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Abstract� A common problem in datamining is to �nd accurate classi�
�ers for a dataset	 For this purpose� genetic programming 
GP� is applied
to a set of benchmark classi�cation problems	 Using GP we are able to
induce decision trees with a linear combination of variables in each func�
tion node	 A new representation of decision trees using strong typing in
GP is introduced	 With this representation it is possible to let the GP
classify into any number of classes	 Results indicate that GP can be ap�
plied successfully to classi�cation problems	 Comparisons with current
state�of�the�art algorithms in machine learning are presented and areas
of future research are identi�ed	

� Introduction

Classi�cation problems form an important area in datamining� For example� a
bank may want to classify its clients in good and bad credit risks or a doctor
may want to classify his patients as having diabetes or not� Classi�ers may take
the form of decision trees ���� �see Figure ��� In each node� a test is made in
which one or more variables is used� Depending on the outcome of the test� the
tree is traversed to the left or the right subtree �see Section ����� In our decision
trees� the tests are linear combinations of some of the variables� This allows clas	
si�cation of continuous and integer valued datasets with an �unknown� inherent
linear structure� An optimal tree is one which makes as few misclassi�cations as
possible on the validation set�

Well known decision tree algorithms such as ID
� CART� OC� and C��� are
greedy local search algorithms which construct trees top	down ����� Genetic pro	
gramming �GP� ��� is used as a global stochastic search technique for �nding
accurate decision trees� Previous work on evolving decision trees with GP was
done in ��� and ����� The standard representation of GP was used in these exper	
iments� Therefore� the trees look di
erent from most Machine Learning decision
trees� where nodes contain linear combinations of variables�

A new representation of decision trees in GP using Strong Typing is intro	
duced� The classi�cation accuracy of the GP is compared to that achieved by
several other decision tree classi�cation techniques� such as the OC�	algorithm�
C���� and the M�� algorithm �Section �����
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In Section � the theoretical background behind the system is given� Section �
explains the experimental setup for the experiments� The results are given in
Section �� In Section � an analysis is made of the performance of the GP�system
and a comparison is made to other decision tree algorithms� Section � contains
our conclusions�
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Fig� �� Example decision tree and its representation in the GP� x�� means the tenth

variable from the dataset� Each function node�s �rst children are the weights and

variables for the linear combination� The last two children are other function nodes

or classi�cations� When evaluating the CheckCondition�Vars node on a certain case�

if ���x�� � ����x� � ��	� the CheckCondition�Vars node is evaluated
 otherwise the

�nal classi�cation is 	 and the evaluation of the decision tree on this particular case is

�nished�

� Background

��� Decision Trees

Decision trees���	 are a well known technique in machine learning for representing
the underlying structure of a dataset�

An axis�parallel decision tree is one in which each node contains only one
variable� All hyperplanes 
multi�dimensional planes� are parallel to the axes�
hence the name� See Figure � for an example� A decision tree is oblique when
the nodes contain one or more variables� Now the hyperplanes are not necessarily
parallel to the axes� but can have any orientation in the attribute space� See
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Figure � for an example� Note that axis�parallel trees are special cases of oblique
trees� Clearly� oblique trees are more general than axis�parallel trees� There exist
many domains in which oblique hyperplanes will form the best classi�cation
model� For example� any domain in which the �weighted� sum of two variables
is crucial for correct classi�cation needs an oblique hyperplane�

Because of this larger generality however� the search space is also much larger�
there are many more possible oblique models than axis�parallel models�

Most decision tree algorithms create linear decision trees� Although often
a linear tree can describe the data very well� there may be situations where
non�linear trees are better� For example� in �	
 hyper�ellipses were compared to
hyper�rectangles� Neither hyper�ellipses nor hyper�rectangles were systematically
better in size or accuracy of the solutions found� Our system focuses on linear
trees�
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Fig� �� The left side shows a simple axis�parallel decision tree� The right side shows

the partitioning that this tree creates in the two�dimensional attribute space�
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Fig� �� The left side shows an oblique decision tree� The right side shows the partition�

ing that this tree creates in the two�dimensional attribute space�

When evaluating a decision tree on an individual case from the database� in
each non�leaf node� a linear combination is made of some of the available vari�
ables� Each function node has �fci� xig� threshold� ifTrue� ifFalse� as its children
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with ci and xi the ith constant and the ith variable� The ifTrue and i fFalse
branches are either direct classi�cations or other function nodes� Terminals are
either constants �doubles�� variables �integers� or classi�cations �integers�� The
node is evaluated as follows�

if
P

i
cixi ��threshold then return value of ifTrue branch

else return value of ifFalse branch
The Classification terminal that is reached when evaluating a speci�c training
of validation case is the classi�cation the GP makes for that case�

This system could be extended with non�linear function nodes� For exam�
ple� functions could be added which multiply two variables or which describe
a hyper�ellipse� In �	
 experiments were done with GA�s with hyper�rectangles
and with hyper�ellipses� The accuracies were not statistically di�erent on most
non�arti�cial databases�

��� Strong Typing

In order to ensure that only valid individuals are constructed in the GP� strong
typing is used �

� This is a technique that allows several datatypes to be used in
one tree� The datatype of each function can be speci�ed and the datatypes of its
children� When generating a random tree� only nodes of the correct datatype are
inserted at each child node� Our strong typing system contains three datatypes�
Variable� Constant and Classification�

Variable

Terminals A terminal of the Variable type is an integer which ranges be�
tween � and the number of variables in the database � 	� It represents
the number of a variable in the database� When evaluated� it looks up
the value in the database and returns it as a double�

Functions There are no functions of this type�
Constant

Terminals A terminal of the type Constant is a double within a certain
range� In the experiments� the range is ��	�� 	�
�

Functions There are no functions of this type�
Classification

Terminals A terminal of this type is an integer which ranges between �
and the number of possible classi�cations � 	�

Functions All functions have this return type�

��� Bloat

In GP� individuals tend to become larger over time ��� �� 	�� �� 	�� 	�� �
� This
phenomenon is known as bloat� Disadvantages include overtraining� longer ex�
ecution time for evaluating individuals and lower understandibility of the trees
for humans� In our experiments� several measures are compared to avoid this
problem� One way is to give penalties to larger individuals �	�
� This may be
done by lowering the �tness value by some factor times the number of nodes in
the tree or its depth�
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� Experimental Setup

We used the GP system by Qureshi �GPSys� �� which is written in Java� GPSys
is a steady state� elitist system with tournament selection�

��� Parameter Settings

In Table �� the standard settings for the experiments are given�

Table �� Standard settings of the GP

Objective Classify all training cases correctly

Terminal set Variable� Constant� Classi�cation

Function set CheckCondition�Var� CheckCondition�Vars�
CheckCondition�Vars

Fitness Cases Various databases �see Section ����

Selection Tournament of size �

Hits not used

Wrapper not used

Parameters Population size 	 �
�
No of runs 	 ��
No of generations	����
Steady state� elitist
���fold crossvalidation
Mutation rate 
�

Initial population creation RAMPED HALF AND HALF
Pareto sample size 
�

Termination criterium All cases correctly classi�ed

The more generations allowed� the more accurate individuals are� so the
number of generations was set quite high� Ten�fold crossvalidation ��� was used�
with 	 runs in each split� After each run� the best individual is reported� The
focus could be on accuracy� speed� generalization and simplicity of the trees� The
best individual in our system is the most accurate one� Only after the runs are
completed we look at speed� generalization and simplicity�

Some initial runs were performed to compare settings for the tournament
size� mutation and crossover rates and bloating�penalties� In Section 
 the e�ects
of di�erent mutation rates are examined� We found that the exact amount of
mutation and crossover was of no high importance� as long the mutation rate is
larger than �
� Thus� the mutation rate was set to ��� and the crossover rate also
at ���� The GROW�population creation method was also used� but this made no
signi�cant di�erence to the RAMPED method�

� http���www�cs�ucl�ac�uk�sta��A�Qureshi�gpsys�html

251Application of Genetic Programming to Induction of Linear Classification Trees



Di�erent bloating penalties were applied� on the number of nodes and on the
depth of the tree� A penalty of ��� times the number of nodes or � times the
depth proved to be the best penalties� Those are compared to the �tness sharing
techniques�

��� Machine Learning Repository Databases

Four databases from the Machine Learning Repository � were used in the exper�
iments�

	 The Glass database contains �
� instances of � continuous variables each
plus a classi�cation 
the type of glass�� There are � classes 

� � � ��� one of
which 
�� isn�t used�

	 The Ionosphere database contains ��
 instances of �� continuous variables
plus a class attribute�

	 The Pima database contains ��� instances of � continuous variables plus a
class attribute� Classi�cation is binary� either the Pima�Indians are positive
of negative for diabetes�

	 The Segmentation database comes in two parts� The training database con�
sists of �
� and the validation database of �
�� cases� For crossvalidation�
these were added together and crossvalidation took place on all ��
� cases�
There are 
� attributes plus a class variable� There are � di�erent classes�

� Results

��� Mutation rate

In Figure � the performance of the GP on the Pima dataset with di�erent mu�
tation rates is shown� There�s no signi�cant di�erence between most mutation
rates when a one�sided t�test is performed� This can also be seen in the �gure�
since most con�dence intervals overlap� Only a rate of �� is signi�cantly worse
than the other settings� Since at ��� there�s a peak in validation accuracy� this
setting will be used in the other experiments�

��� Bloating penalties

In Figure � the e�ects of di�erent nodes penalties on the validation accuracy
of the GP is shown� In Figure � depth penalties are examined� Again� most
di�erences aren�t signi�cant� The nodes penalty that will be used in the other
experiments is ���� The depth penalty is ���� Like the setting for mutation rate�
these values are taken because there are peaks at those values�

� http���www�ics�uci�edu��mlearn�MLRepository�html
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Fig� �� Average validation accuracy and ��� con�dence interval of the GP on the Pima

dataset with di�erent mutation rates

0 2 4 6 8 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Factor of nodes penalty

A
cc

ur
ac

y

Fig� �� Average validation accuracy and ��� con�dence interval of the GP on the Pima
dataset with di�erent nodes penalties
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Fig� �� Average validation accuracy and ��� con�dence interval of the GP on the Pima
dataset with di�erent depth penalties

��� Results on all datasets

In Table � the performance of the GP with a nodes penalty of ��� and that of

the GP with a depth penalty of ��� are compared� The mean validation accuracy

and tree size of the best individuals from the �� runs is reported� plus standard

deviation�

Table �� Comparison between nodes penalty � ��� and depth penalty � ���� Mean

training and validation accuracy and tree size of the best individual of the runs plus
standard deviation

Problem Nodes penalty Depth penalty
accuracy in � tree size accuracy in � tree size

Glass 	
�� � 
�� 		�� � ���
Validation 	��� � ��� �
�	 � ��� 	
�� � ���� �
�� �����

Ionosphere �
�
 � ��
 ���	 � ��


Validation ���� � ��� ���
 � ��� ���� � ��� ���� �����

Pima 
��
 � ��� 
��� � ���

Validation 
��� � ��� ���
 � 
�
 	��� � ��� �
�� ��
�	

Segmentation 

�� � ��� 
��	 � ���

Validation 
��� � 	�� �
�� ����
 
��� � ��
 ����� �����
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� Analysis

��� Accuracy and Tree Size

In most runs� there is some overtraining� since training accuracy is higher than
validation accuracy�

In Figures � and � plots are drawn of the average number of validation errors
over time on the four datasets�

Clearly� the performance of the GP is di�erent per database� On the iono�
sphere database� the GP improves for a few generations after which there�s no
more improvement� On the Pima and Glass database� the validation accuracy
slowly improves for approximately ��� generations� After that� it stays more or
less the same� The Segmentation keeps improving for 	��� generations and pos�
sibly goes on even after that� The trees that the GP creates for this database
are much larger than those for the other three databases� This may mean when
the optimal tree is large the GP needs more generations than when the optimal
tree is smaller� The fact that OC	 produces larger trees for the Segmentation
database than for the three other databases supports this hypothesis� 
No ex�
act �gures are available because the OC	 system doesn�t output the average
tree size� However� the best tree of all crossvalidation runs is reported and the
Segmentation tree is about three times larger than the other trees�� Runs on
more databases are needed to substantiate this hypothesis� It is clear that the
number of generations that is needed to �nd a good decision tree depends on
the database�

The extra generations are neither bene�cial nor harmful� They don�t cause
extra overtraining� Con�dence intervals are very regular� but fairly wide 
note
the di�erent scales in the �gures�� This suggests that the performance of the GP
is stable in the di�erent runs�
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Fig� �� Average validation errors and ��� con�dence interval over time on the Glass
dataset �left �gure� and the Ionosphere dataset �right �gure�

255Application of Genetic Programming to Induction of Linear Classification Trees



0 200 400 600 800 1000
15

20

25

30

Generation

V
al

id
at

io
n 

er
ro

rs

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

Generation

V
al

id
at

io
n 

er
ro

rs

Fig� �� Average validation errors and ��� con�dence interval over time on the Pima
dataset �left �gure� and the Segmentation dataset �right �gure�

��� Comparison to Machine Learning Algorithms

In Table � the performance of the GP is compared to that of three other decision
tree classi�cation algorithms� namely OC� ����� C��� ��	� and M�
 ���� Ten�fold
crossvalidation and standard parameter settings are used in the other algorithms�

Table �� Comparison between the GP and the OC�� C��	 and M�
 algorithm� The
GP is with �tness sharing Pareto and LEF� Mean training and validation accuracy of
the best individual of the runs plus standard deviation� Stars mark signi�cantly better
accuracy compared to the GP or better accuracy of the GP�

Problem GP OC� C��	 M�


Glass ���� � ��� �
�� � ���� ���� � 
�� �	�� � 
�� �

Ionosphere �
�	 � ��� � �	�	 � ��� ���� � ��
 ���� � ��


Pima ���� � ��	 ���� � ��� ���� � ��
 ���
 � 	��

Segmentation ���
 � ��� ���� � ��� � ���� � 	�
 � ���	 � 	�
 �

The GP performs as well as or better than reported decision tree algorithms
�OC�� C��� and M�

 on two datasets �Ionosphere and Pima
� but worse on
Glass and Segmentation� Tree sizes of the GP are usually ���� times smaller
than those from OC� and C	�� �from M�
 no data was reported on tree sizes
�
However� if we let the GP run without any size restrictions� the produced trees
are even larger than those from OC� and C	�� and overtraining increases much
�training accuracy goes up and validation accuracy goes down
� Determining
characteristics of databases on which the GP does well or poorly is one of the
subjects for future research�

The GP is slower than the other techniques� One run on a dataset of ���
cases on an Pentium III 	�� takes approximately ��� minutes� A run of the
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other techniques �which are written in C or C��� typically takes about one or
two minutes�

Future research will aim at improving execution speed and accuracy �for
example by dynamic sampling of training cases �DSS ���� or by seeding the
population with trees constructed by standard decision tree algorithms such as
C�����

� Conclusions

Our representation for decision trees in GP can be used succesfully for inducing
accurate decision trees� On some datasets	 the GP accuracy is as well as or better
than reported accuracies for decision tree algorithms	 but on others	 the GP does
worse �see Table 
�� A disadvantage of this approach is its long run time�

The GP usually overtrains� training accuracy is higher than validation accu�
racy �see Table 
�� On di�erent datasets	 di�erent numbers of generations are
needed before validation accuracy stops improving� This ranges from 
� gen�
erations �Ionosphere dataset� to over ���� generations �Segmentation dataset��
Indications were found that the number of generations that are needed may
correlate with the size of the optimal tree� Extra generations don�t a�ect valida�
tion accuracy in a positive or negative way� There is no statistical di�erence in
accuracy when a nodes penalty or a depth penalty is applied�
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