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Ran Cheng, Yaochu Jin, Fellow, IEEE, Markus Olhofer, and Bernhard Sendhoff, Senior Member, IEEE

Abstract—In evolutionary multiobjective optimization, main-
taining a good balance between convergence and diversity is
particularly crucial to the performance of the evolutionary algo-
rithms (EAs). In addition, it becomes increasingly important
to incorporate user preferences because it will be less likely
to achieve a representative subset of the Pareto-optimal solu-
tions using a limited population size as the number of objectives
increases. This paper proposes a reference vector-guided EA
for many-objective optimization. The reference vectors can be
used not only to decompose the original multiobjective optimiza-
tion problem into a number of single-objective subproblems,
but also to elucidate user preferences to target a preferred
subset of the whole Pareto front (PF). In the proposed algo-
rithm, a scalarization approach, termed angle-penalized distance,
is adopted to balance convergence and diversity of the solu-
tions in the high-dimensional objective space. An adaptation
strategy is proposed to dynamically adjust the distribution of
the reference vectors according to the scales of the objective
functions. Our experimental results on a variety of bench-
mark test problems show that the proposed algorithm is highly
competitive in comparison with five state-of-the-art EAs for
many-objective optimization. In addition, we show that reference
vectors are effective and cost-efficient for preference articulation,
which is particularly desirable for many-objective optimization.
Furthermore, a reference vector regeneration strategy is pro-
posed for handling irregular PFs. Finally, the proposed algorithm
is extended for solving constrained many-objective optimization
problems.

Index Terms—Angle-penalized distance (APD), conver-
gence, diversity, evolutionary multiobjective optimization,
many-objective optimization, preference articulation, reference
vector.
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I. INTRODUCTION

MULTIOBJECTIVE optimization problems (MOPs),
which involve more than one conflicting objective to

be optimized simultaneously, can be briefly formulated as

min
x

f(x) = ( f1(x), f2(x), . . . , fM(x))

s.t. x ∈ X (1)

where X ⊆ R
n is the decision space with x =

(x1, x2, . . . , xn) ∈ X being the decision vector. Due to the
conflicting nature of the objectives, usually one single solution
that is able to optimize all the objectives simultaneously does
not exist. Instead, a set of optimal solutions representing the
tradeoffs between different objectives, termed Pareto-optimal
solutions, can be achieved. The Pareto-optimal solutions are
known as the Pareto front (PF) in the objective space and the
Pareto set (PS) in the decision space, respectively.

Evolutionary algorithms (EAs), as a class of population-
based search heuristics, are able to obtain a set of solutions in
a single run. Thanks to this attractive property, multiobjective
EAs (MOEAs) have witnessed a boom of development over
the past two decades [1]. MOEAs have been shown to
perform well on a wide range of MOPs with two or three
objectives; however, MOEAs have experienced substantial
difficulties when they are adopted to tackle MOPs with more
than three objectives [2]–[5], and are often referred to as the
many-objective problems (MaOPs). As a result, MaOPs have
attracted increasing attention in evolutionary optimization [6].

One major reason behind the failure of most conventional
MOEAs in solving MaOPs can be attributed to the loss of
selection pressure, i.e., the pressure for the population to con-
verge toward the PF when dominance is adopted as a criterion
for selecting individuals with a limited population size [7].
For example, the elitist nondominated sorting genetic algo-
rithm (NSGA-II) [8] and the strength Pareto EA 2 [9], both
of which use a dominance-based selection, will fail to work
properly for MaOPs, since most candidate solutions generated
in a population of a limited size are nondominated, making the
dominance-based selection criterion hardly possible to distin-
guish the candidate solutions, even in a very early stage of the
search.

Another important reason for the degraded performance of
MOEAs on MaOPs is the difficulty in maintaining a good
population diversity in a high-dimensional objective space.
Generally speaking, since the PF of most continuous MOPs
is piecewise continuous [10], [11], it is practically unlikely
to approximate all Pareto-optimal solutions. Instead, most
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MOEAs aim to find a set of evenly distributed represen-
tative solutions to approximate the PF. When the number
of objectives is two or three, where the PF is typically
a 1-D curve or 2-D surface, maintaining a good diversity
of the solutions is relatively straightforward. As the dimen-
sion of the objective space increases, it becomes increas-
ingly challenging to maintain a good population diversity,
as the candidate solutions distribute very sparsely in the
high-dimensional objective space, causing immense difficul-
ties to the diversity management strategies widely used in
MOEAs, e.g., the crowding distance base diversity method in
NSGA-II [12]–[14].

To enhance the performance of most traditional MOEAs
in solving MaOPs, a number of approaches have been pro-
posed [15], [16], which can be roughly divided into three
categories.

The first category covers various approaches to conver-
gence enhancement. Since the loss of convergence pressure
in most traditional MOEAs is directly caused by the inabil-
ity of the canonical dominance to distinguish solutions, the
most intuitive idea for convergence enhancement is to modify
the dominance relationship to increase the selection pressure
toward the PF. Examples of modified dominance definitions
include ε-dominance [17], [18], L-optimality [19], preference
order ranking [20], and fuzzy dominance [21]. In [22], a
grid dominance-based metric is defined for solving MaOPs,
termed grid-based EA (GrEA), which eventually modifies
the dominance criterion to accelerate the convergence in
many-objective optimization. Another typical idea in this cat-
egory is to combine the Pareto dominance-based criterion
with additional convergence-related metrics. For example,
Köppen and Yoshida [23] proposed to use some substitute
distances to describe the degree to which a solution almost
dominates another to improve the performance of NSGA-II.
In [24], a binary ε-indicator-based preference is combined
with dominance to speed up convergence of NSGA-II for
solving MaOPs. In [25], a shift-based density estimation strat-
egy is proposed to penalize poorly converged solutions by
assigning them a high density value in addition to dominance
comparison. In [26], a mating selection based on favorable
convergence is applied to strengthen convergence pressure,
while an environmental selection based on directional diver-
sity and favorable convergence is designed to balance diversity
and convergence. In the recently proposed knee point-driven
EA (KnEA) [27], a knee point-based secondary selection
is designed on tope of nondominated sorting to enhance
convergence pressure.

The second category is often known as the decomposition-
based approaches, which divide a complex MOP into a
number of subproblems and solve them in a collaborative man-
ner [28], [29]. There are mainly two types of decomposition-
based approaches [30]. In the first type of decomposition-based
approaches, an MOP is decomposed into a group of
single-objective problems (SOPs), including the weighted
aggregation-based approaches in early days [31], [32], and
the more recent MOEA based on decomposition (MOEA/D),
where more explicit collaboration strategies between the
solutions of the subproblems were introduced. Several variants

of MOEA/D have been proposed for enhancing the selection
strategy for each subproblem to strike a better balance between
convergence nd diversity [30], [33]–[37].

In the second type of decomposition-based approaches,
an MOP is decomposed into a group of sub-MOPs. For
instance, MOEA/D-M2M [29], [38] divides the whole PF into
a group of segments, and each segment can be regarded as
a subproblem. Another MOEA that essentially falls under
this category is NSGA-III [39], where a set of predefined,
evenly distributed reference points to manage the diversity
of the candidate solutions, eventually contribute to enhanced
convergence of the algorithm. Although the second type of
decomposition strategy has been reported very efficient in
some recent works [40], [41], compared to the first type, its
development is still in the infancy.

The third category is known as the performance indicator-
based approaches, e.g., the indicator-based EA [42], the
S-metric selection-based evolutionary multiobjective algo-
rithm [43], a dynamic neighborhood MOEA based on
hypervolume (HV) indicator [44], and the fast HV-based
EA (HypE) [45]. These approaches are not subject to the
issues that dominance-based MOEAs have for solving MaOPs.
Unfortunately, the computational cost for the calculation of
the performance becomes prohibitively expensive when the
number of objectives is large [46].

There are also a few approaches that do not fall into
any of the above three main categories. For example, some
researchers propose to use interactive user preferences [47] or
reference points [48] during the search while others suggest to
solve MaOPs by using a reduced set of objectives [49]–[51].
Another example is a recently proposed evolutionary many-
objective optimization algorithm based on both dominance
and decomposition (MOEA/DD) [41], the motivation of which
is to exploit the merits offered by both dominance and
decomposition-based approaches. More recently, a two-archive
algorithm for many-objective optimization (Two_Arch2) has
been proposed based on indicator and dominance [52].

While most existing MOEAs focusing on convergence
enhancement and diversity maintenance, it is noted that the use
of preferences will become particularly important for many-
objective optimization, not only because the user may be
interested in only part of Pareto-optimal solutions, but also
because it is less practical to achieve a representative subset
of the whole PF using an EA of a limited population size.

As already shown in [39], reference points can also be used
to generate a subset of preferred Pareto-optimal solutions,
although NSGA-III can be seen as a decomposition-based
approach if the reference points are evenly distributed in the
whole objective space. Motivated by ideas in decomposition-
based approaches and the aim to achieve the preferred part
of the PF when the number of objectives is large, we propose
a reference vector-guided EA (RVEA) for solving MaOPs.
Compared with existing decomposition-based approaches, the
main new contributions of this paper can be summarized as
follows.

1) A scalarization approach, termed as the angle-penalized
distance (APD), is designed to dynamically bal-
ance convergence and diversity in many-objective
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optimization according to the number of objectives
and the number of generations. In the proposed APD,
the convergence criterion is measured by the distance
between the candidate solutions and the ideal point,1

and the diversity criterion is measured by the acute
angle between the candidate solutions and the reference
vectors. Compared to the penalty-based boundary inter-
section (PBI) approach [28] that relies on the Euclidean
distance, the angle-based distance metric makes it easier
for normalization and is more scalable to the number of
objectives, which is essential for many-objective opti-
mization. Note that if the reference vectors are used to
represent user preferences, this angle also indicates the
degree of satisfaction of the user preferences.

2) An adaptive strategy is proposed to adjust the reference
vectors to deal with objective functions that are not well
normalized. The adaptive strategy adjusts the distribu-
tion of the reference vectors according to the ranges of
different objective functions in order to ensure a uniform
distribution of the candidate solutions in the objective
space, even if the objective functions are not well nor-
malized or the geometrical structure of a PF is highly
asymmetric. This strategy is mainly for achieving an
evenly distributed Pareto-optimal subset.

3) It is shown that reference vectors can also provide an
effective and computationally efficient approach to pref-
erence articulation. Such preference articulation is par-
ticularly valuable in many-objective optimization, where
it is very unlikely to obtain a representative approxima-
tion of the whole PF [53]. By specifying a central vector
and a radius, we propose a reference vector-based prefer-
ence articulation approach that is able to generate evenly
distributed Pareto-optimal solutions in a preferred region
in the objective space.

4) To enhance the performance of the proposed RVEA on
problems with irregular2 PFs, a reference vector regen-
eration strategy is proposed. The basic idea is to use an
additional reference vector set to perform exploration in
the objective space so that the density of the solutions
obtained by RVEA on problems with irregular PFs can
be improved.

5) The proposed RVEA is further extended for solving
constrained MaOPs.

The rest of this paper is organized as follows. Section II
introduces some background knowledge. The details of the
proposed RVEA are described in Section III. Section IV
presents empirical results that compare the performance of
RVEA with five state-of-the-art MOEAs for solving MaOPs.
In addition, preference articulation using reference vectors is
exemplified in Section V, a reference vector regeneration strat-
egy for irregular PFs handling is presented in Section VI, and
the extension of RVEA to handling constrained MaOPs is
presented in Section VII. Finally, the conclusion and future
work are given in Section VIII.

1For a minimization problem, the ideal point is a vector that consists of
the minimum value of each objective function.

2In this paper, irregular PFs refer to disconnected and degenerate PFs.

II. BACKGROUND

In this section, we first present a brief review of
decomposition-based MOEAs. Then, an introduction to the
reference vectors used in this paper is given, including how
to sample uniformly distributed reference vectors and how to
measure the spacial relationship between two vectors.

A. Decomposition-Based MOEAs

In weight aggregation-based decomposition approaches, a
set of weight vectors is used to convert an MOP into a num-
ber of SOPs using a scalarization method [28], [32], [54].
Among others, the weighted sum approach, the weighted
Tchebycheff (TCH) approach [55], and the PBI approach [28]
are most widely used.

More recently, a set of weight vectors are used to divide an
MOP into a number of subproblems by partitioning the entire
objective space into some subspaces, where each subproblem
remains an MOP. This type of decomposition strategy was first
proposed by Liu et al. [29], where a set of direction vectors are
used to divide the whole PF into a number of segments, each
segment being a multiobjective subproblem. Such a decom-
position strategy has attracted certain interests. For example,
in NSGA-III [39], a set of reference points or reference lines
is used for niche preservation to manage diversity in each
subspace for many-objective optimization, which effectively
enhances convergence by giving priority to solutions closer to
the reference points. Most recently, an inverse model-based
MOEA [40] has been suggested, where a set of reference vec-
tors is used to partition the objective space into a number of
subspaces and then inverse models that map objective vec-
tors onto decision vectors are built inside each subspace for
sampling new candidate solutions.

Since weight vectors are typically used to denote the
importance of objectives in weighted aggregation, differ-
ent terminologies have been coined in the second type
of decomposition-based approaches to refer to vectors that
decompose the original objective space, including direction
vectors [29], reference lines [39], and reference vectors [40].
In essence, these vectors play a similar role of partitioning the
objective space into a number of subspaces. In this paper, we
adopt the term reference vectors.

When a set of evenly distributed reference vectors are gen-
erated for achieving representative solutions of the whole PF,
the proposed RVEA can be considered as one of the sec-
ond type of decomposition-based approaches. However, if user
preferences are available and a set of specific reference vec-
tors are generated for achieving only a preferred section of the
PF, RVEA can also be seen as a preference-based approach.
For example, in [56] and [57], a set of reference vectors has
been used to achieve preferred subset of the Pareto-optimal
solutions. In this sense, RVEA differs from most existing ref-
erence point-based MOEAs [58]–[60] in that these algorithms
use dominance and preference to search for preferred subset
of the PF only. It is worth noting that there are other prefer-
ence articulation methods tailored for the decomposition-based
MOEAs. For example, Gong et al. [61] have proposed an
interactive MOEA/D for multiobjective decision-making. The
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idea is to dynamically adjust the distribution of the weight
vectors according to the preferred region specified by a hyper-
sphere. Ma et al. [62] have proposed to apply the light beam
search [63] in MOEA/D to incorporate user preferences, where
the preference information is specified by an aspiration point
and a reservation point, together with a preference neighbor-
hood parameter. Most recently, Mohammadi et al. [64] have
also proposed to integrate user preferences for many-objective
optimization, where the preferred region is specified by a
hypercube. These methods try to define some preferred regions
and generate weight vectors inside them to guide the search of
the MOEAs. The main difference between RVEA proposed in
this paper and the above methods lies in the fact that RVEA
defines preferred regions using a central vector and a radius,
and a new angle-based selection criterion is proposed.

B. Reference Vector

Without loss of generality, all the reference vectors used in
this paper are unit vectors inside the first quadrant with the
origin being the initial point. Theoretically, such a unit vector
can be easily generated via dividing an arbitrary vector by its
norm. However, in practice, uniformly distributed unit refer-
ence vectors are required for a uniformly distributed coverage
of the objective space. In order to generate uniformly dis-
tributed reference vectors, we adopt the approach introduced
in [40]. First, a set of uniformly distributed points on a unit
hyperplane are generated using the canonical simplex-lattice
design method [65]{

ui =
(
u1

i , u2
i , . . . , uM

i

)
u j

i ∈
{

0
H , 1

H , . . . , H
H

}
,
∑M

j=1 u j
i = 1

(2)

where i = 1, . . . , N with N being the number of uniformly dis-
tributed points, M is the objective number, and H is a positive
integer for the simplex-lattice design. Then, the corresponding
unit reference vectors vi can be obtained by the transformation

vi = ui

‖ui‖ (3)

which maps the reference points from a hyperplane to a hyper-
sphere, an example of which is shown in Fig. 1. According to
the property of the simplex-lattice design, given H and M, a
total number of N = (H+M−1

M−1

)
uniformly distributed reference

vectors can be generated.
Given two vectors v1 and v2, the cosine value of the acute

angel θ between the two vectors can be used to measure the
spatial relationship between them, which is calculated as

cos θ = v1 · v2

‖v1‖‖v2‖ (4)

where ‖·‖ calculates the norm, i.e., the length of the vector. As
will be introduced in Section III, (4) can be used to measure
the spacial relationship between an objective vector and a ref-
erence vector in the objective space. Since they have already
been normalized as in (2) when generated, the reference vec-
tors no longer need to be normalized again in calculating the
cosine values.

Fig. 1. Illustration of how to generate the uniformly distributed reference
vectors in a three-objective space. In this case, ten uniformly distributed ref-
erence points are first generated on a hyperplane and are then mapped to a
hypersphere to generate the ten reference vectors.

Algorithm 1 Main Framework of the Proposed RVEA
1: Input: the maximal number of generations tmax, a set of

unit reference vectors V0 = {v0,1, v0,2 . . . , v0,N};
2: Output: final population Ptmax ;
3: /*Initialization*/
4: Initialization: create the initial population P0 with N

randomized individuals;
5: /*Main Loop*/
6: while t < tmax do
7: Qt = offspring-creation(Pt);
8: Pt = Pt ∪ Qt;
9: Pt+1 = reference-vector-guided-selection(t, Pt, Vt);

10: Vt+1 = reference-vector-adaptation(t, Pt+1, Vt, V0);
11: t = t + 1;
12: end while

III. PROPOSED RVEA

A. Elitism Strategy

The main framework of the proposed RVEA is listed in
Algorithm 1, from which we can see that RVEA adopts an
elitism strategy similar to that of NSGA-II [8], where the
offspring population is generated using traditional genetic
operations such as crossover and mutation, and then the off-
spring population is combined with the parent population to
undergo an elitism selection. The main new contributions in
the RVEA lie in the two other components, i.e., the reference
vector-guided selection and the reference vector adaptation.
In addition, RVEA requires a set of predefined reference vec-
tors as the input, which can either be uniformly generated
using (2) and (3), or specified according to the user prefer-
ences, which will be introduced in Section V. In the following
sections, we will introduce the three main components in
Algorithm 1, i.e., offspring creation, reference vector-guided
selection, and reference vector adaptation.

B. Offspring Creation

In the proposed RVEA, the widely used genetic operators,
i.e., the simulated binary crossover (SBX) [66] and the poly-
nomial mutation [67] are employed to create the offspring
population, as in many other MOEAs [28], HypE, GrEA, and
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NSGA-III [27]. Here, we do not apply any explicit mating
selection strategy to create the parents; instead, given N indi-
viduals in the current population Pt, a number of �N/2� pair of
parents are randomly generated, i.e., each of the N individuals
has an equal probability to participate in the reproduction pro-
cedure. This is made possible partly thanks to the reference
vector-guided selection strategy, which is able to effectively
manage the convergence and diversity inside small subspaces
of the objective space such that the individual inside each
subspace can make an equal contribution to the population.
Nevertheless, specific mating selection strategies can be help-
ful in solving problems having a multimodal landscape or a
complex PS [68].

C. Reference Vector-Guided Selection

Similar to MOEA/D-M2M [29], [38], RVEA partitions the
objective space into a number of subspaces using the ref-
erence vectors, and selection is performed separately inside
each subspace. The objective space partition is equivalent to
adding a constraint to the subproblem specified each reference
vector, which is shown to be able to help balance the conver-
gence and diversity in decomposition-based approaches [69].
To be specific, the proposed reference vector guided selection
strategy consists of four steps: 1) objective value translation;
2) population partition; 3) APD calculation; and 4) the elitism
selection.

1) Objective Value Translation: According to the defini-
tion in Section II-B, the initial point of the reference vectors
used in this paper is always the coordinate origin. To be
consistent with this definition, the objective values of the indi-
viduals in population Pt, denoted as Ft = {ft,1, ft,2, . . . , ft,|Pt|},
where t is the generation index, are translated3 into F′t via the
transformation

f′t,i = ft,i − zmin
t (5)

where i = 1, . . . , |Pt|, ft,i, and f′t,i are the objective vectors of
individual i before and after the translation, respectively, and
zmin

t = (zmin
t,1 , zmin

t,2 , . . . , zmin
t,m ) represents the minimal objective

values calculated from Ft. The role of translation operation
is twofold: 1) to guarantee that all the translated objective
values are inside the first quadrant, where the extreme point
of each objective function is on the corresponding coordinate
axis, thus maximizing the coverage of the reference vectors
and 2) to set the ideal point to be the origin of the coordinate
system, which will simplify the formulations to be presented
later on. Some empirical results showing the significance of
the objective value translation can be found in Section I in
supplementary materials.

2) Population Partition: After the translation of the objec-
tive values, population Pt is partitioned into N subpopulations
Pt,1, Pt,2, . . . , Pt,N by associating each individual with its clos-
est reference vector, referring to Fig. 2, where N is the number
of reference vectors. As introduced in Section II-B, the spa-
cial relationship of two vectors is measured by the acute angle

3In Euclidean geometry, a translation is a rigid motion that moves every
point a constant distance in a specified direction.

Fig. 2. Example showing how to associate an individual with a reference
vector. In this example, f′ is a translated objective vector, and v1 and v2 are
two unit reference vectors. θ1 and θ2 are the angles between f′, and v1 and
v2, respectively. Since θ2 < θ1, the individual denoted by f′ is associated with
reference vector v2.

between them, i.e., the cosine value between an objective
vector and a reference vector can be calculated as

cos θt,i,j = f′t,i · vt,j∥∥f′t,i
∥∥ (6)

where θt,i,j represents the angle between objective vector f′t,i
and reference vector vt,j.

In this way, an individual It,i is allocated to a subpopulation
Pt,k if and only if the angle between f′t,i and vt,k is minimal
(i.e., the cosine value is maximal) among all the reference
vectors

Pt,k =
{

It,i|k = argmax
j∈{1,...,N}

cos θt,i,j

}
(7)

where It,i denotes the Ith individual in Pt, with i = 1, . . . , |Pt|.
3) Angle-Penalized Distance Calculation: Once the popula-

tion Pt is partitioned into N subpopulations Pt,1, Pt,2, . . . , Pt,N ,
one elitist can be selected from each subpopulation to create
Pt+1 for the next generation.

Since our motivation is to find the solution on each reference
vector that is closest to the ideal point, the selection criterion
consists of two subcriteria, i.e., the convergence criterion and
the diversity criterion, with respect to the reference vector that
the candidate solutions are associated with.

Specifically, given a translated objective vector f′t,i in
subpopulation j, the convergence criterion can be naturally
represented by the distance from f′t,i to the ideal point,4 i.e.,
‖f′t,i‖; and the diversity criterion is represented by the acute
angle between f′t,i and vt,j, i.e., θt,i,j, as the inverse function
value of cos θt,i,j calculated in (6). In order to balance between
the convergence criterion ‖f′t,i‖ and the diversity criterion θt,i,j,
a scalarization approach, i.e., the APD is proposed as

dt,i,j =
(
1+ P

(
θt,i,j

)) · ∥∥f′t,i
∥∥ (8)

4As the objective values have been translated by subtracting the minimal
value of each objective function in (5), the ideal point is always the coordinate
origin. Therefore, the distance from a translated objective vector to the ideal
point equals the norm (length) of the translated objective vector.
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Algorithm 2 Reference Vector-Guided Selection Strategy in
the Proposed RVEA

1: Input: generation index t, population Pt, unit reference
vector set Vt = {vt,1, vt,2, . . . , vt,N};

2: Output: population Pt+1 for next generation;
3: /*Objective Value Translation*/
4: Calculate the minimal objective values zmin

t ;
5: for i = 1 to |Pt| do
6: f′t,i = ft,i − zmin

t ; //refer to (5)
7: end for
8: /*Population Partition*/
9: for i = 1 to |Pt| do

10: for j = 1 to N do
11: cos θt,i,j = f′ t,i·vt,j

‖f′t,i‖ ; //refer to (6)
12: end for
13: end for
14: for i = 1 to |Pt| do
15: k = argmax

j∈{1,...,N}
cos θt,i,j;

16: Pt,k = Pt,k ∪ {It,i}; //refer to (7)
17: end for
18: /*Angle-Penalized Distance (APD) Calculation*/
19: for j = 1 to N do
20: for i = 1 to |Pt,j| do
21: dt,i,j = (1+ P(θt,i,j)) · ‖f′t,i‖; //refer to (8) (9) (10)
22: end for
23: end for
24: /*Elitism Selection*/
25: for j = 1 to N do
26: k = argmin

i∈{1,...,|Pt,j|}
dt,i,j;

27: Pt+1 = Pt+1 ∪ {It,k};
28: end for

with P(θt,i,j) being a penalty function related to θt,i,j

P
(
θt,i,j

) = M ·
(

t

tmax

)α

· θt,i,j

γvt,j

(9)

and

γvt,j = min
i∈{1,...,N},i 
=j

〈
vt,i, vt,j

〉
(10)

where M is the number of objectives, N is the number of
reference vectors, tmax is the predefined maximal number of
generations, γvt,j is the smallest angle value between reference
vector vt,j and the other reference vectors in the current gen-
eration, and α is a user defined parameter controlling the rate
of change of P(θt,i,j). The detailed design of the penalty func-
tion P(θt,i,j) in the APD calculation is based on the following
empirical observations.

First, in many-objective optimization, since the candidate
solutions are sparsely distributed in the high-dimensional
objective space, it is not the best to apply a constant pres-
sure on convergence and diversity in the entire search process.
Ideally, at the early stage of the search process, a high selec-
tion pressure on convergence is exerted to push the population
toward the PF, while at the late search stage, once the popula-
tion is close to the PF, population diversity can be emphasized

in selection to generate well distributed candidate solutions.
The penalty function, P(θt,i,j), is exactly designed to meet
these requirements. Specifically, at the early stage of the search
process (i.e., t � tmax), P(θt,i,j) ≈ 0, and thus dt,i,j ≈ ‖f′t,i‖
can be satisfied, which means that the value of dt,i,j is mainly
determined by the convergence criterion ‖f′t,i‖; while at the
late stage of the search process, with the value of t approaching
tmax, the influence of P(θt,i,j) will be gradually accumulated
to emphasize the importance of the diversity criterion θt,i,j.

Angle γvt,j is used to normalize the angles in the sub-
space specified by vt,j. This angle normalization process is
particularly meaningful when the distribution of some refer-
ence vectors is either too dense (or too sparse), resulting in
extremely small (or large) angles between the candidate solu-
tions and the reference vectors. Compared to most existing
objective normalization approaches, e.g., the one adopted in
NSGA-III [39], the proposed angle normalization approach has
two major differences: 1) normalizing the angles (instead of
the objectives) will not change the actual positions of the can-
didate solutions, which is important convergence information
for the proposed RVEA and 2) angle normalization, which
is independently carried out inside each subspace, does not
influence the distribution of the candidate solutions in other
subspaces.

In addition, since the sparsity of the distribution of the can-
didate solutions is directly related to the dimension of the
objective space, i.e., the value of M, the penalty function
P(θt,i,j) is also related to M to adaptively adjust the range
of the penalty function values.

According to the APDs calculated using (8) and (9), the
individual in each subpopulation having the minimal distance
is selected as the elitist to be passed to the population for
the next generation. The pseudocode of the reference vector
guided selection procedure is summarized in Algorithm 2.

It is worth noting that the formulation of the proposed APD
shares some similarity to PBI [28], which is widely adopted
in the decomposition-based MOEAs. However, there are two
major differences between APD and PBI.

1) In APD of the proposed RVEA, the angle between the
reference vector and the solution vector is calculated for
measuring diversity or the degree of satisfaction of the
user preference, while in PBI, the Euclidean distance of
the solution to the weight vector is calculated, which is
a sort of diversity measure. Calculation of the difference
in angle has certain advantages over calculation of the
distance for the following two reasons. First, no matter
what the exact distance a candidate solution is from the
ideal point, the angle between the candidate solution and
a reference vector is constant. Second, angles can be
more easily normalized into the same range, e.g., [0, 1].

2) The penalty item P(θt,i,j) in APD is tailored for many-
objective optimization, which is adaptive to the search
process as well as the number of objectives, while the
penalty item θ in PBI is a fixed parameter, which was
originally designed for multiobjective optimization. As
pointed out in [70], there is no unique setting for the
parameter θ in PBI that works well on different types
of problems with different numbers of objectives. By
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contrast, our empirical results in Section IV demonstrate
that APD works robustly well on a variety of problems
with different numbers of objectives without changing
the setting for parameter α. This is mainly due to the
fact that the penalty function P(θt,i,j) in APD is able
to be normalized to a certain range, given any angles
between the candidate solutions and the reference vector.
Such a normalized penalty function provides a stable
balancing between convergence and diversity, no matter
whether the distribution of the reference vectors is sparse
or dense.

Empirical results on comparing the proposed APD approach
and the PBI approach can be found in Section IV-F.

D. Reference Vector Adaptation

Given a set of uniformly distributed unit reference vectors,
the proposed RVEA is expected to obtain a set of uniformly
distributed Pareto-optimal solutions that are the intersection
points between each reference vector and the PF, as shown in
Fig. 3(a). However, this happens only if the function values of
all objectives can be easily normalized into the same range,
e.g., [0, 1]. Unfortunately, in practice, there may exist MaOPs
where different objectives are scaled to different ranges, e.g.,
the WFG test problems [71] and the scaled DTLZ prob-
lems [39]. In this case, uniformly distributed reference vectors
will not produce uniformly distributed solutions, as shown in
Fig. 3(b).

One intuitive way to address the above issue is to carry
out objective normalization dynamically as the search pro-
ceeds. Unfortunately, it turns out that objective normalization
is not suited for the proposed RVEA, mainly for the following
reasons.

1) Objective normalization, as a transformation that maps
the objective values from a scaled objective space onto
the normalized objective space, changes the actual objec-
tive values, which will further influence the selection
criterion, i.e., the APD.

2) Objective normalization has to be repeatedly performed
as the scales of the objective values change in each
generation.

As a consequence, performing objective normalization will
cause instability in the convergence of the proposed RVEA
due to the frequently changed selection criterion.

Nevertheless, it should be noted that although objective
normalization is not suited for the proposed RVEA, it can
work well for dominance-based approaches such as NSGA-III,
because the transformation does not change the partial orders,
i.e., the dominance relations, between the candidate solutions,
which is vital in dominance-based approaches.

To illustrate the discussions above, we show below an
empirical example. Given two translated objective vectors,
f′1 = (0.1, 2) and f′2 = (1, 10), where f′1 dominates f′2;
after objective normalization, the two vectors become f′1 =
(0.1, 0.2) and f′2 = (1, 1). It can be seen that the dominance
relation is not changed, where f′1 still dominates f′2. However,
the difference between the two vectors has been substantially
changed, from ‖f′2 − f′1‖ = 8.0 to ‖f′2 − f′1‖ = 1.2. It is

Algorithm 3 Reference Vector Adaptation Strategy in the
Proposed RVEA

1: Input: generation index t, population Pt+1, current unit
reference vector set Vt = {vt,1, vt,2, . . . , vt,N}, initial unit
reference vector set V0 = {v0,1, v0,2, . . . , v0,N};

2: Output: reference vector set Vt+1 for next generation;
3: if ( t

tmax
mod fr) == 0 then

4: Calculate the minimal and maximal objective values
zmin

t+1 and zmax
t+1 , respectively;

5: for i = 1 to N do
6: vt+1,i = v0,i◦(zmax

t+1−zmin
t+1)

‖v0,i◦(zmax
t+1−zmin

t+1)‖
; //refer to (11);

7: end for
8: else
9: vt+1,i = vt,i;

10: end if

very likely such a substantial change will influence the results
generated by the APD in (8), thus causing instability in the
selection process.

Therefore, instead of normalizing the objectives, we propose
to adapt the reference vectors according to the ranges of the
objective values in the following manner:

vt+1,i =
v0,i ◦

(
zmax

t+1 − zmin
t+1

)
∥∥v0,i ◦

(
zmax

t+1 − zmin
t+1

)∥∥ (11)

where i = 1, . . . , N, vt+1,i denotes the ith adapted refer-
ence vector for the next generation t + 1, v0,i denotes the
ith uniformly distributed reference vector, which is generated
in the initialization stage (on Line 1 in Algorithm 1), and zmax

t+1
and zmin

t+1 denote the maximum and minimum values of each
objective function in the t + 1 generation, respectively. The
◦ operator denotes the Hadamard product that element wisely
multiplies two vectors (or matrices) of the same size.

With the reference vector adaptation strategy described
above, the proposed RVEA will be able to obtain uniformly
distributed solutions, even if the objective functions are not
normalized to the same range, as illustrated in Fig. 3(c).
Furthermore, some empirical results on the influence of the
reference vector adaption strategy can be found in Appendix II.

However, as pointed out by Giagkiozis et al. [72], the ref-
erence vector adaptation strategy should not be employed
very frequently during the search process to ensure a sta-
ble convergence. Fortunately, unlike objective normalization,
the reference vector adaptation does not have to be per-
formed in each generation. Accordingly, a parameter fr (Line 3
in Algorithm 3) is introduced to control the frequency of
employing the adaptation strategy. For instance, if fr is set
to 0.2, the reference vector will only be adapted at generation
t = 0, t = 0.2 × tmax, t = 0.4 × tmax, t = 0.6 × tmax, and
t = 0.8 × tmax, respectively. The detailed sensitivity analysis
of fr can be found in Section III in supplementary materials.

Note that since the proposed reference vector adaptation
strategy is only motivated to deal with problems with scaled
objectives, it does not guarantee a uniform distribution of the
reference vectors on any type of PFs, especially on those with
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(a) (b) (c)

Fig. 3. Pareto-optimal solutions (solid dots) specified by different reference vectors (dashed arrows) on different PF (solid lines). (a) Pareto-optimal solutions
specified by ten uniformly distributed reference vectors on a PF with objectives normalized to the same range. (b) Pareto-optimal solutions specified by ten
uniformly distributed reference vectors on a PF with objectives scaled different ranges. (c) Pareto-optimal solutions specified by ten adapted reference vectors
on a PF with objectives scaled to different ranges.

irregular geometrical features, e.g., disconnection or degener-
ation. In order to handle such irregular PFs, we have proposed
another reference vector regeneration strategy in Section VI.
Nevertheless, it is conceded that the proposed reference vec-
tor adaptation (as well as regeneration) strategy is not able to
comfortably handle all specific situations, e.g., when a PF has
low tails or sharp peaks [73].

E. Computational Complexity of the Proposed RVEA

To analyze the computational complexity of the proposed
RVEA, we consider the main steps in one generation in the
main loop of Algorithm 1. Apart from genetic operations such
as crossover and mutation, the main computational cost is
resulted from the reference vector guided selection procedure
and the reference vector adaptation mechanism.

As shown in Algorithm 2, the reference vector guided selec-
tion procedure consists of the following components: objective
value translation, population partition, APD calculation, and
elitism selection. We will see that the computational complex-
ity of each component is very low, as will be analyzed in the
following. The time complexity for the objective value trans-
lation is O(MN), where M is the objective number and N is
the population size. The time complexity for population par-
tition is O(MN2). In addition, calculation of APD and elitism
selection hold a computational complexity of O(MN2) and
O(N2) in the worst case, respectively. Finally, the computa-
tional complexity for the reference vector adaptation procedure
is O(MN/( fr ·tmax)), where fr and tmax denote the frequency to
employ the reference vector adaptation strategy and maximal
number of generations, respectively.

To summarize, apart from the genetic variations, the worst-
case overall computational complexity of RVEA within one
generation is O(MN2), which indicates that RVEA is compu-
tationally efficient.

IV. COMPARATIVE STUDIES

In this section, empirical experiments are conducted on 15
benchmark test problems taken from two widely used test
suites, i.e., the DTLZ [74] test suite (including the scaled ver-
sion [39]) and the WFG test suite [71], to compare RVEA with

five state-of-the-art MOEAs for many-objective optimization,
namely MOEA/DD [41], NSGA-III [39], MOEA/D-PBI [28],
GrEA [22], and KnEA [27]. For each test problem, objec-
tive numbers varying from 3 to 10, i.e., M ∈ {3, 6, 8, 10} are
considered.

In the following sections, we first present a brief intro-
duction to the benchmark test problems and the performance
indicator used in our comparative studies. Then, the param-
eter settings used in the comparisons are given. Then, each
algorithm is run for 20 times on each test problem inde-
pendently, and the Wilcoxon rank sum test is adopted to
compare the results obtained by RVEA and those by five com-
pared algorithms at a significance level of 0.05. Symbol “+”
indicates that the compared algorithm is significantly outper-
formed by RVEA according to a Wilcoxon rank sum test,
while “−” means that RVEA is significantly outperformed by
the compared algorithm. Finally, “≈” means that there is no
statistically significant difference between the results obtained
by RVEA and the compared algorithm.

A. Benchmark Test Problems

The first four test problems are DTZL1 to DTLZ4 taken
from the DTLZ test suite [74]. As recommended in [74], the
number of decision variables is set to n = M + K − 1, where
M is the objective number, K = 5 is used for DTLZ1, and
K = 10 is used for DTLZ2, DTLZ3, and DTLZ4.

We have also used the scaled version of the DTLZ1 and
DTLZ3 (denoted as SDTLZ1 and SDTLZ3) for compar-
isons to see if the proposed RVEA is capable of handling
strongly scaled problems. The scaling approach is recom-
mended in [39], where each objective is multiplied by a
coefficient pi−1, where p is a parameter that controls the scal-
ing size and i = 1, . . . , M is the objective index. For example,
given p = 10, the objectives of a three-objective problem
will be scaled to be 100 × f1, 101 × f2, and 102 × f3. In our
experiments, the values of p are set to 10, 5, 3, 2 for problems
with an objective number M = 3, 6, 8, 10, respectively.

The other nine test problems are WFG1–WFG9 taken from
the WFG test suite [71], [75], which are designed by introduc-
ing difficulties in both the decision space (e.g., nonseparability,
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TABLE I
SETTINGS OF POPULATION SIZES IN RVEA, MOEA/DD, NSGA-III, AND

MOEA/D-PBI. H1 AND H2 ARE THE SIMPLEX-LATTICE DESIGN

FACTORS FOR GENERATING UNIFORMLY DISTRIBUTED

REFERENCE (OR WEIGHT) VECTORS ON THE OUTER

BOUNDARIES AND THE INSIDE

LAYERS, RESPECTIVELY

deception, and bias) and the objective space (e.g., mixed geo-
metrical structures of the PFs). As suggested in [71], the
number of decision variables is set as n = K + L − 1,
where M is the objective number, the distance-related variable
L = 10 is used in all test problems, and the position-related
variable K = 4, 10, 7, 9 are used for test problems with
M = 3, 6, 8, 10, respectively.

B. Performance Indicators

To make empirical comparisons between the results
obtained by each algorithm, the HV [46] is used as the
performance indicator in the comparisons.

Let y∗ = (y∗1, . . . , y∗M) be a reference point in the objective
space that is dominated by all Pareto-optimal solutions, and P
be the approximation to PF obtained by an MOEA. The HV
value of P (with respect to y∗) is the volume of the region
which dominates y∗ and is dominated by P.

In this paper, y∗ = (1.5, 1.5, . . . , 1.5) is used for DTLZ1
and SDTLZ1; y∗ = (2, 2, . . . , 2) is used for DTLZ2, DTLZ3,
SDTLZ3, and DTLZ4; and y∗ = (3, 5, . . . , 2M+1) is used for
WFG1–WFG9. For problems with fewer than eight objectives,
the recently proposed fast HV calculation method is adopted
to calculate the exact HV [76], while for eight-objective and
ten-objective problems, the Monte Carlo method [43] with
1 000 000 sampling points is adopted to obtain the approxi-
mate HV values. All HV values presented in this paper are all
normalized to [0, 1] by dividing

∏m
i=1 y∗i .

C. Parameter Settings

In this section, we first present the general parameter set-
tings for the experiments and, afterward, the specific parameter
settings for each algorithm in comparison are given.

1) Settings for Crossover and Mutation Operators: For the
SBX [66], the distribution index is set to ηc = 30 in RVEA,
MOEA/DD, and NSGA-III, ηc = 20 in the other four algo-
rithms, and the crossover probability pc = 1.0 is used in all
algorithms; for the polynomial mutation [67], the distribution
index and the mutation probability are set to ηm = 20 and
pm = 1/n, respectively, as recommended in [77].

2) Population Size: For RVEA, MOEA/DD, NSGA-III,
and MOEA/D-PBI, the population size is determined by the
simplex-lattice design factor H together with the objective
number M, referring to (2). As recommended in [39] and [41],
for problems with M ≥ 8, a two-layer vector generation strat-
egy can be applied to generate reference (or weight) vectors
not only on the outer boundaries but also on the inside layers

TABLE II
PARAMETER SETTING OF div IN GREA ON EACH TEST INSTANCE

TABLE III
PARAMETER SETTING OF T IN KNEA ON EACH TEST INSTANCE

of the PFs. The detailed settings of the population sizes in
RVEA, MOEA/DD, NSGA-III, and MOEA/D-PBI are sum-
marized in Table I. For the other two algorithms, GrEA and
KnEA, the population sizes are also set according to Table I,
with respect to different objective numbers M.

3) Termination Condition: The termination condition of
each run is the maximal number of generations. For DTLZ1,
SDTLZ1, DTLZ3, SDTLZ3, and WFG1–WFG9, the maximal
number of generations is set to 1000. For DTLZ2 and DTLZ4,
the maximal number of generations is set to 500.

4) Specific Parameter Settings in Each Algorithm: For
MOEA/D-PBI, the neighborhood size T is set to 20, and
the penalty parameter θ in PBI is set to 5, as recommended
in [28] and [39]. For MOEA/DD, T and θ are set to the same
values as in MOEA/D-PBI, and the neighborhood selection
probability is set to δ = 0.9, as recommended in [41]. For
GrEA and KnEA, the detailed parameter settings are listed
in Tables II and III, respectively, which are all recommended
settings by Yang et al. [22] and Zhang et al. [27].

Two parameters in RVEA require to be predefined, i.e., the
index α used to control the rate of change of the penalty func-
tion in (9) and the frequency fr to employ the reference vector
adaptation in Algorithm 3. In the experimental comparisons,
α = 2 and fr = 0.1 are used for all test instances. A sensitivity
analysis of α and fr is provided in Section III in supplementary
materials.

In order to reduce the time cost of nondominated sort-
ing, the efficient nondominated sorting approach ENS-SS
reported in [78] has been adopted in NSGA-III, GrEA, and
KnEA, and a steady-state nondominated sorting approach
as reported in [79] has been adopted in MOEA/DD. By
contrast, neither RVEA nor MOEA/D-PBI uses dominance
comparisons. All the algorithms are realized in MATLAB
R2012a5 except MOEA/DD, which is implemented in the
jMetal framework [80].

5The MATLAB source code of RVEA can be downloaded from:
http://www.soft-computing.de/jin-pub_year.html.

http://www.soft-computing.de/jin-pub_year.html
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TABLE IV
STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE HV VALUES OBTAINED BY RVEA, MOEA/DD, NSGA-III, MOEA/D-PBI,

GREA, AND KNEA ON DTLZ1–DTLZ4, SDTLZ1, AND SDTLZ3. THE BEST RESULTS ARE IN BOLD TYPE

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 4. Parallel coordinates of nondominated front obtained by each algo-
rithm on ten-objective DTLZ1 in the run associated with the median HV
value. (a) RVEA. (b) MOEA/DD. (c) NSGA-III. (d) MOEA/D-PBI. (e) GrEA.
(f) KnEA.

D. Performance on DTLZ1–DTLZ4, SDTLZ1, and SDTLZ3

The statistical results of the HV values obtained by the
six algorithms over 20 independent runs are summarized in
Table IV, where the best results are highlighted. It can be
seen that RVEA, together with MOEA/DD, shows best over-
all performance among the six compared algorithms on the
four original DTLZ test instances, while NSGA-III shows the
best overall performance on the scaled DTLZ test instances.

As can be observed from Fig. 4, the approximate PFs
obtained by RVEA, MOEA/DD, and MOEA/D-PBI show

promising convergence performance as well as a good distribu-
tion on ten-objective DTLZ1. The statistical results in Table IV
also indicate that RVEA, MOEA/DD, and MOEA/D-PBI have
achieved the best performance among the six algorithms on all
DTLZ1 instances, where MOEA/DD shows best performance
on three-objective instance and RVEA shows best performance
on six-objective and eight-objective instances. Meanwhile, the
PFs approximated by NSGA-III is also of high quality. By
contrast, neither GrEA nor KnEA is able to converge to the
true PF of ten-objective DTLZ1.

Similar observations can be made about the results on
DTLZ2, a relatively simple test problem, to those on
DTLZ1. RVEA shows the best performance on the eight-
objective instance, while MOEA/DD outperforms RVEA on
three-objective and six-objective instances. NSGA-III and
MOEA/D-PBI are slightly outperformed by RVEA. Compared
to the performance on ten-objective DTLZ1, the performance
of GrEA and KnEA on this instance is much better.

For DTLZ3, which is a highly multimodal problem, RVEA
and MOEA/DD have also obtained an approximate PF of
high quality. It seems that the performance of NSGA-III
and MOEA/D-PBI is not very stable on high dimensional
(eight-objective and ten-objective) instances of this problem,
as evidenced by the statistical results in Table IV, while
GrEA and KnEA completely fail to reach the true PF of this
problem.

DTLZ4 is test problem where the density of the points on
the true PF is strongly biased. This test problem is designed
to verify whether an MOEA is able to maintain a proper
distribution of the candidate solutions. From the results, we
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 5. Parallel coordinates of nondominated front obtained by each algo-
rithm on ten-objective DTLZ4 in the run associated with the median HV
value. (a) RVEA. (b) MOEA/DD. (c) NSGA-III. (d) MOEA/D-PBI. (e) GrEA.
(f) KnEA.

can see that RVEA and MOEA/DD remain to show the best
overall performance. By contrast, MOEA/D-PBI is generally
outperformed by the other five algorithms. As can be observed
from Fig. 5, it appears that MOEA/D-PBI is only able to find
some parts of the true PF. The performance of NSGA-III is
similar to that of RVEA. An interesting observation is that,
although the distribution of the approximate PFs obtained by
GrEA and KnEA look slightly noisy, the solutions are still
relatively evenly distributed, and thus the HV values obtained
by these two algorithms are very encouraging, especially on
the eight-objective and ten-objective instances.

Compared with the original DTLZ problems, the SDTLZ1
and SDTLZ3 are challenging due to the strongly scaled objec-
tive function values. It turns out that NSGA-III shows the
best overall performance on SDTLZ1, three-objective, and
six-objective SDTLZ3, while RVEA shows the best overall
performance on eight-objective and ten-objective SDTLZ3. As
shown in Fig. 6, RVEA and NSGA-III are the only two algo-
rithms that are able to generate evenly distributed solutions
on the three-objective SDTLZ1, while the other four algo-
rithms have all failed. Such observations are consistent with
those reported in [39], where it has been shown that even the
normalized version of MOEA/D still does not work on such
scaled DTLZ problems.

E. Performance on WFG1–WFG9

As evidenced by statistical results of the HV values sum-
marized in Table V, RVEA has shown the most competitive
performance on WFG4, WFG5, WFG6, WFG7, and WFG9,
while MOEA/DD, NSGA-III, GrEA, and GrEA have achieved
the best performance on WFG8, WFG2, WFG3, and WFG1,
respectively. By contrast, the performance of MOEA/D-PBI
on the WFG test functions is not as good as that on the
DTLZ test functions. In the following, some discussions on
the experimental results will be presented.

WFG1 is designed with flat bias and a mixed structure of
the PF. Although RVEA is slightly outperformed by GrEA
and KnEA, its performance is still significantly better than
NSGA-III and MOEA/D-PBI. WFG2 is a test problem which

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Nondominated solutions obtained by each algorithm on three-
objective SDTLZ1 in the run associated with the median HV value. (a) RVEA.
(b) MOEA/DD. (c) NSGA-III. (d) MOEA/D-PBI. (e) GrEA. (f) KnEA.

has a disconnected PF. It can be observed that although the
HV values obtained by each algorithm vary on this test prob-
lem, the overall performance is generally very good. More
specifically, the overall performance of RVEA is better than
MOEA/D-PBI and GrEA, while NSGA-III has achieved the
best overall performance. WFG3 is a difficult problem where
the PF is degenerate and the decision variables are nonsepara-
ble. On this problem, RVEA has achieved comparable higher
HV values than MOEA/D-PBI, but has been outperformed by
the other four algorithms, where GrEA has achieved the largest
HV values on all the instances of this problem.

WFG4–WFG9 are designed with different difficulties in
the decision space, e.g., multimodality for WFG4, landscape
deception for WFG5, and nonseparability for WFG6, WFG8,
and WFG9, though the true PFs are of the same convex struc-
ture. As can be observed in Table V, RVEA shows the most
competitive overall performance on these six problems by
achieving the best results on 14 out of 24 instances. By con-
trast, GrEA shows high effectiveness on most three-objective
instances, KnEA shows promising performance on some eight-
objective and ten-objective instances, and MOEA/DD and
NSGA-III also show generally competitive performance.

F. Comparisons Between APD, TCH, and PBI

In principle, most scalarization approaches used in the
decomposition-based MOEAs are also applicable to the
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TABLE V
STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE HV VALUES OBTAINED BY RVEA, MOEA/DD, NSGA-III, MOEA/D-PBI,

GREA, AND KNEA ON WFG1–WFG9. THE BEST RESULTS ARE IN BOLD TYPE

TABLE VI
STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE HV VALUES OBTAINED BY RVEA, RVEA-TCH, AND RVEA-PBI.

THE BEST RESULTS ARE IN BOLD TYPE

proposed RVEA. In this section, we will carry out some
comparative studies on the original RVEA, RVEA with the
weighted TCH approach [55], and RVEA with the PBI
approach [28]. The detailed definitions of the scalarization

functions of TCH approach and PBI approach can be found
in Section IV in supplementary materials.

In order to apply the TCH and PBI approaches in RVEA, we
simply replace the weight vectors with the reference vectors,
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and then replace the APD part (between Lines 19 and 23 in
Algorithm 2) with the two approaches. For simplicity, RVEA
with the TCH and PBI approaches are denoted as RVEA-TCH
and RVEA-PBI, respectively.

The performance of RVEA-TCH and RVEA-PBI has
been verified on six benchmark test problems selected
from different test suites, including DTLZ1, DTLZ3,
SDTLZ1, SDTLZ3, WFG4, and WFG5. The results are
compared with those obtained by the original RVEA. As
shown by the statistical results summarized in Table VI,
RVEA shows the best performance on SDTLZ1, SDTLZ3,
WFG4, WFG5, and significantly outperforms RVEA-TCH on
DTLZ1 and DTLZ3.

It is also observed that RVEA-PBI shows very close per-
formance to RVEA on the original DTLZ problems (DTLZ1
and DTLZ3), but is completely outperformed on the scaled
DTLZ problems (SDTLZ1 and SDTLZ3). It implies that
the proposed APD has better capability of handling strongly
scaled problems than PBI. The superiority of APD over
PBI can be attributed to two main reasons. One is that
the penalty function in APD is relatively insensitive to the
ranges (either scaled or not) of the objective functions, as
the penalty function is angle (instead of distance) based,
where the angle is normalized inside each subspace accord-
ing to the local density of the reference vectors. The other
is that the adaptive strategy in APD emphasizes the conver-
gence at the initial search stage, which is particularly helpful
when the objective vectors are scaled to be distant from the
ideal point.

V. PREFERENCE ARTICULATION

The proposed RVEA, a method based on reference vec-
tors, is inherently capable of articulating user preferences.
Preference articulation is particularly meaningful in many-
objective optimization as we can no longer obtain a good
(representative) approximation of a high-dimensional PF using
a limited population size.

In comparison with the reference point-based preference
articulation methods [39], [58]–[60], reference vector-based
preference articulation is more intuitive, as each reference vec-
tor specifies a line instead of a point, which means that the
Pareto-optimal solutions can always be found by RVEA as
long as there exists one along the direction specified by the ref-
erence vector, regardless where the solution is exactly located.
In this section, we will demonstrate the ability of RVEA in
preference articulation by providing a few illustrative examples
on the three-objective DTLZ1 and DTLZ2.

To begin with, a preference-based reference vector gen-
eration method is proposed to uniformly generate reference
vectors in a user specified subspace of the objective space.
To specify a preferred subspace, a user may first identify a
central vector vc and a radius r, where vc is a unit vector and
r ∈ (0, 1). Then, the reference vectors inside the subspace can
be generated using the transformation

vi
′ = r · vi + (1− r) · vc

‖r · vi + (1− r) · vc‖ (12)

Fig. 7. Visualized illustration of the transformation procedure to generate
reference vectors inside a region specified by a central vector vc and a radius r.
In this example, ten uniformly distributed reference vectors are generated

inside a region in a biobjective space specified by vc = (
√

2/2,
√

2/2) and
r = 0.5.

where i = 1, . . . , N is the index of each reference vec-
tor, vi denotes a uniformly distributed vector generated
with (2) and (3), and vi

′ denotes a reference vector trans-
formed from vi, which is inside the subspace specified by vc
and r. A visualized illustration of the above transformation
procedure can be found in Fig. 7. With such a preference-
based reference vector generation method, we are now able
to generate uniformly distributed reference vectors inside the
preferred subspaces in the objective space.

First, we show an example where the reference vec-
tors are distributed in the corners of the objective space
of DTLZ1 and DTLZ2, as shown in Fig. 8(a) and (c). In
this example, ten preference vectors are uniformly gener-
ated in each corner of the objective space by setting vc =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)} and r = 0.2. As a consequence,
RVEA has successfully obtained all the solutions specified by
the reference vectors on both test problems.

The second example is to examine if RVEA is capable of
dealing with preferences in the center of the objective space.
As shown in Fig. 8(b) and (d), the ten solutions obtained by
RVEA show good convergence as well as distribution. This
example also implies that RVEA is still able to work effec-
tively with a very small population size, even on a difficult
multimodal problem like DTLZ1. In this example, reference
vectors are generated with vc = (

√
3/3,
√

3/3,
√

3/3) and
r = 0.2.

It is worth noting that we have not changed any settings in
RVEA to obtain the preferred solutions shown above, except
that the reference vector adaptation procedure (on Line 10
in Algorithm 1) has been switched off, such that the distribu-
tion of the reference vectors specified by the user preferences
will not be changed during the search process. Another
point to note is that the extreme vectors, i.e., (0, 0, 1),
(0, 1, 0), and (1, 0, 0) in the three-objective case are always
included, because the translation operation, as introduced in
Section III-C1, requires the extreme values of each objective
function.
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(a) (b)

(c) (d)

Fig. 8. Preferred Pareto-optimal solutions approximated by RVEA on DTLZ1
and DTLZ2 with reference vectors articulated with different preferences.
Approximate Pareto-optimal solutions distributed on the (a) corners of the
PF of DTLZ1, (b) center of the PF of DTLZ1, (c) corners of the PF of
DTLZ2, and (d) center of the PF of DTLZ2.

VI. HANDLING IRREGULAR PARETO FRONTS

As presented in Section IV, the proposed RVEA is able to
perform robustly on a variety of test problems with a set of
uniformly distributed reference vectors. In fact, using uniform
distributed reference vectors is based on a general assump-
tion that the PF has a regular geometrical structure, i.e., it is
smooth, continuous, and well spread. However, in practice, the
geometrical structure of a PF can be quite irregular due to var-
ious reasons. For example, some parts of the objective space
are infeasible due to some constraints, or the Pareto-optimal
solutions only exist in some specific subspaces in the objec-
tive space while the other subspaces only contain dominated
solutions. In these cases, the PFs can become disconnected or
even degenerate. On such problems, if we still use uniformly
distributed reference vectors, some of the reference vectors
may be associated with no individuals (termed invalid refer-
ence vectors hereafter), thus considerably reducing the density
of the Pareto-optimal solutions obtained by RVEA.

To tackle the issue caused by irregular PFs as discussed
above, one intuitive idea is to regenerate the invalid refer-
ence vectors, as adopted in some existing adaptive approaches
for generating reference points [81], [82] as well as refer-
ence vectors [56] and weight vectors [83], [84]. However, one
difficulty is that we have no idea when the regeneration pro-
cedure should be carried out, because even for a regular PF, it
is still likely that some reference vectors can be occasionally
invalid during the search process. To guarantee a wide spread
in the distribution of the candidate solutions, as suggested
in the reference point adaptation strategy for NSGA-III [81],
the original uniformly distributed reference point set should
always be maintained, and some new reference points can be
added in the neighborhood of each existing reference point.
A newly added reference point will be included in the ref-
erence point set if and only if it has an niche count of one.

Algorithm 4 Reference Vector Regeneration Strategy for
Handling Irregular PFs

1: Input: population Pt, the additional reference vector set
V∗t = {v∗t,1, v∗t,2, . . . , v∗t,N};

2: Output: the additional reference vector set V∗t+1 for next
generation;

3: Remove the dominated solutions in Pt;
4: /*Objective Value Translation*/
5: Perform objective value translation using the operations

from Line 4 to Line 7 in Algorithm 2;
6: /*Population Partition*/
7: Perform population partition using the operations from

Line 9 to Line 17 in Algorithm 2;
8: /*Reference Vector Regeneration*/
9: Calculate maximal objective values zmax

t ;
10: for i = 1 to |V∗t | do
11: if Pt,i == ∅ then
12: for j = 1 to N do
13: ur,j ← a value randomized within [0, zmax

t,j ];
14: end for
15: v∗t+1,i = ur‖ur‖ ;
16: else
17: v∗t+1,i = v∗t,i;
18: end if
19: end for

A merit of this adaptive approach is that the new reference
points are added in the neighborhood of existing reference
points, while a potential demerit is that although a large num-
ber of reference points are added in each generation, only a
small portion of them can survive, since the sum of niche count
is always N. This reduces the efficiency of the algorithm.

In this paper, we also propose to maintain the original uni-
form reference vector set V , while an additional reference
vector set (denoted as V∗) is introduced to perform exploration
for handling the irregular PFs. Compared to the reference point
adaptive strategy in NSGA-III, the proposed reference vec-
tor regeneration strategy is based on “replacement,” instead
of “addition-and-deletion,” which results in higher efficiency.
However, since the reference vectors are generated globally,
the local solution density is not guaranteed, which can be a
potential disadvantage.

The detailed procedure of the proposed reference vector
regeneration strategy is summarized in Algorithm 4. At the
beginning, all the dominated solutions in the current popula-
tion are removed. Afterward, the objective value translation
and population partition operations are performed. Based on
the result of the population partition, for each empty subpop-
ulation, the associated reference vector will be replaced with
a unit vector, which is randomly generated inside the range
specified by the minimum6 and maximum objective values
calculated from the candidate solutions in the current popu-
lation; while for the nonempty subpopulations, the associated
reference vectors will remain unchanged. To use the reference

6Since the objective values have already been translated, the minimum value
of each objective is always 0.
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(a) (b)

(c) (d)

Fig. 9. Pareto-optimal solutions approximated by RVEA* and RVEA in
the run associated with the median HV values. Pareto-optimal solutions
approximated by (a) RVEA on three-objective DTLZ5, (b) RVEA* on three-
objective DTLZ5, (c) RVEA on three-objective DTLZ7, and (d) RVEA* on
three-objective DTLZ7.

TABLE VII
STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE HV

VALUES OBTAINED BY RVEA AND RVEA* ON DTLZ5, DTLZ6,
AND DTLZ7. THE BEST RESULTS ARE IN BOLD TYPE

vector regeneration strategy in RVEA, the only minor mod-
ification needed is to insert Algorithm 4 into the end of the
main loop (between Lines 10 and 11) in Algorithm 1, and in
each generation, Vt ∪V∗t (instead Vt) can be used to guide the
elitism selection performed in Algorithm 2.

To assess the performance of the proposed reference vector
regeneration strategy, empirical experiments are conducted on
three typical test problems having irregular PFs, i.e., DTLZ5,
DTLZ6, and DTLZ7. Specifically, DTLZ5 and DTLZ6 have
a degenerate PF, which is always a 2-D curve in the hyper-
space, regardless of the number of objectives; DTLZ7 has a
disconnected PF, where the number of segments can be as
large as 2M−1, and M is the number of objectives.

In the experiments, the RVEA embedded with the reference
vector regeneration strategy (denoted as RVEA* hereafter) is
compared with the original RVEA. To measure the quality of

Algorithm 5 Elitism Selection Strategy for Handling
Constraints

1: for j = 1 to N do
2: S = ∅; // index set of infeasible solutions
3: for i = 1 to |Pt,j| do
4: if CV(xt,i) > 0 then
5: S = S ∪ {i}
6: end if
7: end for
8: if |S| == |Pt,j| then
9: k = argmin

i∈{1,...,|Pt,j|}
CV(xt,i)

10: else
11: k = argmin

i∈{1,...,|Pt,j|},i/∈S

dt,i,j

12: end if
13: Pt+1 = Pt+1 ∪ {It,k};
14: end for

the solutions obtained by RVEA* and RVEA, the HV indicator
is used, and the reference points used in the HV calculation are
set as (zmax

1 +1, zmax
2 +1, . . . , zmax

M +1), where zmax
1 to zmax

M are
the maximum objective values calculated from the true PF7 of
each test problem. All the HV values are normalized to [0, 1].
For fair comparisons, an additional reference vector set is also
added to RVEA, where all the reference vectors are randomly
initialized, though they do not undergo the reference vector
regeneration strategy in each generation.

As shown in Table VII and Fig. 9, RVEA*, in which the ref-
erence vector regeneration strategy is embedded, significantly
outperforms the original RVEA on all test instances.

VII. HANDLING CONSTRAINTS

The proposed RVEA has shown competitive performance on
a variety of unconstrained optimization problems. However,
constrained optimization problems are widely seen in solv-
ing practical problems. Therefore, in this section, we extend
RVEA to handling constraints (denoted as C-RVEA) by
making some minor modifications to the selection strategy
in Algorithm 2. The performance of C-RVEA is assessed
on three representative constrained problems in compari-
son with C-MOEA/DD, which is the constrained version of
MOEA/DD [41].

To begin with, the constraint violation function suggested
in [81] is adopted to evaluate the degree of violation of a
candidate solution

CV(x) =
J∑

j=1

〈gj(x)〉 +
K∑

k=1

|hk(x)| (13)

where gj ≥ 0 and hj = 0 are constraints, the operator 〈α〉
returns a negative value of α if α < 0, and returns 0 otherwise.

As summarized in Algorithm 5, the basic idea of the
elitism selection strategy for handling constraints is to take the

7Since the PFs of DTLZ5, DTLZ6, and DTLZ7 have an irregular geometri-
cal structure, the true PFs are approximated by sampling 10 000 Pareto-optimal
solutions in the decision space.
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TABLE VIII
STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE HV

VALUES OBTAINED BY C-RVEA AND C-MOEA/DD ON C1-DTLZ1,
C2-DTLZ2, AND C3-DTLZ3. THE BEST RESULTS

ARE IN BOLD TYPE

(a) (b)

Fig. 10. Approximate Pareto-optimal solutions obtained by C-RVEA on
the three-objective C2-DTLZ2 and C3-DTLZ4 in the run associated with the
median HV values. (a) C2-DTLZ2. (b) C3-DTLZ4.

constraint violations into consideration in the selection pro-
cess. First, we pick out the infeasible solutions and record
the indices in S. Afterward, we check the size of S. If
the size of S equals that of the current subpopulation Pt,j,
which means that every solution is infeasible, we will select
the one having the minimum degree of constraint violation
to be passed to the next generation; otherwise, we select
the one with the minimal APD value among the feasible
solutions.

In order to assess the performance of the proposed elitism
selection strategy for handling constraints, empirical stud-
ies have been conducted on three representative constrained
problems, namely C1-DTLZ1, C2-DTLZ2, and C3-DTLZ3,
where the detailed definitions of the constraints can be found
in Section V in supplementary materials.

Both C-RVEA and C-MOEA/DD are run 20 times
independently on each test instance. In each singe run,
1000 generations are run for C1-DTLZ1, and 500 gen-
erations for C2-DTLZ2 and C3-DTLZ4. We again use
the HV as the performance indicator, and the refer-
ence points for C1-DTLZ1, C2-DTLZ2, and C3-DTLZ4
are (1.5, 1.5, . . . , 1.5), (2, 2, . . . , 2), and (3, 3, . . . , 3),
respectively.

Generally speaking, C-RVEA and C-MOEA/DD show
comparable performance, as shown by the results in
Table VIII. Specifically, C-RVEA outperforms C-MOEA/DD
on C1-DTLZ1, but is outperformed on C3-DTLZ4, and the

two algorithms show comparable performance on C2-DTLZ2.
In addition to the statistical results, the approximate Pareto-
optimal solutions obtained by C-RVEA on the three-objective
C2-DTLZ2 and C3-DTLZ4 are plotted in Fig. 10.

VIII. CONCLUSION

In this paper, we have proposed a reference vector-based
MOEA, termed RVEA, for solving MaOPs. In the proposed
RVEA, the search process is guided by a set of predefined
reference vectors inspired from the direction vectors pro-
posed in MOEA/D-M2M, a decomposition-based approach.
The basic idea is to partition the objective space into a num-
ber small subspaces using a set of reference vectors. Inside
each subspace, an elitism selection strategy is employed. As
the selection criterion, a scalarization approach, known as
the APD, is proposed to measure the distance of the solu-
tions to the ideal point and the closeness of the solutions
to the reference vectors, which can be seen as a diver-
sity measure or a degree of satisfaction to the preferences.
Thus, the proposed RVEA can be largely categorized into the
decomposition-based approaches, when the reference vectors
are uniformly generated to cover the whole PF. On the other
hand, the proposed RVEA is also able to find a set of pre-
ferred Pareto-optimal set, which can be used for elucidation
of user preferences. We demonstrate that reference vectors are
well suited for precise preference articulation by defining a
central vector and a radius. The effectiveness of the reference
vector-based preference articulation is demonstrated by some
illustrative empirical examples.

To obtain a set of uniformly distributed solutions in the
objective space, a strategy for adapting the reference vectors
has been suggested to tune the reference vectors according
to the distribution of the candidate solutions. This reference
vector adaptation strategy has shown high efficiency in deal-
ing with problems where the objective functions are not well
normalized.

To assess the performance of RVEA, empirical comparisons
have been conducted by comparing RVEA with five state-
of-the-art MOEAs, namely MOEA/DD, NSGA-III, MOEA/D-
PBI, GrEA, and KnEA on widely used MaOP test functions.
Our experimental results indicate that RVEA shows robust per-
formance on various benchmark problems with the objective
number varying from 3 to 10, including normalized DTLZ
problems, scaled DTLZ problems, and WFG problems. We
have also conducted some experiments to compare the per-
formance of APD with two popular scalarization approaches
widely used in the decomposition-based MOEAs, i.e., the
weighted TCH approach and the PBI approach.

Furthermore, a reference vector regeneration strategy has
been proposed to improve the performance of RVEA on
problems with irregular PFs. The strategy can be inserted
into the framework of RVEA and shows high effectiveness.
Finally, RVEA has been extended for solving constrained
MaOPs.

The proposed RVEA has shown competitive performance
on the studied MaOP test problems. One interesting feature
of the proposed RVEA is that it is able to approximate the
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Pareto-optimal solutions specified by the predefined reference
vectors when the PF distributes in the whole objective space.
However, the question remains open as to how the reference
vectors can be adapted to the distribution of the candidate
solutions according to the estimated geometrical features of
the PF. It is still unclear which type of reference vectors is
most practical in many-objective optimization. In addition, the
use of reference vectors for interactive preference articulation
is to be investigated [85].
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