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Abstract. This paper presents a new preference based interactive evo-
lutionary algorithm (I-SIBEA) for solving multiobjective optimization
problems using weighted hypervolume. Here the decision maker itera-
tively provides her/his preference information in the form of identifying
preferred and/or non-preferred solutions from a set of nondominated
solutions. This preference information provided by the decision maker
is used to assign weights of the weighted hypervolume calculation to
solutions in subsequent generations. In any generation, the weighted
hypervolume is calculated and solutions are selected to the next gen-
eration based on their contribution to the weighted hypervolume. The
algorithm is compared with a recently developed interactive evolution-
ary algorithm, W-Hype on some benchmark multiobjective optimization
problems. The results show significant promise in the use of the I-SIBEA
algorithm. In addition, the performance of the algorithm is demonstrated
using a human decision maker to show its flexibility towards changes in
the preference information. The I-SIBEA algorithm is found to flexibly
exploit the preference information from the decision maker and generate
solutions in the regions preferable to her/him.

1 Introduction

Industrial optimization problems often involve multiple conflicting objectives,
which usually have multiple Pareto optimal solutions with different trade-offs.
Different methods have been proposed in the literature (see e.g. [13]) and evo-
lutionary multiobjective optimization (EMO) algorithms [5,6] have often been
applied to solve multiobjective optimization problems and find an approximation
of the Pareto front consisting of all the Pareto optimal solutions. However, find-
ing an approximation of the Pareto front is not easy, especially when objective
and constraint functions are computationally expensive.

When EMO algorithms are used to find an approximation of the Pareto front,
a human decision maker (DM) who is an expert in the domain of the problem
is supposed to choose one among several nondominated solutions for implemen-
tation or further evaluation. Such an approach is often termed as a posteriori
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approach in multiobjective optimization [13]. Since finding a good approximation
of the Pareto front is often difficult, especially when more than two computation-
ally expensive objectives are involved, it is practical to approximate a region of
the Pareto front that is of interest to the DM. At least two different approaches
involving preference information have been considered in the literature:

1. a priori approaches where the DM initially expresses her/his preference infor-
mation, which is subsequently used to find a set of solutions reflecting her/his
preferences [7,9], and

2. interactive methods where the DM iteratively provides her/his preference
information and drives the algorithm towards her/his preferred region(s) of
the Pareto front [8,12,15].

We can easily incorporate DM’s preference information in indicator based
evolutionary algorithms. These algorithms have been proposed in the literature
[3,4] to handle a large number of objectives and in this article we focus our
attention on these algorithms. In them, a hypervolume of the dominated region
of the objective space is used as the indicator of the quality of the approximation
of the Pareto front due to the Pareto compliance of the indicator [16]. However,
as the number of objectives increases, the calculation of the hypervolume gets
extremely time consuming. Recently, a Monte-Carlo simulation based approach
to calculate hypervolume has been proposed to speed up the calculation [2].

In this paper, we propose a new interactive preference based EMO algo-
rithm called interactive simple indicator-based evolutionary algorithm (I-SIBEA)
where different weights are associated with different regions of the Pareto front
such that the importance given by the DM for different regions of the Pareto
front can be altered. In the proposed algorithm, we extend the simple indicator-
based evolutionary algorithm (SIBEA) [16] to take into account the preference
information of the DM iteratively and direct the search towards the preferred
regions of the DM. Specifically, the DM is iteratively shown a set of nondomi-
nated solutions and asked to provide her/his preferences by classifying this set
into preferred and/or non-preferred solutions. The weights of the preferred solu-
tions in the weighted hypervolume calculation are subsequently altered such that
their selection pressure is increased. Using preference information for both the
preferred and non-preferred solutions simultaneously is a novel approach in pref-
erence based EMO algorithms and provides more flexibility to the DM in guiding
the search.

The rest of the paper is organized as follows. In Section 2, we introduce the
main concepts and discuss how the preference information is incorporated into
the method. Then I-SIBEA algorithm is presented in Section 3 with detailed
description. In Section 4, we present preliminary numerical experiments used to
test the method. Finally, the conclusions are drawn in Section 5.
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2 Main Concepts and Principles of Utilizing Preference
Information from the Decision Maker in I-SIBEA

2.1 Concepts and Notations

We consider multiobjective optimization problems of the form [13]:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S

(1)

with k(≥ 2) objective functions fi(x) : S → ℜ. The vector of objective function
values is denoted by f(x) = (f1(x), . . . , fk(x))T . For the simplicity of presenta-
tion, we assume that all the objective functions are to be minimized. If some
objective function fi is to be maximized, it is equivalent to minimize −fi. The
(nonempty) feasible region (set) S is a subset of the decision variable region
ℜn and consists of decision variable vectors x = (x1, . . . , xn)T that satisfy all
the constraints. The image of the feasible region S in the objective region ℜk

is called the feasible objective region (set) denoted by Z. The elements of Z
are called feasible objective vectors denoted by f(x) or z = (z1, . . . , zk)T , where
zi = fi(x), i = 1, . . . , k, are the objective function values. An ideal objective vec-
tor z∗ ∈ ℜk is determined by minimizing each objective function individually,
that is z∗

i = minimize
x∈S

fi(x). We say that a vector z1 ∈ ℜk is said to weakly dom-

inate a vector z2 ∈ ℜk and denoted by z1 ≼ z2 if and only if for all 1 ≤ i ≤ k:
fi(x1) ≤ fi(x2).

In this paper, we consider an interactive preference based EMO algorithm,
wherein a DM iteratively provides her/his preference information as a set of pre-
ferred and/or non-preferred solutions. To emphasize solutions in the preferred
region, the weighted hypervolume, IwH(A) is used, where A is the set of nondom-
inated solutions in the objective space. The weighted hypervolume is defined as
the integral over the product of the weight distribution function w(z) and the
attainment function α(z) [16], that is,

IwH(A) =
∫ ∫

Z
w(z)αA(z)dz

where

αA(z) =

{
1 if A ≼ z

0 else

and A ≼ z represent that at least one element of A weakly dominates z ∈ Z.

2.2 Incorporating Preference Information into the Algorithm

There are different ways to obtain preference information from the DM. In the
preference based EMO algorithms literature where the hypervolume based selec-
tion criterion is used [3,4,16], as far as we know, only the preferred solutions are
considered as the preference information from the DM. In the proposed I-SIBEA
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algorithm, we provide the flexibility to the DM to give her/his preferences by
selecting preferred and/or non-preferred solutions among a set of nondominated
solutions shown to her/him. For example, if the DM selects only preferred solu-
tions, the rest of the solutions can be regarded as either non-preferred solutions
or solutions with no preference information. However, in this study we consider
them as non-preferred solutions. On the other hand, if the DM selects both
preferred and non-preferred solutions, the rest of the solutions are regarded as
solutions with no preference information.

It is often assumed that the DM has prior information about the preferred
solutions before starting the solution process [3,16]. In the I-SIBEA algorithm, it
is not assumed that the DM has some prior information about preferred and/or
non-preferred solutions and that the DM is consistent during interaction. The
DM iteratively gives her/his preference information, which is used by the I-
SIBEA algorithm to focus its search towards solutions that lie in the preferred
region. In what follows, we discuss how DM’s preferences are incorporated in the
I-SIBEA algorithm.

As mentioned in the introduction, the proposed algorithm extends SIBEA
to consider the preference information of the DM. After a fixed number of gen-
erations of SIBEA, in the first interaction with the DM, a set A ⊂ Z of non-
dominated solutions (in the objective space) is shown to the DM. The number
of solutions shown is a parameter that the DM can set. Next, we suppose that
the DM selects preferred and non-preferred solutions from the set A. There-
fore, the obtained preference information creates a partition of A into three
non-overlapping subsets:

AA = {z ∈ A | z is preferred by the DM}
RA = {z ∈ A | z is non-preferred by the DM}

IA = {z ∈ A | no preference information is available from the DM for z}

and A = AA ∪ RA ∪ IA.

After the partitioning of A into the three subsets, Z is partitioned into three
regions based on the preferences from the DM. The regions are called domi-
nated (Do), preferred (Pr) and no preference information (In) and an example
illustrating them is shown in Fig. 1 for a biobjective optimization problem. The
shaded region in the Fig. 1 represents the infeasible region.

In what follows, three regions, Do,Pr and In are defined based on preference
information from the DM. The weight distribution function is then derived using
hypervolume of these three regions which is incorporated into the algorithm to
calculate the weighted hypervolume.

The region Do is the part of Z which is weakly dominated by at least one
element of RA:

Do = {z ∈ Z | there exists z ∈ RA, z ≼ z} .

The hypervolume µ(Do) and the weighted hypervolume w(Do) for region Do
are calculated as
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Fig. 1. AA = {a, b, h, i} , RA = {c, e, f} , IA = {d, g}. Regions: dominated, no prefer-
ence information and preferred

µ(Do) =
∫ ∫

z
αRA(z)dz

w(Do) = I(w)
H (RA).

The region Pr is the part of Z which weakly dominates at least one element
of AA:

Pr = {z ∈ Z | there exists z ∈ AA, z ≼ z} .

The hypervolume µ(Pr) and the weighted hypervolume w(Pr) for region Pr
are calculated as

µ(Pr) =
∫ ∫

z
αAA(z)dz

w(Pr) = I(w)
H (AA).

The region In is the remaining part of Z (Fig. 1):

In = Z \ {Do ∪ Pr}

with the hypervolume µ(In) = 1 − µ(Do) − µ(Pr).
The reason to partition Z into these three regions is to emphasize the solutions

that lie in the preferred region (Pr). There can exist several ways to implement
this principle. In the literature [3,12,16], several weight distribution functions (e.g.
stressing objectives with exponential weights, guiding single solutions with dirac-
type weights etc.) are used to incorporate the DM’s preference information in the
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solution process. We present here a uniform weight distribution as one of the pos-
sibilities. As the DMwants to avoid the non-preferred solutions,w(z) remains zero
for the regionDo. Therefore, we define the weight distribution function as:

w(z) =

⎧
⎪⎨

⎪⎩

0 for all z ∈ Do

1 for all z ∈ In

1 + µ(Do)
µ(Pr) for all z ∈ Pr

(so that
∫ ∫

Z w(z)dz = 1).
This weight distribution function is then used to calculate the weighted

hypervolume in the subsequent generations and the solutions are selected based
on their contribution to the weighted hypervolume. In this way, the preference
information from the DM is incorporated into the algorithm. In what follows,
the I-SIBEA algorithm is presented with detailed description.

3 Interactive Simple Indicator-Based Evolutionary
Algorithm (I-SIBEA)

The main motivation of the proposed algorithm is to direct its search process
towards solutions that lie in the preferred region defined by the DM’s preferences.
To do this, solutions having a large contribution to the weighted hypervolume are
selected and solutions having the smallest contribution to the weighted hyper-
volume are removed from the population after every generation. This criterion
of selecting solutions is common among hypervolume based search algorithms
[16,17]. In the proposed I-SIBEA, in addition to hypervolume based selection
criterion, different preference information from the DM is incorporated into the
algorithm. In this algorithm, the DM gives her/his preference information by
selecting preferred and/or non-preferred solutions. This preference information
guides the algorithm to focus its search direction for solutions that lie in the
preferred region. The algorithm is presented in the I-SIBEA algorithm and we
discuss now the step by step procedure of the algorithm.

Initially, a population P of individuals of size NP is created randomly in step
1. Next in step 2, crossover and mutation operators are used to create an offspring
population Q of the same size (NP ). The parent and the offspring populations
are combined P := P + Q and then environmental selection is used to select
individuals as mentioned in step 3 of the I-SIBEA algorithm. Nondominated
sorting [14] is used to rank the individuals of the combined population and
different fronts Fi, i = 1, 2, . . . are identified. These fronts are added to an empty
set P1 as long as the size of the population of P1 becomes equal to or exceeds
NP . If the size of P1 is NP , the population for next generation is set as P := P1.
Otherwise, the set of individuals in the worst rank front in P1 is identified
and denoted by P ′. To remove solutions from the worst rank front so that the
population size of P1 does not exceedNP , the usual hypervolume based selection
is used. For each solution z ∈ P ′, the loss in the hypervolume d(z) = I(P ′) −
I(P ′ \ z) is determined, where I is the hypervolume indicator and represented
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Algorithm: An interactive simple indicator-based evolutionary algorithm
(I-SIBEA)

Input to algorithm: NP = population size; NG = maximum number of generations
Input from DM: DA = maximum number of solutions to be shown to the DM

(default is maximum 5); AA = preferred and RA = non-preferred solutions after
each interaction; H = maximum number of interactions

Output: f∗ = Pareto optimal solution obtained by projecting the most preferred
solution to the Pareto front, where f∗ ⊆ A and A is the set of nondominated solutions
in the last population

Step 1 (Initialization): Generate an initial set P of decision vectors of size NP ; set
the generation counter m := 1; set the interaction step intr := 0; NA := number of
points in A; set number of generation before first interaction NI := round(NG/H);
set N := NI; set the hypervolume indicator I := µ(·).

Step 2 (Mating): Create an offspring population Q using crossover and mutation oper-
ators. Set P := P +Q (multi-set union).

Step 3 (Environmental Selection): Rank the population P using nondominated sort-
ing and identify different fronts Fi, i = 1, 2, . . . and do the following four steps (a−d).

a. Set a new population P1 = φ. Set a count i = 1 and perform P1 = P1+Fi and
as long as |P1| ≥ NP and set i = i + 1. Here, |P1| denotes the cardinality of
P1.

b. If |P1| = NP , set P := P1 and go to step 4 otherwise determine the set of
individuals P ′ ⊆ P1 with the worst rank.

c. if m ≤ N and N = NI
For each solution z ∈ P ′ determine the loss d(z) in the hypervolume I if it is
removed from P ′, i.e., d(z) := I(P ′) − I(P ′ \ z).
else
Identify P ′

Pr i.e. the solutions x ∈ P ′ belonging to region Pr and perform P1 =
P1 \ P ′ + P ′

Pr

1. If |P1| ≥ NP , for each solution in z ∈ P ′ belonging to Pr determine the
loss d(z) in the hypervolume I if it is removed from P ′, i.e., d(z) := I(P ′)−
I(P ′ \ z).

2. Else determine the loss in weighted hypervolume d(z) := I(P ′) − I(P ′ \ z)
for each solution z ∈ P ′ belonging to the regions Do and In.

d. Remove the |P1| − NP solutions from P ′ with the smallest loss d(z) (ties are
broken randomly) and include the remaining solutions of P ′ into P1. Set P :=
P1.

Step 4: If m ≥ NG or m ≥ N then go to step 5. Otherwise set m := m+1 and go to
step 2.

Step 5 (Identify A): Set A as the set of nondominated solutions in P . If NA > DA,
remove additional solutions by using e.g. clustering.

Step 6 (Interaction with DM): Show DA solutions of A to the DM and set intr :=
intr + 1. If the DM wants to stop or m ≥ NG, go to step 7 otherwise go to step 8.

Step 7 (Termination): Ask the DM to select the most preferred solution (f∗) from
DA. Obtain the final solution by projecting f∗ to the Pareto front and terminate
the algorithm.

Step 8: Ask the DM to classify DA into AA and/or RA and derive the sets Do, In
and Pr to get the updated weighted hypervolume w(·). Set I := w(·); NI = NG−NI

H−intr ;
N := m+NI and m := m+ 1. Go to Step 2.
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as the hypervolume or the weighted hypervolume for a given set. The solution
with the smallest loss is removed until the size of the population does no longer
exceed NP and the population is set as P := P1 for the next generation. After a
fixed number of generations, NI in step 4, the DM interacts with the algorithm.
In step 5, a fixed number of nondominated solutions DA ⊆ A (input from the
DM) is identified and then shown to her/him in step 6, where A is the set of
nondominated solutions. There exist different ways to select the fixed number
of solutions from A and we use k-means clustering [11] in this study. Here, a
solution is selected randomly from each cluster and shown to the DM. In step
7, if the DM wants to quit, s(he) selects the most preferred solution f∗ from
DA. The final solution is obtained by projecting f∗ to the actual Pareto front
by optimizing an achievement scalarizing function (ASF) [13], that is by solving
the problem

minimize max
i=1,...,k

[wi(fi(x) − f∗
i )] + ρ

k∑

i=1

wi(fi(x) − f∗
i )

subject to x ∈ S.

(2)

where ρ > 0 is the augmentation coefficient which takes a small positive value
e.g. 10−6. The weight vector wi = 1

zmax
i −zmin

i
is assigned to each objective func-

tion. The maximum and minimum values of each objective function in the set A
are represented by zmax

i and zmin
i , respectively. One of the advantages for using

an ASF is that the optimal solution of an ASF is always Pareto optimal [13].
Therefore, optimizing an ASF ensures that final solution is locally Pareto opti-
mal. Since we assume that less is preferred to more for the DM, the projected
solution is at least as preferred to the DM as the solution s(he) selected. We can
utilize an equivalent differentiable formulation of ASF when all the objective
functions are differentiable by adding extra real valued variable, δ and k new
constraints [13]

minimize δ + ρ
k∑

i=1

wi(fi(x) − f∗
i )

subject to wi(fi(x) − f∗
i ) ≤ δ for all i = 1, . . . , k

x ∈ S δ ∈ ℜ.

(3)

In addition to termination by the DM, the solution process is ended if the max-
imum number of generations (NG) is reached. In that case, solutions DA ⊆ A
are shown to the DM and (s)he is asked to select the the most preferred solution
(f∗). This solution is then projected to the Pareto front and the final solution
is obtained by solving problem (2) or (3) with a single objective optimization
method appropriate to the characteristics of the problem in question. A local
search method can be used since the evolutionary algorithm is supposed to take
care of the global search. If the termination criterion is not met, the DM is then
asked in step 8 to select preferred (AA) and non-preferred solutions (RA) from
DA to get the three non-overlapping subsets AA,RA and IA. The three regions
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Do,Pr and In are then derived using this preference information to get the
weight distribution function. This completes one interaction with the DM. The
weight distribution function is then used to calculate the weighted hypervolume
as the selection criterion in the subsequent generations.

In the next generation (after the first interaction), the offspring are created
again in step 2 and other steps are then followed. If the population size exceeds
NP in P1, solutions z ∈ P ′ belonging to region Pr are identified and denoted
by P ′

Pr. The set P1 is then updated as P1 := P1 \ P ′ + P ′
Pr. If the size of the

population of P1 exceeds NP , the usual hypervolume based selection is used to
remove the solutions from P ′ belonging to region Pr. Otherwise, the solutions
z ∈ P ′ belonging to regions Do and In are added to P1. If the population
size exceeds NP , the weighted hypervolume based selection is used to remove
solutions z ∈ P ′ belonging to regions Do and In. This principle of selecting
individuals emphasizes solutions in the preferred region. The regions Do,Pr
and In are updated after every interaction after the DM has classified DA into
AA and RA. In this way, the DM gives her/his preference and the weights of
the solutions in the weighted hypervolume calculation are altered in such a way
that solutions in Pr are emphasized and solutions in Do are avoided.

In the proposed algorithm, the DM has the freedom to choose the number of
times (s)he wishes to interact with the algorithm. From this input, the maximum
number of generations (NG) is uniformly divided by H to get the number of
generations before each interaction. For example, the first interaction will take
place after NI = NG/H generations and the second interaction will take place
after N = NI + (NG − NI)/(H − 1) generations. Even though, the maximum
number of interactions H is given by the DM in the beginning, the DM is free to
change it during any interaction. However, this is not presented in the algorithm
but if the DM gives her/his updated number of interactions, the remaining gen-
erations can be uniformly divided accordingly. In the next section, the algorithm
is tested using some benchmark problems.

4 Numerical Experiments

The I-SIBEA algorithm was tested on standard benchmark problems [5] with
2-3 objectives and 7-11 decision variables. Firstly, we compare I-SIBEA against
a recently proposed interactive weighted hypervolume based algorithm called
W-Hype [4]. One of the main differences between W-Hype and I-SIBEA is that
W-Hype considers information for only preferred solutions while I-SIBEA con-
siders information for both preferred and non-preferred solutions. To enable easy
comparison, we use the same set of test problems i.e. DTLZ2, ZDT4 and DTLZ1
and the same criterion of [12] to get the number of generations before each inter-
action as used in W-Hype. The parameter values used in I-SIBEA are provided
in Table 1. In all three problems, polynomial mutation (distribution index is 20
and probability of mutation is 1/number of decision variables) and simulated
binary crossover (distribution index is 20 and probability of crossover is 0.9)
were used. While testing the algorithm for these test problems, we replaced the
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DM by a weighted Chebyshev function max
i=1,...,k

[wi(fi(x)−z∗
i )] at each interaction

step with z∗
i as the ideal objective vector. The weight vector (w1, . . . , wk)T is

assigned to each objective function and used to describe the DM’s preferences.
After each interaction step, the solution that minimized the weighted Chebyshev
function was considered as the preferred solution (AA) and the rest of the solu-
tions were considered as non-preferred solutions (RA) i.e. it was assumed that
there were no solutions with no preference information (IA). This setting was
used to be able to compare I-SIBEA with W-Hype (where this setting had been
used).

Table 1. Parameters used in this study

DTLZ2 ZDT4 DTLZ1
Number of decision variables/objectives 11/2 10/2 7/3

Ideal vector (0,0) (0,0) (0,0,0)
Population size 50 100 200

Number of interactions 2,4,6,8 4,6 4,6
Weight vector (0.2,0.8) (0.5,0.5) (0.7,0.2,0.1)

Number of independent runs 30 50 10
Total number of function evaluations 20,000 40,000 120,000

To measure the performance of the proposed algorithm, mean, standard devi-
ation, absolute deviation and optimal Chebyshev function value were calculated
after a maximum number of function evaluations. In the three tables reporting
the results of I-SIBEA and W-Hype, the values of performance criteria are writ-
ten in bold face if the difference was greater than 0.001. The algorithm was also
tested by varying the maximum number of interactions. The comparison of the
present algorithm with W-Hype for DTLZ2 is shown in Table 2.

Table 2. Results for DTLZ2: algorithm, number of interactions (H), mean, standard
deviation (Std.), absolute deviation (Abs.), optimal Chebyshev function value (C∗)
and number of function evaluations (nfun)

Algorithm H Mean Std. Abs. C∗ nfun

I-SIBEA

2 0.21500 0.052800 0.03230 0.19400 20,000
4 0.19430 0.000571 0.00030 0.19400 20,000
6 0.19410 0.000121 0.00006 0.19400 20,000
8 0.19410 0.000042 0.00003 0.19400 20,000

W-Hype

2 0.19418 0.000114 0.00016 0.19403 25,000
4 0.19413 0.000064 0.00010 0.19403 25,000
6 0.19411 0.000053 0.00009 0.19403 25,000
8 0.19410 0.000049 0.00007 0.19403 25,000

The results show that W-Hype performed better than I-SIBEA for H = 2.
Otherwise, equivalent results were obtained for H = 4, 6, 8 and I-SIBEA needed
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fewer function evaluations when compared with W-Hype. The total number
of function evaluations used for this problem by W-Hype and I-SIBEA were
25, 000 and 20, 000, respectively. In addition, better results were obtained by both
algorithms with increase in H. We also observed that, after a certain number
of generations, the mean of the weighted Chebyshev function did not change
for H = 4, 6 and 8 which indicates the convergence of the algorithm. Moreover,
there was no considerable difference in the results for H = 6 and H = 8 in
I-SIBEA and, therefore, we restricted ourselves to H = 4 and 6 when solving
the following two problems.

In case of the ZDT4 problem, the weight vector w = (0.5, 0.5)T was used in
the weighted Chebyshev function to identify the preferred solution (AA). The
comparison of I-SIBEA with W-Hype is shown in Table 3. I-SIBEA performed
better thanW-Hype both in terms of results obtained and the number of function
evaluations used. I-SIBEA used 40,000 function evaluations and converged in
50% fewer function evaluations as comparison with W-Hype.

Table 3. Results for ZDT4: algorithm, number of interactions (H), mean, standard
deviation (Std.), absolute deviation (Abs.) , optimal Chebyshev function value (C∗)
and number of function evaluations (nfun)

Algorithm H Mean Std. Abs. C∗ nfun

I-SIBEA
4 0.19180 0.001600 0.00100 0.19100 40,000
6 0.19110 0.000262 0.00016 0.19100 40,000

W-Hype
4 0.35591 0.203362 0.16493 0.19098 80,000
6 0.36171 0.230273 0.17073 0.19098 80,000

Next, we tested I-SIBEA on a 3-objective DTLZ1 problem. The weight vector
w = (0.7, 0.2, 0.1)T was used in weighted Chebyshev function to identify the
preferred solution (AA). Table 4 shows the results of this study. For this problem
as well, equivalent results were obtained in 62.5% fewer function evaluations. I-
SIBEA used 120,000 function evaluations in contrast to W-Hype which used
320,000 function evaluations. In all three problems, better or equivalent results
were obtained but I-SIBEA always consumed fewer function evaluations. The
reason for fewer function evaluations using I-SIBEA can be attributed to the
use of preference information of both preferred and non-preferred solutions when
compared to W-Hype, where only preferred solutions were considered as the
preference information from the DM. This extra information on non-preferred
solutions can help the algorithm to avoid solutions in the corresponding regions
in subsequent generations and converge faster to solutions in the preferred region.
In addition, the DM has more options of how to express one’s preferences.

To show the flexibility of the proposed algorithm, a fourth case study was
performed on the ZDT4 problem (as it is easy to visualize a biobjective opti-
mization problem), where a DM was involved. In the beginning of the solution
process, the DM was asked to provide the maximum number of interactions i.e.
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Table 4. Results for DTLZ1: algorithm, Number of interactions (H), mean, standard
deviation (std.), absolute deviation (abs.), optimal Chebyshev function value (C∗) and
number of function evaluations (nfun)

Algorithm H Mean Std. Abs. C∗ nfun

I-SIBEA
4 0.03090 0.000397 0.00035 0.03050 120,000
6 0.03080 0.000167 0.00014 0.03050 120,000

W-Hype
4 0.03048 0.000069 0.00005 0.03043 320,000
6 0.03045 0.000026 0.00002 0.03043 320,000

how many times he wanted to interact with the algorithm. In addition, the flexi-
bility is given to the DM to change the number of nondominated solutions (DA,
default is maximum 5) he wanted to see during interaction. In this study, the
maximum number of generations (NG) was uniformly divided into 6 times for
the interaction with the DM as mentioned in the I-SIBEA algorithm. The other
parameters used for this problem are shown in Table 5.

Table 5. Parameters used in the fourth case

ZDT4
Number of decision variables/objectives 10/2

Population size 50
Number of interactions 6 (Input from the DM)

Maximum number of generation 400

The results of this study are shown in Fig. 2. The first scatter plot shows the
nondominated solutions (A) before the first interaction. For the first interaction,
the DM wanted to see 5 nondominated solutions and k-means clustering was used
to get them. The DM then selected the preferred (AA) and non-preferred solu-
tions (RA) which are shown in the second scatter plot. The solutions obtained
before the second interaction are also plotted in the same plot to show the search
direction of I-SIBEA. The solution process was then continued until the second
interaction. In Fig. 2, the preferred and non-preferred solutions are shown for
five interactions. In this study, the DM changed his preferences in the subsequent
interactions or in other words, the DM was not consistent with his preferences
as shown in Fig. 2. The I-SIBEA algorithm was found to exploit the preference
information provided by the DM and generate solutions in the regions preferable
to the DM. This shows that the algorithm is flexible to changes in the preferences
and can find solutions in the preferred region. After completion of the maximum
number of generations, the DM interacted again (6th time) and selected the most
preferred solution. This solution was then projected to the Pareto front by solv-
ing problem (3). We used here fmincon from MATLAB optimization toolbox to
solve problem (3). In this study, f1 = 0.096327 and f2 = 0.7074 were the most
preferred objective function values after the final interaction and f1 = 0.094345
and f2 = 0.69284 were the final objective function values.



I-SIBEA for Multiobjective Optimization Problems 289

Fig. 2. Decision making process using I-SIBEA algorithm for the ZDT4 problem
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The proposed algorithm directed its search towards the DM’s preferences and
also changed its search direction with changes in the preferences. Therefore, the
algorithm emphasized solutions in the preferred region and was flexible to the
DM’s preferences. In addition, the optimality of the chosen preferred solution
was guaranteed (at least locally).

5 Conclusions

In this paper, an interactive simple indicator-based evolutionary algorithm called
I-SIBEA is proposed. In this algorithm, the DM’s preferences are taken into
account in terms of preferred and/or non-preferred solutions. The information for
non-preferred solutions helps the algorithm to avoid such solutions in subsequent
generations. In this algorithm, the DM can decide how many times s(he) wants
to interact with the algorithm and how many solutions s(he) wants to compare
while interacting. Therefore, the DM does not need to compare more solutions
than (s)he is able to consider at a time. In addition, the algorithm is flexible
towards changes in the preferences from the DM. Hence, the algorithm does not
assume that the DM has some prior information about preferred and/or non-
preferred solutions. Furthermore, unlike typical evolutionary algorithms that
cannot guarantee optimality, at least local Pareto optimality of the final solution
is guaranteed as it is projected to the Pareto front by optimizing an achievement
scalarizing function.

We have compared the performance of I-SIBEA with the W-Hype algorithm.
I-SIBEA performed equivalent or better in terms of results obtained but needed
fewer function evaluations to get the final solution. In addition, the potential
of the algorithm was demonstrated using a human DM to show its flexibility
towards changes in the preferences. As indicator based algorithms can handle
large numbers of objectives, therefore, next we plan to test the algorithm for
more than three objectives and apply the DM’s preferences in different ways.
Additionally, we plan to develop a GUI which can be utilized with to solve real
world multiobjective optimization problems.
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