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Abstract. This paper discusses how preference information of the deci-
sion maker can in general be integrated into multiobjective search. The
main idea is to first define the optimization goal in terms of a binary per-
formance measure (indicator) and then to directly use this measure in
the selection process. To this end, we propose a general indicator-based
evolutionary algorithm (IBEA) that can be combined with arbitrary in-
dicators. In contrast to existing algorithms, IBEA can be adapted to
the preferences of the user and moreover does not require any additional
diversity preservation mechanism such as fitness sharing to be used. It
is shown on several continuous and discrete benchmark problems that
IBEA can substantially improve on the results generated by two popu-
lar algorithms, namely NSGA-II and SPEA2, with respect to different
performance measures.

1 Motivation

In a multiobjective scenario, the goal of the optimization process is often to find a
good approximation of the set of Pareto-optimal solutions. The difficulty, though,
is that there is no general definition of what a good approximation of the Pareto
set is. Each particular definition represents specific preference information that
depends on the user. For instance, one could formalize the goal as maximizing the
hypervolume of the objective space dominated by the resulting approximation
(cf. [11, 18]). In certain scenarios this definition may be appropriate, in others it
can be inappropriate because the goal of the optimization process may vary for
each decision maker and problem.

In the light of this discussion, one may reconsider the criteria that guided the
design of multiobjective evolutionary algorithms (MOEAs) in the last decade.
We make two observations here:

1. The basis of most MOEAs is the assumption that there are two conflict-
ing goals: (i) to minimize the distance to the Pareto-optimal set, and (ii)
to maximize the diversity within the approximation of the Pareto-optimal
set [3]. However, recent studies [10, 18] have shown that this assumption
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is problematic; to our best knowledge, there exists no formal definition of
two separate objectives, one for convergence and one for diversity, that is
compliant with the Pareto dominance relation. Furthermore, there are also
practical problems related to this issue as discussed in [1].

2. In most popular MOEAs, the above assumption is implemented in terms of
a Pareto-based ranking of the individuals that is refined by additional den-
sity information in objective space. The algorithms, though, differ in various
aspects, and therefore each of them realizes a slightly different optimization
goal, which is usually not explicitly defined. That means current approaches
have not been designed for flexibility with respect to the preference informa-
tion used; instead, they directly implement one particular type of preference
information.

As to the first aspect, the alternative is to use Pareto-compliant formalizations of
the decision maker’s preferences (cf. [9, 10, 18]). This, in turn, leads to a question
that is directly related to the second aspect: How to design MOEAs with respect
to arbitrary preference information?

The issue of integrating preference information into multiobjective search has
been addressed by different researchers, see [2] for an overview. For instance, Fon-
seca and Fleming [8] proposed an extended dominance relation that integrates
predefined priorities and goals; however, the two observations stated above also
apply to the algorithm introduced by them, similarly to many other algorithms
used in this context: a diversity preservation mechanism is implemented that im-
plicitly encodes unspecified preference information. In contrast, Knowles [11] pre-
sented a multiobjective hill climber that can be combined with arbitrary unary
performance measures and does not require niching methods. This approach,
though, is – depending on the performance measure used – computationally ex-
pensive, and it is not clear how to extend it to population-based multiobjective
optimizers that implement both mating and environmental selection.

In this paper, we extend the idea of flexible integration of preference infor-
mation by Fonseca and Fleming [8] and Knowles [11] and propose a general
indicator-based evolutionary algorithm, IBEA for short. The main idea is to
formalize preferences in terms of continuous generalizations of the dominance
relation, which leads to a simple algorithmic concept. Thereby, IBEA not only
allows adaptation to arbitrary preference information and optimization scenar-
ios, but also does not need any diversity preservation techniques, in contrast to
[8]. In comparison to [11], IBEA is more general, since the population size can be
arbitrary, and faster, because it only compares pairs of individuals and not entire
approximation sets. As will be shown, the proposed approach can significantly
improve the quality of the generated Pareto set approximation with respect to
the considered optimization goal – in comparison to prominent Pareto-based
MOEAs.

2 Preliminaries

In the following, we consider a general optimization problem that is defined by a
decision space X , an objective space Z, and n objective functions f1, f2, . . . , fn
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Fig. 1. Illustration of the two binary quality indicators used in this paper where A and
B contain one decision vector each (left: Iϵ+-indicator; right: IHD-indicator).

that assign to each decision vector x ∈ X a corresponding objective vector
z = (f1(x), f2(x), . . . , fn(x)) ∈ Z. Without loss of generality, it is assumed that
all objective functions are to be minimized and that Z ⊆ IRn. Furthermore, the
outcome of an MOEA is defined as a set of incomparable decision vectors, i.e.,
no decision vector dominates1 any other decision vector in the set. Such a set
will also be denoted as Pareto set approximation, and the entirety of all Pareto
set approximations is represented by the symbol Ω, where Ω ⊆ 2Z . The set of
all Pareto-optimal solutions is called the Pareto set S with S ∈ Ω.

We assume that the preferences of the decision maker are given in terms of a
binary quality indicator I : Ω×Ω → IR. A quality indicator in general is a func-
tion that maps k Pareto set approximations to a real number; most common are
unary quality indicators where k = 1 (cf. [18]). Binary quality indicators can be
used to compare the quality of two Pareto set approximations relatively to each
other. For instance, the binary additive ϵ-indicator Iϵ+ [18] gives the minimum
distance by which a Pareto set approximation needs to or can be translated in
each dimension in objective space such that another approximation is weakly
dominated2. Formally, it is defined as follows (cf. Fig. 1 for an illustration):

Iϵ+(A, B) = minϵ

{
∀x2 ∈ B ∃x1 ∈ A : fi(x1) − ϵ ≤ fi(x2) for i ∈ {1, . . . , n}

}

The reason why we consider binary quality indicators here is that they rep-
resent a natural extension of the Pareto dominance relation, and therefore can
directly be used for fitness calculation similarly to the common Pareto-based
fitness assignment schemes. One requirement, though, is that the considered
indicator I is compliant with Pareto dominance as defined as follows.

Definition 1. A binary quality indicator I is denoted as dominance preserv-
ing if (i) x1 ≻ x2 ⇒ I({x1}, {x2}) < I({x2}, {x1}) and (ii) x1 ≻ x2 ⇒
I({x3}, {x1}) ≥ I({x3}, {x2}) for all x1, x2, x3 ∈ X.

We will see later how these properties ensure that the proposed fitness assign-
ment scheme is also Pareto dominance compliant. Note that the Iϵ+ -indicator

1 A decision vector x1 is said to dominate another decision vector x2, written as
x1 ≻ x2, if fi(x

1) ≤ fi(x
2) for all i ∈ {1, . . . , n} and fj(x

1) < fj(x
2) for at least

one j ∈ {1, . . . , n}.
2 A ecision vector x1 weakly dominates another one x2, written as x1 ≽ x2, if x1

dominates x2 or the corresponding objective vectors are equal.
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is dominance preserving; for instance, the indicator values become negative as
soon as x1 dominates x2 (cf. [18]).

Now, given an arbitrary optimization problem and a corresponding binary
quality indicator I, we can define the goal of the optimization process as minimiz-
ing I(A, S) for A ∈ Ω where S is the Pareto set. If I is dominance preserving,
then I(A, S) is minimum for A = S; in the case of the additive ϵ-indicator,
Iϵ+(S, S) = 0. Note that we do not require here that S is known, it just serves
the formalization of the optimization goal.

3 Indicator-Based Selection

Taking the scenario described in Section 2, the question is how I can be inte-
grated in an MOEA to minimize I(A, S), where A is the generated Pareto set
approximation. This section deals with this issue.

3.1 Fitness Assignment

The population P represents a sample of the decision space, and fitness as-
signment tries to rank the population members according to their usefulness
regarding the optimization goal. Among the different ways how the exploit the
information given by P and I, one possibility is to simply sum up the indica-
tor values for each population member with respect to the rest of population,
i.e.: F ′(x1) =

∑
x2∈P\{x1} I({x2}, {x1}) This fitness value F ′, which is to be

maximized, is a measure for the “loss in quality” if x1 is removed from the
population. For Iϵ+ , e.g., F ′(x1) divided by the population size N equals the
average ϵ needed to cover x1 by other population members. However, we will
use a slightly different scheme in the following that amplifies the influence of
dominating population members over dominated ones:

F (x1) =
∑

x2∈P\{x1}

−e−I({x2},{x1})/κ

We use one property of dominance preserving indicators here, namely that
I({x1}, {x2}) < I({x2}, {x1}) if x1 ≻ x2. Thereby, the influence of small indi-
cator values contributes much more to the overall fitness than large values. The
parameter κ is a scaling factor depending on I and the underlying problem; κ
needs to be greater than 0. The following theorem shows that this fitness scheme
is compliant with the Pareto dominance relation.

Theorem 1. Let I be a binary quality indicator. If I is dominance preserving,
then it holds that x1 ≻ x2 ⇒ F (x1) > F (x2).

Proof. From Def. 1 and property (i) it follows that the indicator value
I({x1}, {x2}) < I({x2}, {x1}). Due to property (ii) of Def. 1, we know
that I({x3}, {x1}) ≥ I({x3}, {x2}), ∀x3 /∈ {x1, x2}. Since −e−x/κ > −e−y/κ, if
x < y and κ > 0, it follows that F (x1) > F (x2). ✷
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3.2 Example Indicators

We have now seen how the additive ϵ-indicator can be used to assign fitness
values to the population members. However, many other dominance preserving
indicators can be defined that could be used instead. For instance, the following
IHD-indicator is based on the hypervolume concept [17]:

IHD(A, B) =
{

IH(B) − IH(A) if ∀x2 ∈ B ∃x1 ∈ A : x1 ≻ x2

IH(A + B) − IH(A) else

Here, IH(A) gives the hypervolume of the objective space dominated by A,
and accordingly IHD(A, B) measures the volume of the space that is dominated
by B but not by A with respect to a predefined reference point Z. While the
calculation of the IHD(A, B)-values is computationally expensive for approxi-
mations containing several decision vectors, it is of order O(n) if two decision
vectors are compared. The IHD-indicator will be used in addition to the Iϵ+ -
indicator later in this paper. A graphical interpretation for IHD can be found on
the right hand side of Fig. 1.

Other examples for binary quality indicators that could be used here are
described in Hansen and Jaszkiewicz’s study [9].

3.3 Basic Algorithm

Based on the above fitness assignment scheme, we propose a general indicator-
based evolutionary algorithm (IBEA) that performs binary tournaments for mat-
ing selection and implements environmental selection by iteratively removing the
worst individual from the population and updating the fitness values of the re-
maining individuals. Its running-time complexity is O(α2) with regard to the
population size α. Details of the algorithm are given below; note that it rep-
resents only the basic version of IBEA (denoted B-IBEA in the following), an
extended version will be specified later.

Algorithm 1 (Basic IBEA)
Input: α (population size)

N (maximum number of generations)
κ (fitness scaling factor)

Output: A (Pareto set approximation)

Step 1: Initialization: Generate an initial population P of size α; set the generation counter m
to 0.

Step 2: Fitness assignment: Calculate fitness values of individuals in P , i.e., for all x1 ∈ P set

F (x1) =
∑

x2∈P\{x1} −e−I({x2},{x1})/κ.
Step 3: Environmental selection: Iterate the following three steps until the size of population P

does not exceed α:
1. Choose an individual x∗ ∈ P with the smallest fitness value, i.e., F (x∗) ≤ F (x)

for all x ∈ P .
2. Remove x∗ from the population.
3. Update the fitness values of the remaining individuals, i.e.,

F (x) = F (x) + e−I({x∗},{x})/κ for all x ∈ P .
Step 4: Termination: If m ≥ N or another stopping criterion is satisfied then set A to the set

of decision vectors represented by the nondominated individuals in P . Stop.
Step 5: Mating selection: Perform binary tournament selection with replacement on P in order

to fill the temporary mating pool P ′.
Step 6: Variation: Apply recombination and mutation operators to the mating pool P ′ and add

the resulting offspring to P . Increment the generation counter (m = m + 1) and go to
Step 2.
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3.4 Simulation Results

The proposed algorithm was tested on several well-known benchmark problems:
the 2-dimensional knapsack problem instance from [17] with 100 items, a net-
work processor application comprising problem instances with two (EXPO2),
three (EXPO3), and four (EXPO4) objectives (cf. [14]), and four continuous
test functions, namely ZDT6 [15] and KUR [12] with two objectives as well as
DTLZ2 and DTLZ6 [6] with three objectives each3. For all problems, the popu-
lation size α was set to 100 and the maximum number of generations N to 200.
Overall, 30 runs with different initial populations were carried out per algorithm
and per benchmark problem.

To assess the performance values, we have compared the solutions found by
the two new algorithms B-IBEAϵ+ and B-IBEAHD with NSGA-II [5] and SPEA2
[16]. The performance comparison was carried out using the quality indicators
Iϵ+ and IHD, i.e., we have computed 30 indicator values I(A, R) for different
seeds for all the tested algorithms. In this formula, A stands for the output
that the evolutionary algorithm produced; the reference set R was determined
by merging all solutions found by all the different algorithms into one set and
keeping the non-dominated solutions. R was used instead of the Pareto set S,
because S is usually unknown.

For the results obtained using B-IBEAϵ+, B-IBEAHD, NSGA-II and SPEA2,
we can observe in the comparison that B-IBEAϵ+ and B-IBEAHD perform signif-
icantly better than the other algorithms regarding both performance indicators
and for appropriately chosen parameter κ. Although for the variation parame-
ter settings described above, the choice for the parameter κ does not influence
the performance of the algorithm much, we found other parameter settings that
indicate that the optimal choice of κ can vary and is dependent on the problem
and the indicator used. This is, e.g., the case for ZDT6 if both mutation and re-
combination probability are set to 1. In Figure 2a (top), the influence of different
values κ for the performance of B-IBEAϵ+ on the problem ZDT6 is given. The
performance of B-IBEAHD not only depends on the choice of κ but also on the
choice of the reference point. In Figure 2a (bottom), we can see that for a par-
ticular choice of both κ and the reference point, the performance of B-IBEAHD

for problem ZDT6 is better than SPEA2 and NSGA-II, but for other choices for
κ and the reference point the performance is substantially worse. We do not give
all the results for the basic versions of IBEA in a table due to space limitations.

3 For the continuous problems, the individuals are coded as real vectors, where the
SBX-20 operator is used for recombination and a polynomial distribution for muta-
tion [4]. The recombination and mutation probabilities were set to 1.0 and to 0.01,
resp., according to [7]. For the knapsack problem, an individual is represented by
a bit string, recombination is performed as one-point crossover with probability 0.8
according to [17], and point mutations are performed with bit-flip probability 0.04,
as suggested in [13]. For the design-space exploration problems EXPO, the repre-
sentation of individuals and the operators are described in [14]. The recombination
probability was set to 0.5 and the probability for mutation was set to 0.8. (These
are the same parameter settings as proposed in [14]).
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The question that arises inspecting the results obtained so far is how we can
improve the algorithms such that (i) the same κ value can be used for different
problems and indicators, and (ii) B-IBEAHD becomes less sensitive to the choice
of the reference point for IHD.

4 Improving Robustness

4.1 Adaptive IBEA

The values for the indicators I(A, B) can be widely spread for different problems.
This makes it difficult to determine an appropriate value for κ. We can ease this
task by adaptively scaling the indicator values such that they lie in the interval
[−1, 1] for all points in the population. Thereby, we can use the same value κ for
all the problems.

To tackle the problem of determining a good reference point for the IHD

indicator, we propose to use adaptive scaling not only for the indicator values,
but also for the objective values. After scaling, the objective values lie in the
interval [0, 1]. Like this, we can choose the worst values for each objective found
in the population as reference point to calculate IHD, i.e. the reference point
would be set to 1 for all objectives. If we use this strategy, the only problem
remaining is that the corner points found in a population do not add to the
hypervolume. To overcome this problem, for the reference point we used a value
of 2 for all objectives in the experiments with IBEAHD.

Algorithm 2 (Adaptive IBEA)

. . .

Step 2: Fitness assignment: First scale objective and indicator values, and then use scaled values
to assign fitness values:
1. Determine for each objective fi its lower bound bi = minx∈P fi(x) and its upper

bound bi = maxx∈P fi(x).
2. Scale each objective to the interval [0, 1], i.e., f ′

i (x) = (fi(x) − bi)/(bi − bi)).
3. Calculate indicator values I(x1, x2) using the scaled objective values f ′

i instead of
the original fi, and determine the maximum absolute indicator value
c = maxx1,x2∈P |I(x1, x2)|.

4. For all x1 ∈ P set F (x1) =
∑

x2∈P\{x1} −e−I({x2},{x1})/(c·κ).
Step 3: Environmental selection: . . .

1. . . .
2. . . .
3. Update the fitness values of the remaining individuals, i.e.,

F (x) = F (x) + e−I({x∗},{x})/(c·κ) for all x ∈ P .

. . .

The algorithms IBEAϵ+ and IBEAHD denote the adaptive versions of the
basic algorithms. For these versions, the choice of κ only marginally depends on
the problem and the indicator under consideration. The changes in the initial
algorithm are shown in Algorithm 2. For the experiments discussed in Section 4.2,
we have used κ = 0.05 for all the problems and algorithms. Preliminary tests have
shown that this value for κ produced good results on the problems considered.
Furthermore, the value for κ was chosen such that in the implementation no
numerical problems occur, because smaller values led to fitness values larger
than the maximum allowed double value in the PISA-specification (= 1099).
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Table 1. Comparison of different MOEAs for the Iϵ+-indicator using the Wilcoxon rank
test. The “P value” columns give the adjusted P value of the corresponding pairwise
test that accounts for multiple testing; it equals the lowest significance level for which
the null-hypothesis (the medians are drawn from the same distribution) would still be
rejected. The “T” columns give the outcome of the test for a significance level of 5%:
either the algorithm corresponding to the specific row is significantly better (↑) resp.
worse (↓) than the algorithm associated with the corresponding column or there is no
significant difference between the results (!).

SPEA2 NSGA-II SPEA2adap IBEAϵ,adap

P value T P value T P value T P value T

ZDT6 NSGA-II 5.6073 · 10−4 ↑
SPEA2adap > 5% ! 8.1975 · 10−6 ↓
IBEAϵ,adap 8.1014 · 10−9 ↑ 2.0023 · 10−5 ↑ 1.9568 · 10−9 ↑
IBEAHD,adap 0.0095 ↑ > 5% ! 5.4620 · 10−5 ↑ 1.3853 · 10−5 ↓

DTLZ2 NSGA-II 3.0199 · 10−10 ↓
SPEA2adap > 5% ! 3.0199 · 10−10 ↑
IBEAϵ,adap 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑
IBEAHD,adap 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 5.5329 · 10−7 ↓

DTLZ6 NSGA-II 8.1014 · 10−9 ↓
SPEA2adap > 5% ! 6.1210 · 10−9 ↑
IBEAϵ,adap 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑
IBEAHD,adap 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.5923 · 10−4 ↓

KUR NSGA-II > 5% !
SPEA2adap > 5% ! > 5% !
IBEAϵ,adap 3.0199 · 10−10 ↓ 3.0199 · 10−10 ↓ 6.6955 · 10−10 ↓
IBEAHD,adap 3.0199 · 10−10 ↓ 3.0199 · 10−10 ↓ 4.9752 · 10−10 ↓ > 5% !

Knap. NSGA-II > 5% !
SPEA2adap > 5% ! > 5% !
IBEAϵ,adap > 5% ! > 5% ! > 5% !
IBEAHD,adap > 5% ! > 5% ! > 5% ! > 5% !

EXPO2 NSGA-II > 5% !
SPEA2adap > 5% ! 0.0189 ↑
IBEAϵ,adap 1.0837 · 10−8 ↑ 2.6753 · 10−9 ↑ 6.4048 · 10−8 ↑
IBEAHD,adap 1.9638 · 10−7 ↑ 1.2260 · 10−8 ↑ 6.6261 · 10−7 ↑ > 5% !

EXPO3 NSGA-II > 5% !
SPEA2adap > 5% ! > 5% !
IBEAϵ,adap 4.3165 · 10−8 ↑ 5.0801 · 10−8 ↑ 3.1159 · 10−7 ↑
IBEAHD,adap 2.4189 · 10−7 ↑ 1.5732 · 10−7 ↑ 1.1653 · 10−6 ↑ > 5% !

EXPO4 NSGA-II > 5% ! -
SPEA2adap > 5% ! 9.4209 · 10−4 ↓
IBEAϵ,adap 1.8546 · 10−10 ↑ 6.9754 · 10−10 ↑ 1.8390 · 10−10 ↑
IBEAHD,adap 1.9883 · 10−10 ↑ 1.0221 · 10−9 ↑ 1.9716 · 10−10 ↑ > 5% !

4.2 Simulation Results

In Fig. 2 (b), the comparison results for the problems DTLZ6 and EXPO2 are
shown. For both problems, the proposed algorithms IBEAϵ+ and IBEAHD per-
form significantly better than SPEA2 and NSGA-II with respect to the perfor-
mance indicators Iϵ+ and IHD. Note that these IBEA versions all work with the
same value for κ.

In addition to SPEA2, NSGA-II and the proposed IBEAϵ+ and IBEAHD,
we have implemented an adaptive version of SPEA2 to see the impact of adap-
tive objective-value scaling as such. The performance of the adaptive version
of SPEA2 is comparable to the original algorithm on the test problems, and
the Wilcoxon rank test returns false for all the problems investigated, i. e. the
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Fig. 2. (a) (top) The indicator values Iϵ+ for SPEA2, NSGA-II and B-IBEAϵ+ for
different values of κ. For all the different algorithms one outlier was removed from the
result sample for improved readability. (bottom) The indicator values IHD for SPEA2,
NSGA-II and B-IBEAHD for different values of κ and the reference point. In the 4th

column, no values are given because they are about 10 times greater than the values
given. (b) Performance comparison for adaptive IBEAϵ, IBEAHD, SPEA2 and NSGA-
II solving problems DTLZ6 (top) and EXPO2 (bottom). On the left, values for Iϵ+ ,
on the right for IHD are given.

distributions of I(A, R) for SPEA2 and the adaptive version of SPEA2 are not
significantly different.

An overview of the results for Iϵ+ is given in Table 1. We do not give a ta-
ble with results for IHD due to space limitations. Overall, we can see that for
the continuous problems DTLZ2, DTLZ6 and ZDT6, the proposed algorithms
IBEAϵ+ and IBEAHD perform significantly better than SPEA2 or NSGA-II; only
for KUR, the latter provide better performance than the two IBEA instances.
For the discrete knapsack problem, the significance tests return false, i.e. the
indicator value distributions generated by the different search algorithms are
statistically not different from each other. In contrast, the indicator-based al-
gorithms show significantly better performance for the design-space exploration
problem EXPO in two, three and four dimensions.

5 Conclusions

Every MOEA implementation inevitably makes assumptions about the decision
maker’s preferences which are usually hard coded in the algorithm. These pref-
erences, though, may vary for each user and application. Therefore, we have
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– argued that ideally MOEAs would be designed and evaluated with regard
to the specific preferences of the user, formalized in terms of a performance
measure, and

– proposed a general indicator-based evolutionary algorithm (IBEA) that, con-
trarily to existing population-based MOEAs, allows to adapt the search ac-
cording to arbitrary performance measures. For two different performance
measures, this approach has be shown to generate significantly better results
on six of eight benchmark problems in comparison to SPEA2 and NSGA-II,
while no statistically significant performance difference could be observed on
one of the test function.

IBEA as well as the other MOEAs and the benchmark problems considered in
the paper can be downloaded as precompiled, ready-to-use components from the
PISA Website http://www.tik.ee.ethz.ch/pisa/.
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