x2
4 − 5x5 + 127,

g3(x) = −7x1 − 3x2 − 10x2
3 − x4 + x5 + 282,

g4(x) = −23x1 − x2
2 − 6x2

6 + 8x7 + 196,

g5(x) = −4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 + 11x7.

(27)

The desired error goal is F18(x
∗) = 247.

Test Problem 19 (Schwefel 1995). This problem is defined by

min
x

F19(x),

120 Ann Oper Res (2007) 156: 99–127

subject to

F19(x) = max{fi(x)}, i = 1,2,

f1(x) = |x1 + 2x2 − 7|,
f2(x) = |2x1 + x2 − 5|.

(28)

The desired error goal is F19(x
∗) = 10−6.

Test Problem 20 (Schwefel 1995). This problem is defined by

min
x

F20(x),

F20(x) = max{fi(x)},
fi(x) = |xi |, i = 1, . . . ,10,

(29)

and the desired error goal is F20(x
∗) = 10−6.

Test Problem 21 (Lukšan and Vlček 2000). This problem is defined by

min
x

F21(x),

F21(x) = max{fi(x)},

f1(x) =
(
x1 −

√
x2

1 + x2
2 cos

√
x2

1 + x2
2

)2 + 0.005(x2
1 + x2

2),

f2(x) =
(
x2 −

√
x2

1 + x2
2 sin

√
x2

1 + x2
2

)2 + 0.005(x2
1 + x2

2),

(30)

and the desired error goal is F21(x
∗) = 10−6.

Test Problem 22 (Lukšan and Vlček 2000). This problem is defined by

min
x

F22(x),

F22(x) = max
{|fi(x)|}, i = 1, . . . ,21,

fi(x) = x1 exp(x3ti) + x2 exp(x4ti) − 1

1 + ti
,

ti = −0.5 + i − 1

20
,

(31)

and the desired error goal is F22(x
∗) = 0.1.

For each test problem, 50 experiments were performed with a swarm size equal to 20,
and the particles were constrained in the range [−50,50]n, where n is the dimension of the
problem. An experiment was considered successful if the desired error goal was achieved
within the maximum number of function evaluations.

In Table 10, the values of the parameters used by MPSO in minimax problems are re-
ported. These parameters are same with those described in the corresponding tables for the
unconstrained problems. All results are reported in Table 11. More specifically, the number

Ann Oper Res (2007) 156: 99–127 121

Table 10 Parameter setting for
the minimax problems Problem Algorithm Iter Step Best Prob Freq

TP16 RWMPSOg 8 0.01 yes – 1

RWMPSOl 8 0.01 yes – 1

TP17 RWMPSOg 5 0.5 yes – 50

RWMPSOl 8 0.5 yes – 1

TP18 RWMPSOg 3 1.0 yes – 2

RWMPSOl 5 0.5 yes – 2

TP19 RWMPSOg 5 1.0 yes – 20

RWMPSOl 3 0.5 yes – 20

TP20 RWMPSOg 3 1.0 yes – 2

RWMPSOl 10 1.0 yes – 2

TP21 RWMPSOg 8 0.01 yes – 1

RWMPSOl 8 0.01 yes – 1

TP22 RWMPSOg 5 0.5 – 0.3 1

RWMPSOl 5 0.5 – 0.3 1

of successes is reported along with the maximum, minimum, mean and standard devia-
tion of the required number of function evaluations for the successful cases. In all cases,
the RWMPSO variants outperformed the corresponding standard PSO variants, having also
higher success rate in Test Problem 22, were PSOg succeeded only in 36 experiments.
RWMPSOg outperformed all algorithms, exhibiting the best performance. This was also
verified through t-tests. Also, the worst behavior (maximum number of function evalua-
tions) of the RWMPSO variants was far lower than the corresponding PSO variants in most
cases.

3.5 Integer programming problems

This is a very interesting class of test problems, since most evolutionary algorithms that
work by rounding the real variables to integers suffer from search stagnation. The problems
that were used are:

Test Problem 23 (Rüdolph 1994). This problem is defined by

F23(x) = ‖x‖1 = |x1| + · · · + |xn|, (32)

where n is the dimension, and x ∈ [−100,100]n. The global minimum is F23(x
∗) = 0.

Test Problem 24 (Rüdolph 1994). This problem is defined by

F24(x) = x�x = (x1 . . . xn)

⎛

⎝
x1
...

xn

⎞

⎠ , (33)

where n is the dimension, and x ∈ [−100,100]n. The global minimum is F24(x
∗) = 0.

122 Ann Oper Res (2007) 156: 99–127

Table 11 Results for the minimax problems

Algorithm Problem Min Mean Max StD Suc

RWMPSOg TP16 722 2415.3 6893 1244.2 50

TP17 1665 3991.3 16421 2545.2 50

TP18 4290 7021.3 10332 1241.4 50

TP19 2430 2947.8 3541 257.0 50

TP20 15760 18520.1 19958 776.9 50

TP21 135 1308.8 2359 505.5 50

TP22 2028 4404.0 24704 3308.9 50

RWMPSOl TP16 665 2686.9 5874 1320.7 50

TP17 2771 5948.4 10827 1902.8 50

TP18 7813 11165.0 16590 2145.1 50

TP19 2799 3463.7 3968 295.8 50

TP20 28400 32167.4 36200 1775.2 50

TP21 104 1599.7 3938 797.7 50

TP22 1963 4593.6 11042 1680.5 50

PSOg TP16 1540 4347.2 15720 3643.0 50

TP17 1960 4050.4 12260 1932.8 50

TP18 4650 7098.0 14750 1966.1 50

TP19 2600 3018.4 3540 209.4 50

TP20 16400 18465.0 20600 932.4 50

TP21 80 1658.0 2340 321.6 50

TP22 620 5976.6 87960 15572.9 36

PSOl TP16 1560 3669.2 13860 2526.4 50

TP17 2480 6820.8 27820 4831.0 50

TP18 7650 11289.0 16700 1990.2 50

TP19 2760 3475.2 4360 387.9 50

TP20 30500 33687.0 36950 1641.7 50

TP21 100 2572.4 4460 931.0 50

TP22 1020 7530.0 101600 18817.0 50

Test Problem 25 (Glankwahmdee et al. 1979). This problem is defined by

F25(x) = − (15 27 36 18 12) x

+ x�

⎛

⎜
⎜⎜
⎝

35 −20 −10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10
32 −31 −6 38 −20

−10 32 −10 −20 31

⎞

⎟
⎟⎟
⎠

x, (34)

where x ∈ [−100,100]n. The global minimum is F25(x
∗) = −737.

Ann Oper Res (2007) 156: 99–127 123

Test Problem 26 (Glankwahmdee et al. 1979). This problem is defined by

F26(x) = (9x2
1 + 2x2

2 − 11
)2 + (3x1 + 4x2

2 − 7
)2

. (35)

The global minimum is F26(x
∗) = 0.

Test Problem 27 (Glankwahmdee et al. 1979). This problem is defined by

F27(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4. (36)

The global minimum is F27(x
∗) = 0.

Test Problem 28 (Glankwahmdee et al. 1979). This problem is defined by

F28(x) = 2x2
1 + 3x2

2 + 4x1x2 − 6x1 − 3x2. (37)

The global minimum is F28(x
∗) = −6.

Test Problem 29 (Glankwahmdee et al. 1979). This problem is defined by

F29(x) = −3803.84 − 138.08x1 − 232.92x2 + 123.08x2
1

+ 203.64x2
2 + 182.25x1x2. (38)

The global minimum is F29(x
∗) = −3833.12.

For each test problem, 50 independent experiments were conducted with the particles
constrained in [−100,100]n. The swarm size was problem dependent and equal to 100, 10,
70, 20, 20, 10, and 20, for Test Problems 23–29, respectively. An experiment was considered

Table 12 Parameter setting for
the integer programming
problems

Problem Algorithm Iter Step Best Prob Freq

TP23 RWMPSOg 8 2.0 yes 0.1 1

RWMPSOl 3 2.0 yes – 1

TP24 RWMPSOg 3 2.0 yes – 1

RWMPSOl 3 2.0 yes – 1

TP25 RWMPSOg 3 2.0 yes 0.1 1

RWMPSOl 3 2.0 yes – 1

TP26 RWMPSOg 8 4.0 yes – 1

RWMPSOl 5 2.0 yes – 1

TP27 RWMPSOg 3 2.0 yes – 1

RWMPSOl 3 2.0 yes – 1

TP28 RWMPSOg 5 4.0 yes – 1

RWMPSOl 5 4.0 yes – 1

TP29 RWMPSOg 5 2.0 yes – 1

RWMPSOl 5 2.0 yes – 1

124 Ann Oper Res (2007) 156: 99–127

Table 13 Results for the integer programming problems

Algorithm Problem Min Mean Max StD Suc

RWMPSOg TP23 17160 27176.3 74699 8656.9 50

TP24 252 578.5 912 136.5 50

TP25 1361 6490.6 41593 6912.8 50

TP26 76 215.0 468 97.9 50

TP27 687 1521.8 2439 360.7 50

TP28 40 110.9 238 48.6 50

TP29 72 242.7 620 132.2 50

RWMPSOl TP23 24870 30923.9 35265 2405.0 50

TP24 369 773.9 1931 285.5 50

TP25 5003 9292.6 15833 2443.7 50

TP26 73 218.7 620 115.3 50

TP27 675 2102.9 3863 689.5 50

TP28 40 112.0 235 48.7 50

TP29 70 248.9 573 134.4 50

PSOg TP23 14000 29435.3 261100 42039.1 34

TP24 400 606.4 1000 119.0 50

TP25 2150 12681.0 187000 35066.8 50

TP26 100 369.6 620 113.2 50

TP27 680 1499.0 3440 513.1 43

TP28 80 204.8 350 62.0 50

TP29 100 421.2 660 130.4 50

PSOl TP23 27400 31252.0 35800 1817.8 50

TP24 450 830.2 1470 206.0 50

TP25 4650 11320.0 22650 3802.8 50

TP26 120 390.0 920 134.6 50

TP27 800 2472.4 3880 637.5 50

TP28 70 256.0 520 107.5 50

TP29 100 466.0 820 165.0 50

successful if the global minimum was obtained with an accuracy of 10−6. In order to avoid
search stagnation and possible deterioration of the algorithms’ dynamics, the search points
were rounded to the nearest integer only for function evaluation purposes, while they were
considered as real numbers for all other operations. The best solution was also rounded after
the termination of the algorithm.

In Table 12, the parameter setting of RWMPSO is reported. All results are reported in
Table 13. More specifically, the number of successes is reported along with the minimum,
mean, maximum, and standard deviation of the required number of function evaluations for
the successful cases. Once again, RWMPSO was superior to standard PSO. RWMPSOg ex-
hibited better performance than all the other algorithms with respect to the required mean
number of function evaluations. Its standard deviations were also the smallest among the
algorithms in the majority of the test problems, thereby verifying its robustness. The statis-
tical significance of the RWMPSOg results was also verified through t-tests. Interestingly,

Ann Oper Res (2007) 156: 99–127 125

no algorithm suffered search stagnation. This finding was also noticed for the standard PSO
in (Laskari et al. 2002).

4 Conclusions

A new Memetic Particle Swarm Optimization scheme that incorporates local search tech-
niques to the standard Particle Swarm Optimization algorithm was proposed. Its perfor-
mance was investigated on a plethora of test problems, including unconstrained, constrained,
minimax and integer programming problems, employing the Random Walk with Direction
Exploitation. Both the local and global variants of the proposed scheme were tested and
compared with the corresponding variants of Particle Swarm Optimization. In almost all
problems the memetic approach proved to be superior, increasing both the efficiency and
the effectiveness of the algorithm.

Techniques for the self-adaptation of the local search parameters that could further en-
hance the algorithm’s performance and different local search techniques will be included in
future correspondence.

Acknowledgements We would like to thank the editors and the anonymous reviewers for their valuable
comments and suggestions. We thank the European Social Fund (ESF), Operational Program for Educational
and Vocational Training II (EPEAEK II) and particularly the Program PYTHAGORAS, for funding the above
work.

References

Abido, M. A. (2002). Optimal design of power system stabilizers using particle swarm optimization. IEEE
Transactions on Energy Conversion, 17, 406–413.

Agrafiotis, D. K., & Cedeno, W. (2002). Feature selection for structure-activity correlation using binary par-
ticle swarms. Journal of Medicinal Chemistry, 45, 1098–1107.

Angeline, P. J. (1998). Evolutionary optimization versus particle swarm optimization: philosophy and per-
formance differences. In V. W. Porto, N. Saravanan, D. Waagen & A. E. Eiben (Eds.), Evolutionary
programming (Vol. VII, pp. 601–610). Berlin: Springer.

Bandler, J. W., & Charalambous, C. (1974). Nonlinear programming using minimax techniques. Journal of
Optimization Theory and Applications, 13, 607–619.

Belew, R. K. (1990). Evolution, learning and culture: computational metaphores for adaptive algorithms.
Complex Systems, 4, 11–49.

Belew, R. K., McInerny, J., & Schraudolph, N. N. (1991). Evolving networks: using the genetic algorithm
with connectionist learning. In C. Langton, C. Taylor, J. Farmer & S. Rasmussen (Eds.), Proceedings of
the second conference in artificial life (pp. 511–548). Reading: Addison-Wesley.

Clerc, M., & Kennedy, J. (2002). The particle swarm—explosion, stability, and convergence in a multidimen-
sional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.

Cockshott, A. R., & Hartman, B. E. (2001). Improving the fermentation medium for Echinocandin B produc-
tion. Part II: particle swarm optimization. Process Biochemistry, 36, 661–669.

Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.
Floudas, C. A., & Pardalos, P. M. (1987). A collection of test problems for constrained global optimization

algorithms. In P. M. Floudas (Ed.), Lecture notes in computer science, Vol. 455. Berlin: Springer.
Fourie, P. C., & Groenwold, A. A. (2002). The particle swarm optimization algorithm in size and shape

optimization. Structural and Multidisciplinary Optimization, 23, 259–267.
Geesing, R., & Stork, D. (1991). Evolution and learning in neural networks: the number and distribution of

learning trials affect the rate of evolution. In R. Lippmann, J. Moody & D. and Touretzky (Eds.), NIPS 3
(pp. 804–810). San Mateo: Morgan Kaufmann.

Glankwahmdee, A., Liebman, J. S., & Hogg, G. L. (1979). Unconstrained discrete nonlinear programming.
Engineering Optimization, 4, 95–107.

Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-
Wesley.

126 Ann Oper Res (2007) 156: 99–127

Hart, W. E. (1994). Adaptive global optimization with local search. Ph.D. thesis, University of California,
San Diego, USA.

Himmelblau, D. M. (1972). Applied nonlinear programming. New York: McGraw-Hill.
Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1, 495–502.
Hock, W., & Schittkowski, K. (1981). Test examples for nonlinear programming codes. In Lecture notes in

economics and mathematical systems (Vol. 187). Berlin: Springer.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: Ann Arbor University Press.
Homaifar, A., Lai, A. H. -Y., & Qi, X. (1994). Constrained optimization via genetic algorithms. Simulation,

2, 242–254.
Hoos, H. H., & Stützle, T. (2004). Stochastic local search: foundations and applications. San Mateo: Morgan

Kaufmann.
Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo: Morgan Kaufmann.
Krasnogor, N. (2002). Studies on the theory and design space of memetic algorithms. Ph.D. thesis, University

of the West of England, Bristol, UK.
Land, M. W. S. (1998). Evolutionary algorithms with local search for combinatorial optimization. Ph.D.

thesis, University of California, San Diego, USA.
Laskari, E. C., Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization for integer pro-

gramming. In Proceedings of the IEEE 2002 congress on evolutionary computation (pp. 1576–1581).
Hawaii (HI), USA. New York: IEEE Press.

Lee, C. -Y., & Yao, X. (2004). Evolutionary programming using mutations based on the Lévy probability
distribution. IEEE Transactions on Evolutionary Computation, 8, 1–13.

Lu, W. Z., Fan, H. Y., Leung, A. Y. T., & Wong, J. C. K. (2002). Analysis of pollutant levels in central Hong
Kong applying neural network method with particle swarm optimization. Environmental Monitoring
and Assessment, 79, 217–230.

Lukšan, L., & Vlček, J. (2000). Test problems for nonsmooth unconstrained and linearly constrained op-
timization. Technical report 798, Institute of Computer Science, Academy of Sciences of the Czech
Republic, Prague, Czech Republic.

Matyas, J. (1965). Random optimization. Automatization and Remote Control, 26, 244–251.
Merz, P. (1998). Memetic algorithms for combinatorial optimization. Fitness landscapes and effective search

strategies. Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of
Siegen, Germany

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Berlin: Springer.
Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts. Towards memetic

algorithms. Technical report C3P, Report 826, Caltech Concurrent Computation Program, California,
USA

Moscato, P. (1999). Memetic algorithms. A short introduction. In D. Corne, M. Dorigo & F. and Glover
(Eds.), New ideas in optimization (pp. 219–235). London: McGraw-Hill.

Muhlenbein, M., Gorges Schleiter, M., & Kramer, O. (1988). Evolution algorithms in combinatorial opti-
mization. Parallel Computing, 7, 65–85.

Ourique, C. O., Biscaia, E. C., & Carlos Pinto, J. (2002). The use of particle swarm optimization for dynam-
ical analysis in chemical processes. Computers and Chemical Engineering, 26, 1783–1793.

Papageorgiou, E. I., Parsopoulos, K. E., Groumpos, P. P., & Vrahatis, M. N. (2004). Fuzzy cognitive maps
learning through swarm intelligence. In: Lecture notes in computer science (Vol. 3070, pp. 344–349).
Berlin: Springer.

Parsopoulos, K. E., & Vrahatis, M. N. (2002a). Initializing the particle swarm optimizer using the nonlinear
simplex method. In A. Grmela & N. Mastorakis (eds.) Advances in intelligent systems, fuzzy systems,
evolutionary computation (pp. 216–221). WSEAS Press.

Parsopoulos, K. E., & Vrahatis, M. N. (2002b). Particle swarm optimization method for constrained optimiza-
tion problems. In P. Sincak, J. Vascak, V. Kvasnicka & J. and Pospichal (Eds.), Intelligent technologies–
theory and application (New trends in intelligent technologies). Frontiers in artificial intelligence and
applications (Vol. 76, pp. 214–220). Amsterdam: IOS Press.

Parsopoulos, K. E., & Vrahatis, M. N. (2002c). Recent approaches to global optimization problems through
particle swarm optimization. Natural Computing, 1, 235–306.

Parsopoulos, K. E., & Vrahatis, M. N. (2004). On the Computation of all global minimizers through particle
swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 211–224.

Parsopoulos, K. E., Papageorgiou, E. I., Groumpos, P. P., & Vrahatis, M. N. (2004). Evolutionary computa-
tion techniques for optimizing fuzzy cognitive maps in radiation therapy systems. In Lecture notes in
computer science (Vol. 3102, pp. 402–413). Berlin: Springer.

Petalas, Y. G., & Vrahatis, M. N. (2004a). Memetic algorithms for neural network training in bioinformatics.
In European symposium on intelligent technologies, hybrid systems and their implementation on smart
adaptive systems (EUNITE 2004) (pp. 41–46). Aachen, Germany.

Ann Oper Res (2007) 156: 99–127 127

Petalas, Y. G., & Vrahatis, M. N. (2004b). Memetic algorithms for neural network training on medical data.
In Fourth European symposium on biomedical engineering, Patras, Greece.

Rao, S. S. (1992). Optimization: theory and applications. New Dehli: Wiley Eastern.
Ray, T., & Liew, K. M. (2002). A swarm metaphor for multiobjective design optimization. Engineering

Optimization, 34(2), 141–153.
Rüdolph, G. (1994). An evolutionary algorithm for integer programming. In Y. Davidor, H.-P. Schwefel & R.

Männer (Eds.), Parallel problem solving from nature (Vol. 3, pp. 139–148). Berlin: Springer.
Saldam, A., Ahmad, I., & Al-Madani, S. (2002). Particle swarm optimization for task assignment problem.

Microprocessors and Microsystems, 26, 363–371.
Schwefel, H. -P. (1995). Evolution and optimum seeking. New York: Wiley.
Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization

over continuous spaces. Journal of Global Optimization, 11, 341–359.
Trelea, I. C. (2003). The particle swarm optimization algorithm. Convergence analysis and parameter selec-

tion. Information Processing Letters, 85, 317–325.
Xu, S. (2001). Smoothing method for minimax problems. Computational Optimization and Applications, 20,

267–279.
Yang, J.-M., Chen, Y.-P., Horng, J.-T., & Kao, C.-Y. (1997). Applying family competition to evolution strate-

gies for constrained optimization. In Lecture Notes in Mathematics (Vol. 1213, pp. 201–211). New York:
Springer.

	Memetic particle swarm optimization
	Abstract
	Introduction
	Memetic particle swarm optimization
	Memetic algorithms
	Particle swarm optimization
	The proposed algorithm
	A convergence analysis of memetic PSO

	Experimental analysis
	Random walk with direction exploitation
	Unconstrained optimization problems
	Constrained optimization problems
	Minimax problems
	Integer programming problems

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

