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An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point-Based

Nondominated Sorting Approach,
Part I: Solving Problems With Box Constraints
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Abstract—Having developed multiobjective optimization algo-
rithms using evolutionary optimization methods and demon-
strated their niche on various practical problems involving mostly
two and three objectives, there is now a growing need for develop-
ing evolutionary multiobjective optimization (EMO) algorithms
for handling many-objective (having four or more objectives)
optimization problems. In this paper, we recognize a few recent
efforts and discuss a number of viable directions for developing a
potential EMO algorithm for solving many-objective optimization
problems. Thereafter, we suggest a reference-point-based many-
objective evolutionary algorithm following NSGA-II framework
(we call it NSGA-III) that emphasizes population members that
are nondominated, yet close to a set of supplied reference points.
The proposed NSGA-III is applied to a number of many-objective
test problems with three to 15 objectives and compared with
two versions of a recently suggested EMO algorithm (MOEA/D).
While each of the two MOEA/D methods works well on different
classes of problems, the proposed NSGA-III is found to produce
satisfactory results on all problems considered in this paper. This
paper presents results on unconstrained problems, and the sequel
paper considers constrained and other specialties in handling
many-objective optimization problems.

Index Terms—Evolutionary computation, large dimension,
many-objective optimization, multicriterion optimization, non-
dominated sorting, NSGA-III.

I. Introduction

EVOLUTIONARY multiobjective optimization (EMO)
methodologies have amply shown their niche in finding

a set of well-converged and well-diversified nondominated
solutions in different two- and three-objective optimization
problems since the beginning of the 1990s. However, in real-
world problems involving multiple stake-holders and func-
tionalities, there often exists many optimization problems that
involve four or more objectives, sometimes demanding to have
10 to 15 objectives [1], [2]. Thus, it is not surprising that
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handling a large number of objectives had been one of the
main research activities in EMO for the past few years. Many-
objective problems pose a number of challenges to any opti-
mization algorithm, including an EMO. First and foremost, the
proportion of nondominated solutions in a randomly chosen
set of objective vectors becomes exponentially large with an
increased number of objectives. Since the nondominated solu-
tions occupy most of the population slots, any elite-preserving
EMO faces difficulty in accommodating an adequate number
of new solutions in the population. This slows down the
search process considerably [3], [4]. Second, implementation
of a diversity-preservation operator (such as the crowding
distance operator [5] or clustering operator [6]) becomes a
computationally expensive operation. Third, visualization of
a large-dimensional front becomes a difficult task, thereby
causing difficulties in subsequent decision-making tasks and in
evaluating the performance of an algorithm. For this purpose,
the performance metrics (such as hyper-volume measure [7] or
other metrics [3], [8]) are either computationally too expensive
or may not be meaningful.

An important question to ask is then, “Are EMOs useful for
many-objective optimization problems?” Although the third
difficulty related to visualization and performance measures
mentioned above cannot be avoided, some algorithmic changes
to the existing EMO algorithms may be possible to address
the first two concerns. In this paper, we review some of the
past efforts [9]–[14] in devising many-objective EMOs and
outline some viable directions for designing efficient many-
objective EMO methodologies. Thereafter, we propose a new
method that uses the framework of NSGA-II procedure [5],
but works with a set of supplied or predefined reference
points and demonstrates its efficacy in solving two-objective
to 15-objective optimization problems. In this paper, we in-
troduce the framework and restrict it to solving unconstrained
problems of various kinds, such as having normalized, scaled,
convex, concave, disjointed, and focusing on a part of the
Pareto-optimal front. Practice may offer a number of such
properties to exist in a problem. Therefore, an adequate test of
an algorithm for these eventualities remains an important task.
We compare the performance of the proposed NSGA-III with
two versions of an existing many-objective EMO (MOEA/D
[10]), as the method is somewhat similar to the proposed
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method. Interesting insights about both versions of MOEA/D
and NSGA-III are revealed. The proposed NSGA-III is also
evaluated for its use in a few other interesting multiobjective
optimization and decision-making tasks. In the sequel of this
paper, we suggest an extension of the proposed NSGA-III
for handling many-objective constrained optimization prob-
lems and a few other special and challenging many-objective
problems.

In the remainder of this paper, we first discuss the diffi-
culties in solving many-objective optimization problems and
then attempt to answer the question posed above about the
usefulness of EMO algorithms in handling many objectives.
Thereafter, in Section III, we present a review of some of
the past studies on many-objective optimization, including
a recently proposed method [10]. Then, in Section IV, we
outline our proposed NSGA-III procedure in detail. Results
on normalized DTLZ test problems up to 15 objectives using
NSGA-III and two versions of MOEA/D are presented in
Section V-A. Results of the scaled version of DTLZ problems
suggested here are shown next. Thereafter, in subsequent
sections, the NSGA-III procedure is tested on different types
of many-objective optimization problems. Finally, NSGA-III
is applied to two practical problems, involving three- and nine-
objective problems in Section VII. The conclusion of this
extensive study are drawn in Section VIII.

II. Many-Objective Optimization Problems

Loosely speaking, many-objective optimization problems
are defined as problems with four or more objectives. Two-
objective and three-objective problems fall into a different
class as the resulting Pareto-optimal front and, in most cases,
can be comprehensively visualized by graphical means. Al-
though a strict upper bound on the number of objectives for a
many-objective optimization problem is not so clear, except
for a few occasions [15], most practitioners are interested
in a maximum of 10–15 objectives. In this section, we first
discuss difficulties that an existing EMO algorithm may face
in handling many-objective problems and investigate if EMO
algorithms are useful at all in handling a large number of
objectives.

A. Difficulties in Handling Many Objectives

It has been discussed elsewhere [4], [16] that the current
state-of-the-art EMO algorithms that work under the principle
of domination [17] may face the following difficulties.

1) A large fraction of population is nondominated: It is
well known [3], [16] that with an increase in the
number of objectives, an increasingly larger fraction of a
randomly generated population becomes nondominated.
Since most EMO algorithms emphasize nondominated
solutions in a population, in handling many-objective
problems there is not much room for creating new
solutions in a generation. This slows down the search
process, and therefore, the overall EMO algorithm be-
comes inefficient.

2) Evaluation of diversity measure becomes computation-
ally expensive: To determine the extent of crowding of

solutions in a population, the identification of neigh-
bors becomes computationally expensive in a large-
dimensional space. Any compromise or approximation
in diversity estimate to make the computations faster
may cause an unacceptable distribution of solutions at
the end.

3) Recombination operation may be inefficient: In a many-
objective problem, if only a handful of solutions are
to be found in a large-dimensional space, solutions are
likely to be widely distant from each other. In such a
population, the effect of recombination operator (which
is considered a key search operator in an EMO) becomes
questionable. Two distant parent solutions are likely to
produce offspring solutions that are also distant from
parents. Thus, special recombination operators (mating
restriction or other schemes) may be necessary for
handling many-objective problems efficiently.

4) Representation of trade-off surface is difficult: It is
intuitive to realize that to represent a higher dimensional
trade-off surface, exponentially more points are needed.
Thus, a large population size is needed to represent the
resulting Pareto-optimal front. This causes difficulty for
a decision-maker to comprehend and make an adequate
decision to choose a preferred solution.

5) Performance metrics are computationally expensive to
compute: Since higher-dimensional sets of points are
to be compared against each other to establish the
performance of one algorithm against another, a larger
computational effort is needed. For example, computing
hyper-volume metric requires exponentially more com-
putations with the number of objectives [18], [19].

6) Visualization is difficult: Finally, although it is not a
matter related to optimization directly, eventually visu-
alization of a higher-dimensional trade-off front may be
difficult for many-objective problems.

The first three difficulties can only be alleviated by certain
modifications to existing EMO methodologies. The fourth,
fifth, and sixth difficulties are common to all many-objective
optimization problems and we do not address them adequately
here.

B. EMO Methodologies for Handling Many-Objective
Problems

Before we discuss the possible remedies for the three
difficulties mentioned above, here we highlight two differ-
ent many-objective problem classes for which existing EMO
methodologies can still be used.

First, existing EMO algorithms may still be useful in finding
a preferred subset of solutions (a partial set) from the complete
Pareto-optimal set. Although the preferred subset will still be
many-dimensional, since the targeted solutions are focused in
a small region on the Pareto-optimal front, most of the above
difficulties will be alleviated by this principle. A number of
MCDM-based EMO methodologies are already devised for
this purpose and results in as large as ten-objective problems
have shown to perform well [20]–[23].

Second, many problems in practice, albeit having many
objectives, often degenerate to result in a low-dimensional
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Pareto-optimal front [4], [11], [24], [25]. In such problems,
identification of redundant objectives can be integrated with an
EMO to find the Pareto-optimal front that is low-dimensional.
If the ultimate front is as low as 2-D or 3-D, existing EMO
methodologies should work well in handling such problems.
A previous study of NSGA-II with a principal component
analysis based procedure [4] was able to solve as large as
50-objective problems with a two-objective Pareto-optimal
front.

C. Two Ideas for a Many-Objective EMO

Keeping in mind the first three difficulties associated with
a domination-based EMO procedure, two different strategies
can be considered to alleviate the difficulties.

1) Use of a special domination principle: The first difficulty
mentioned above can be alleviated by using a special
domination principle that will adaptively discretize the
Pareto-optimal front and find a well-distributed set of
points. For example, the use of ε-domination principle
[26], [27] will make all points within ε distance from a
set of Pareto-optimal points ε-dominated and, hence, the
process will generate a finite number of Pareto-optimal
points as the target. Such a consideration will also
alleviate the second difficulty of diversity preservation.
The third difficulty can be taken care of by using a
mating restriction scheme or a special recombination
scheme in which near-parent solutions are emphasized
(such as SBX with a large distribution index [28]). Other
special domination principles [29], [30] can also be used
for this purpose. Aguirre and Tanaka [31] and Sato et al.
[32] suggested the use of a subset of objectives for
dominance check and for using a different combination
of objectives in every generation. The use of fixed cone-
domination [33], [34] or variable cone-domination [35]
principles can also be tried. These studies were made
in the context of low-dimensional problems and their
success in solving many-objective optimization is yet to
be established.

2) Use of a predefined multiple targeted search: It is getting
increasingly clear that it is too much to expect from a
single population-based optimization algorithm to have
convergence of its population near the Pareto-optimal
front and simultaneously it is distributed uniformly
around the entire front in a large-dimensional problem.
One way to handle such many-objective optimization
problems would be to aid the diversity maintenance
issue by some external means. This principle can directly
address the second difficulty mentioned above. Instead
of searching the entire search space for Pareto-optimal
solutions, multiple predefined targeted searches can be
set by an algorithm. Since optimal points are found
corresponding to each of the targeted search tasks, the
first difficulty of dealing with a large nondominated
set is also alleviated. The recombination issue can be
addressed by using a mating-restriction scheme in which
two solutions from neighboring targets are participated
in the recombination operation. Our proposed algorithm
(NSGA-III) is based on this principle; thus, we discuss

this aspect in somewhat more detail. We suggest two
different ways to implement the predefined multiple
targeted search principle.

a) A set of predefined search directions spanning the
entire Pareto-optimal front can be specified be-
forehand and multiple searches can be performed
along each direction. Since the search directions
are widely distributed, the obtained optimal points
are also likely to be widely distributed on the
Pareto-optimal front in most problems. A recently
proposed MOEA/D procedure [10] uses this con-
cept.

b) Instead of multiple search directions, multiple pre-
defined reference points can be specified for this
purpose. Thereafter, points corresponding to each
reference point can be emphasized to find a set of
widely distributed sets of Pareto-optimal points. A
few such implementations were proposed recently
[14], [36]–[38], and this paper suggests another
approach extending the algorithm proposed in the
first reference [36].

III. Existing Many-Objective Optimization

Algorithms

Garza-Fabre et al. [16] suggested three single-objective
measures by using differences in individual objective values
between two competing parents and showed that in five-
objective to 50-objective DTLZ1, DTLZ3, and DTLZ6 prob-
lems the convergence property can get enhanced, compared
to a number of existing methods including the usual Pareto-
dominance-based EMO approaches. Purshouse and Fleming
[39] clearly showed that diversity preservation and achieving
convergence near the Pareto-optimal front are two contra-
dictory goals, and usual genetic operators are not adequate
to attain both goals simultaneously, particularly for many-
objective problems. Another study [40] extends NSGA-II
by adding diversity-controlling operators to solve six- to
20-objective DTLZ2 problems. Köppen and Yoshida [41]
claimed that the NSGA-II procedure in its originality is
not suitable for many-objective optimization problems and
suggested a number of metrics that can potentially replace
NSGA-IIs crowding distance operator for better performance.
Based on simulation studies on two-objective to 15-objective
DTLZ2, DTLZ3, and DTLZ6 problems, they suggested using
a substitute assignment distance measure as the best strategy.
Hadka and Reed [42] suggested an ensemble-based EMO pro-
cedure that uses a suitable recombination operator adaptively
chosen from a set of eight to ten different predefined operators
based on their generation-wise success rate in a problem. It
also uses ε-dominance concept and an adaptive population
sizing approach that is reported to solve up to eight-objective
test problems successfully. Bader and Zitzler [43] suggested
a fast procedure for computing sample-based hyper-volume
and devised an algorithm to find a set of trade-off solutions
for maximizing the hyper-volume. A growing literature on
approximate hyper-volume computation [18], [44], [45] may
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make such an approach practical for solving many-objective
problems.

The above studies analyze and extend previously suggested
evolutionary multiobjective optimization algorithms for their
suitability to solving many-objective problems. In most cases,
the results are promising and the suggested algorithms must
be tested on other more challenging problems than the usual
normalized test problems such as DTLZ problems. They
must also be tried on real-world problems. In the following
paragraphs, we describe a recently proposed algorithm that
fits well with our description of a many-objective optimization
algorithm given in Section II-C and closely matches with our
proposed algorithm.

MOEA/D [10] uses a predefined set of weight vectors to
maintain a diverse set of trade-off solutions. For each weight
vector, the resulting problem is called a subproblem. To start,
every population member (with size same as the number of
weight vectors) is associated with a weight vector randomly.
Thereafter, two solutions from neighboring weight vectors
[defined through a niching parameter (T )] are mated and an
offspring solution is created. The offspring is then associated
with one or more weight vectors based on a performance
metric. Two metrics are suggested in the study. A penalized
distance measure of a point from the ideal point is formed by
weighted sum (weight θ is another algorithmic parameter) of
perpendicular distance (d2) from the reference direction and
distance (d1) along the reference direction

PBI(x, w) = d1 + θd2. (1)

Here we call this procedure MOEA/D-PBI. The second ap-
proach suggested is the use of Tchebycheff metric using a
utopian point z∗ and the weight vector w

TCH(x, w, z∗) =
M

max
i=1

wi|fi(x) − z∗
i |. (2)

In reported simulations [10], the ideal point was used as z∗ and
the zero-weight scenario is handled by using a small number.
Here we call this procedure MOEA/D-TCH. An external
population maintains the nondominated solutions. The first two
difficulties mentioned earlier are negotiated by using an ex-
plicit set of weight vectors to find points and the third difficulty
is alleviated by using a mating restriction scheme. Simulation
results were shown for two-objective and three-objective test
problems only, and it was concluded that MOEA/D-PBI is
better for three-objective problems than MOEA/D-TCH and
the performance of MOEA/D-TCH improved with an objective
normalization process using population minimum and max-
imum objective values. Both versions of MOEA/D require
setting a niching parameter (T ). Based on some simulation
results on two-objective and three-objective problems, the
authors suggested the use of a large fraction of population
size as T . In addition, MOEA/D-PBI requires an appropriate
setting of an additional parameter–penalty parameter θ, for
which the authors have suggested a value of 5.

A later study by the developers of MOEA/D suggested
the use of differential evolution (DE) to replace genetic
recombination and mutation operators. Also, further modifica-
tions were done in defining the neighborhood of a particular

solution and in replacing parents in a given neighborhood
by the corresponding offspring solutions [46]. Here we call
this method MOEA/D-DE. Results on a set of mostly two-
objective and three-objective linked problems [47] showed
better performance with MOEA/D-DE, compared to other
algorithms. As mentioned, MOEA/D is a promising approach
for many-objective optimization as it addresses some of the
difficulties mentioned above well, but the above-mentioned
MOEA/D studies did not quite explore their suitability to
a large number of objectives. In this paper, we apply them
to problems having up to 15 objectives and evaluate their
applicability to truly many-objective optimization problems
and reveal interesting properties of these algorithms.

Another recent study [14] follows our description of a
many-objective optimization procedure. The study extends the
NSGA-II procedure to suggest a hybrid NSGA-II (HN algo-
rithm) for handling three-objective and four-objective prob-
lems. Combined population members are projected on a hyper-
plane and a clustering operation is performed on the hyper-
plane to select a desired number of clusters, which is user-
defined. Thereafter, based on the diversity of the population,
either a local search operation on a random cluster member is
used to move the solution closer to the Pareto-optimal front, or
a diversity enhancement operator is used to choose population
members from all clusters. Since no targeted and distributed
search is used, the approach is more generic than MOEA/D or
the procedure suggested in this paper. However, the efficiency
of HN algorithm for problems with more than four objectives
is yet to be investigated to suggest its use for many-objective
problems in general. We now describe our proposed algorithm.

IV. Proposed Algorithm: NSGA-III

The basic framework of the proposed many-objective
NSGA-II (or NSGA-III) is similar to the original NSGA-II
algorithm [5] with significant changes in its selection operator.
But, unlike in NSGA-II, the maintenance of diversity among
population members in NSGA-III is aided by supplying and
adaptively updating a number of well-spread reference points.
For completeness, we first present a brief description of the
original NSGA-II algorithm.

Let us consider tth generation of NSGA-II algorithm. Sup-
pose the parent population at this generation is Pt and its
size is N, while the offspring population created from Pt

is Qt having N members. The first step is to choose the
best N members from the combined parent and offspring
population Rt = Pt ∪ Qt (of size 2N), thus allowing us to
preserve elite members of the parent population. To achieve
this, first the combined population Rt is sorted according to
different nondomination levels (F1, F2, and so on). Then, each
nondomination level is selected one at a time to construct a
new population St , starting from F1, until the size of St is
equal to N or for the first time exceeds N. Let us say the last
level included is the lth level. Thus, all solutions from level
(l + 1) onward are rejected from the combined population Rt .
In most situations, the last accepted level (lth level) is only
accepted partially. In such a case, only those solutions that
will maximize the diversity of the lth front are chosen. In
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NSGA-II, this is achieved through a computationally efficient,
yet approximate, niche-preservation operator that computes
the crowding distance for every last level member as the
summation of objective-wise normalized distance between two
neighboring solutions. Thereafter, the solutions that have larger
crowding distance values are chosen. In NSGA-III, we replace
the crowding distance operator with the following approaches
(Sections IV-A–IV-E).

A. Classification of Population Into Nondominated Levels

The above procedure of identifying nondominated fronts
using the usual domination principle [17] is also used in
NSGA-III. All population members from the nondominated
front level 1 to level l are first included in St . If |St| = N;
no further operations are needed and the next generation is
started with Pt+1 = St . For |St| > N, members from one to
(l − 1) fronts are already selected, i.e., Pt+1 = ∪l−1

i=1 Fi, and the
remaining (K = N − |Pt+1|) population members are chosen
from the last front Fl. We describe the remaining selection
process in the following subsections.

B. Determination of Reference Points on a Hyper-Plane

As indicated before, NSGA-III uses a predefined set of
reference points to ensure diversity in obtained solutions.
The chosen reference points can either be predefined in a
structured manner or supplied preferentially by the user. We
will present results of both methods in the results section later.
In the absence of any preference information, any predefined
structured placement of reference points can be adopted,
but, in this paper, we use Das and Dennis’s [48] systematic
approach1 that places points on a normalized hyper-plane—an
(M − 1)-dimensional unit simplex—which is equally inclined
to all objective axes and has an intercept of one on each axis.
If p divisions are considered along each objective, the total
number of reference points (H) in an M-objective problem is
given by

H =

(
M + p − 1

p

)
. (3)

For example, in a three-objective problem (M = 3), the
reference points are created on a triangle with the apex at
(1, 0, 0), (0, 1, 0), and (0, 0, 1). If four divisions (p = 4) are
chosen for each objective axis H =

(3+4−1
4

)
or 15 reference

points will be created. For clarity, these reference points are
shown in Fig. 1. In the proposed NSGA-III, in addition to
emphasizing nondominated solutions, we also emphasize pop-
ulation members that are in some sense associated with each
of these reference points. Since the above-created reference
points are widely distributed on the entire normalized hyper-
plane, the obtained solutions are also likely to be widely
distributed on or near the Pareto-optimal front. In the case of a
user-supplied set of preferred reference points, ideally the user
can mark H points on the normalized hyper-plane or indicate
any H , M-dimensional vectors for the purpose. The proposed
algorithm is likely to find near Pareto-optimal solutions cor-
responding to the supplied reference points, thereby allowing

1Any other structured distribution with or without a biasing on some part
of the Pareto-optimal front can be used as well.

Fig. 1. Fifteen structured reference points are shown on a normalized
reference plane for a three-objective problem with p = 4.

Algorithm 1 Generation t of NSGA-III procedure

Input: H structured reference points Zs or supplied aspiration
points Za, parent population Pt

Output: Pt+1

1: St = ∅, i = 1
2: Qt = Recombination+Mutation(Pt)
3: Rt = Pt ∪ Qt

4: (F1, F2, . . . ) = Non-dominated-sort(Rt)
5: repeat
6: St = St ∪ Fi and i = i + 1
7: until |St| ≥ N

8: Last front to be included: Fl = Fi

9: if |St| = N then
10: Pt+1 = St , break
11: else
12: Pt+1 = ∪l−1

j=1Fj

13: Points to be chosen from Fl: K = N − |Pt+1|
14: Normalize objectives and create reference set Zr:

Normalize(fn, St, Z
r, Zs, Za)

15: Associate each member s of St with a reference point:
[π(s), d(s)] =Associate(St, Z

r) % π(s): closest
reference point, d: distance between s and π(s)

16: Compute niche count of reference point j ∈ Zr: ρj =∑
s∈St/Fl

((π(s) = j) ? 1 : 0)
17: Choose K members one at a time from Fl to construct

Pt+1: Niching(K, ρj, π, d, Zr, Fl, Pt+1)
18: end if

this method to be used more from the point of view of a
combined application of decision-making and many-objective
optimization. The procedure is presented in Algorithm 1.

C. Adaptive Normalization of Population Members

First, the ideal point of the population St is determined
by identifying the minimum value (zmin

i ) for each objective
function i = 1, 2, . . . , M in ∪t

τ=0Sτ and by constructing the
ideal point z̄ = (zmin

1 , zmin
2 , . . . , zmin

M ). Each objective value of
St is then translated by subtracting objective fi by zmin

i so
that the ideal point of translated St becomes a zero vector.
We denote this translated objective as f ′

i (x) = fi(x) − zmin
i .

Thereafter, the extreme point (zi,max) in each (ith) objective
axis is identified by finding the solution (x ∈ St) that makes the
corresponding achievement scalarizing function (formed with
f ′

i (x) and a weight vector close to ith objective axis) minimum.
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Fig. 2. Procedure for computing intercepts and then forming the hyper-plane
from extreme points are shown for a three-objective problem.

These M extreme vectors are then used to constitute an
M-dimensional hyper-plane. The intercept ai of the ith ob-
jective axis and the linear hyper-plane can then be computed
(see Fig. 2). Special care is taken to handle degenerate cases
and nonnegative intercepts. The objective functions can then
be normalized as

fn
i (x) =

f ′
i (x)

ai

, for i = 1, 2, . . . , M. (4)

Note that the intercept on each normalized objective axis is
now at fn

i = 1, and a hyper-plane constructed with these
intercept points will make

∑M
i=1 fn

i = 1.
In the case of structured reference points (H of them), the

original reference points calculated using Das and Dennis’s
[48] approach already lie on this normalized hyper-plane.
In the case of preferred reference points by the user, the
reference points are simply mapped onto the above-constructed
normalized hyper-plane using (4). Since the normalization
procedure and the creation of the hyper-plane is done at each
generation using extreme points ever found from the start of
the simulation, the proposed NSGA-III procedure adaptively
maintains a diversity in the space spanned by the members
of St at every generation. This enables NSGA-III to solve
problems with a Pareto-optimal front whose objective values
may be differently scaled. The procedure is also described in
Algorithm 2.

D. Association Operation

After normalizing each objective adaptively based on the
extent of members of St in the objective space, we need to
associate each population member with a reference point. For
this purpose, we define a reference line corresponding to each
reference point on the hyper-plane by joining the reference
point with the origin. Then, we calculate the perpendicular
distance of each population member of St from each of the
reference lines. The reference point whose reference line is
closest to a population member in the normalized objective
space is considered to be associated with the population mem-
ber. This is illustrated in Fig. 3. The procedure is presented in
Algorithm 3.

Algorithm 2 Normalize (fn, St, Z
r, Zs/Za) procedure

Input: St , Zs (structured points) or Za (supplied points)
Output: fn, Zr (reference points on normalized hyper-plane)

1: for j = 1 to M do
2: Compute ideal point: zmin

j = mins∈St
fj(s)

3: Translate objectives: f ′
j(s) = fj(s) − zmin

j ∀s ∈ St

4: Compute extreme points (zj,max, j = 1, . . . , M) of St

5: end for
6: Compute intercepts aj for j = 1, . . . , M

7: Normalize objectives (fn) using Equation 4
8: if Za is given then
9: Map each (aspiration) point on normalized hyper-plane

using Equation 4 and save the points in the set Zr

10: else
11: Zr = Zs

12: end if

Fig. 3. Association of population members with reference points is
illustrated.

Algorithm 3 Associate(St, Z
r) procedure

Input: Zr, St

Output: π(s ∈ St), d(s ∈ St)
1: for each reference point z ∈ Zr do
2: Compute reference line w = z
3: end for
4: for each s ∈ St do
5: for each w ∈ Zr do
6: Compute d⊥(s, w) = ‖ (

s − wT sw/‖w‖2
) ‖

7: end for
8: Assign π(s) = w : argminw∈Zrd⊥(s, w)
9: Assign d(s) = d⊥(s, π(s))

10: end for

E. Niche-Preservation Operation

It is worth noting that a reference point may have one
or more population members associated with it or need not
have any population member associated with it. We count the
number of population members from Pt+1 = St/Fl that are
associated with each reference point. Let us denote this niche
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Algorithm 4 Niching (K, ρj, π, d, Zr, Fl, Pt+1) procedure

Input: K, ρj , π(s ∈ St), d(s ∈ St), Zr, Fl

Output: Pt+1

1: k = 1
2: while k ≤ K do
3: Jmin = {j : argminj∈Zrρj}
4: j̄ = random(Jmin)
5: Ij̄ = {s : π(s) = j̄, s ∈ Fl}
6: if Ij̄ 
= ∅ then
7: if ρj̄ = 0 then

8: Pt+1 = Pt+1 ∪
(

s : argmins∈Ij̄
d(s)

)
9: else

10: Pt+1 = Pt+1 ∪ random(Ij̄)
11: end if
12: ρj̄ = ρj̄ + 1, Fl = Fl\s
13: k = k + 1
14: else
15: Zr = Zr/{j̄}
16: end if
17: end while

count as ρj for the jth reference point. We now devise a new
niche-preserving operation as follows. First, we identify the
reference point set Jmin = {j : argminjρj} having minimum ρj .
In the case of multiple such reference points, one (j̄ ∈ Jmin)
is chosen at random.

If ρj̄ = 0 (meaning that there is no associated Pt+1 member
to the reference point j̄), there can be two scenarios with j̄ in
set Fl. First, there exists one or more members in front Fl that
are associated with the reference point j̄. In this case, the one
having the shortest perpendicular distance from the reference
line is added to Pt+1. The count ρj̄ for reference point j̄ is then
incremented by one. Second, the front Fl does not have any
member associated with the reference point j̄. In this case, the
reference point is excluded from further consideration for the
current generation.

In the event of ρj̄ ≥ 1 (meaning that already one mem-
ber associated with the reference point exists in St/Fl), a
randomly2 chosen member, if exists, from front Fl that is
associated with the reference point j̄ is added to Pt+1. The
count ρj̄ is then incremented by one. After niche counts are
updated, the procedure is repeated for a total of K times
(see Section IV-A) to fill all vacant population slots of Pt+1.
The procedure is presented in Algorithm 4.

F. Genetic Operations to Create Offspring Population

After Pt+1 is formed, it is then used to create a new
offspring population Qt+1 by applying usual genetic operators.
In NSGA-III, we have already performed a careful elitist selec-
tion of solutions and attempted to maintain diversity among
solutions by emphasizing solutions closest to the reference
line of each reference point. Also, as we will describe in
Section V, for a computationally fast procedure, we have set N

almost equal to H , thereby expecting to evolve one population

2The point closest to the reference point or using any other diversity
preserving criterion can also be used.

member close to the Pareto-optimal front corresponding to
each reference point. For all these reasons, we do not employ
any explicit reproduction operation with NSGA-III for han-
dling problems with box constraints only. The population Qt+1

is constructed by applying the usual crossover and mutation
operators by randomly picking parents from Pt+1. However,
to create offspring solutions closer to parent solutions (to take
care of third difficulty mentioned in Section II-A), we suggest
using a relatively larger value of distribution index in the SBX
operator, thereby creating offsprings close to their parents.

G. Computational Complexity of One Generation of NSGA-III

The nondominated sorting (line 4 in Algorithm 1) of a
population of size 2N having M-dimensional objective vectors
requires O(N logM−2 N) computations [49]. Identification of
the ideal point in line 2 of Algorithm 2 requires a total of
O(MN) computations. A translation of objectives (line 3)
requires O(MN) computations. However, identification of ex-
treme points (line 4) requires O(M2N) computations. Deter-
mination of intercepts (line 6) requires one matrix inversion
of size M × M, requiring O(M3) operations. Thereafter,
normalization of a maximum of 2N population members
(line 7) requires O(N) computations. Line 8 of Algorithm 2
requires O(MH) computations. All operations in Algorithm 3
in associating a maximum of 2N population members to
H reference points would require O(MNH) computations.
Thereafter, in the niching procedure in Algorithm 4, line 3
will require O(H) comparisons. Assuming that L = |Fl|,
line 5 requires O(L) checks. Line 8 in the worst case requires
O(L) computations. Other operations have smaller complexity.
However, the above computations in the niching algorithm
need to be performed a maximum of L times, thereby requiring
larger of O(L2) or O(LH) computations. In the worst case
scenario (St = F1, i.e., the first nondominated front exceeds the
population size), L ≤ 2N. In all of our simulations, we have
used N ≈ H and usually N > M. Taking into account all the
above considerations and computations, the overall worst-case
complexity of one generation of NSGA-III is O(N2 logM−2 N)
or O(N2M), whichever is larger.

H. Parameter-Less Property of NSGA-III

As in NSGA-II, the NSGA-III algorithm does not require
setting any new parameter other than the usual GA parameters
such as the population size, termination parameter, crossover
and mutation probabilities, and their associated parameters.
The number of reference points H is not an algorithmic
parameter, as this is directly related to the desired number
of trade-off points. The population size N is dependent on
H , as N ≈ H . The location of the reference points is
similarly dependent on the preference information that the user
is interested to achieve in the obtained solutions.

We will now present simulation results of NSGA-III for
various many-objective scenarios and compare its performance
with MOEA/D and classical methods.

V. Results

In this section, we provide the simulation results of
NSGA-III on three-objective to 15-objective optimization
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TABLE I

Number of Reference Points/Directions and Corresponding

Population Sizes Used in NSGA-III and MOEA/D Algorithms

problems. Since our method has a framework similar to
MOEA/D in that both types of algorithms require a set of
user-supplied reference points or weight vectors, we compare
our proposed method with different versions of MOEA/D
(codes from MOEA/D website [50] are used). The original
MOEA/D study proposed two procedures (MOEA/D-PBI and
MOEA/D-TCH), but did not solve four or more-objective
problems. Here, along with our algorithm, we investigate the
performance of these MOEA/D algorithms on three-objective
to 15-objective problems.

As a performance metric, we have chosen the inverse gener-
ational distance (IGD) metric [47], [51], which as a single met-
ric can provide a combined information about the convergence
and diversity of the obtained solutions. Since reference points
or reference directions are supplied in NSGA-III and MOEA/D
algorithms, respectively, and since in this section we show
the working of these methods on test problems for which the
exact Pareto-optimal surface is known, we can exactly locate
the targeted Pareto-optimal points by finding the intersection
point of the Pareto-optimal surface with each reference line.
We compute these targeted points (zi) and call them a set Zeff .
For any algorithm, we obtain the final nondominated points in
the objective space and call them the set A. Now, we compute
the IGD metric as the average Euclidean distance of points in
set Zeff with their nearest members of all points in set A as

IGD(A, Zeff ) =
1

|Zeff |
|Zeff |∑
i=1

|A|
min
j=1

d(zi, aj) (5)

where d(zi, aj) = ‖zi −aj‖2. It is not necessary to write that a
set with a smaller IGD value is better. If no solution associated
with a reference point is found, the IGD metric value for the
set will be large. For each case, 20 different runs from different
initial populations are performed, and best, median, and worst
IGD performance values are reported. For all algorithms, the
population members from the final generation are presented
and used for computing the performance measure.

Table I shows the number of chosen reference points (H)
for different sizes of a problem. The population size N for
NSGA-III is set as the smallest multiple of four3 larger than H .
For MOEA/D procedures, we use a population size, N ′ = H ,
as suggested by their developers. For three-objective problems,
we have used p = 12 in order to obtain H =

(3−1+12
12

)
or 91

3Since no tournament selection is used in NSGA-III, a factor of two
would be adequate as well, but as we reintroduce tournament selection in
the constrained NSGA-III in the sequel paper [52], we keep population size
as a multiple of four here as well to have a unified algorithm.

Fig. 4. Concept for two-layered reference points [with six points on the
boundary layer (p = 2) and three points on the inside layer (p = 1)] is shown
for a three-objective problem, but is implemented for eight or more objectives
in the simulations here.

TABLE II

Parameter Values Used in NSGA-III and Two Versions of

MOEA/D. n Is the Number of Variables

reference points [refer to (3)]. For five-objective problems, we
have used p = 6 so that H = 210 reference points are obtained.
Note that as long as p ≥ M is not chosen, no intermediate
point will be created by Das and Dennis’s systematic approach.
For eight-objective problems, even if we use p = 8 (to have
exactly one intermediate reference point), it requires 5040
reference points. To avoid such a situation, we use two layers
of reference points with relatively small values of p. On the
boundary layer, we use p = 3 so that 120 points are created.
On the inside layer, we use p = 2 so that 36 points are created.
All H = 156 points are then used as reference points for eight-
objective problems. We illustrate this scenario in Fig. 4 for a
three-objective problem using p = 2 for the boundary layer
and p = 1 for the inside layer.

For ten-objective problems as well, we use p = 3 and p = 2
for boundary and inside layers, respectively, thereby requiring
a total of H = 220 + 55 or 275 reference points. Similarly, for
15-objective problems, we use p = 2 and p = 1 for boundary
and inside layers, respectively, thereby requiring H = 120+15
or 135 reference points.

Table II presents other NSGA-III and MOEA/D parameters
used in this paper. MOEA/D requires additional parameters
that we have set according to the suggestions given by their
developers. The neighborhood size T is set as 20 for both
approaches and, additionally, the penalty parameter θ for the
MOEA/D-PBI approach is set as 5.
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Fig. 5. Obtained solutions by NSGA-III for DTLZ1.

Fig. 6. Obtained solutions by MOEA/D-PBI for DTLZ1.

A. Normalized Test Problems

To start, we use 3- to 15-objective DTLZ1, DTLZ2, DTLZ3,
and DTLZ4 problems [53]. The number of variables are (M +
k − 1), where M is the number of objectives and k = 5 for
DTLZ1, while k = 10 for DTLZ2, DTLZ3, and DTLZ4. The
corresponding Pareto-optimal fronts lie in fi ∈ [0, 0.5] for the
DTLZ1 problem and in fi ∈ [0, 1] for other DTLZ problems.
Since they have an identical range of values for each objective,
we call these problems normalized test problems in this paper.
Table III indicates the maximum number of generations used
for each test problem.

Fig. 5 shows NSGA-III obtained front for the three-objective
DTLZ1 problem. This particular run is associated with the
median value of IGD performance metric. All 91 points
are well distributed on the entire Pareto-optimal set. Results
with the MOEA/D-PBI are shown in Fig. 6. It is clear that
MOEA/D-PBI is also able to find a good distribution of
points similar to that of NSGA-III. However, Fig. 7 shows
that MOEA/D-TCH is unable to find a uniform distribution of

Fig. 7. Obtained solutions by MOEA/D-TCH for DTLZ1.

Fig. 8. Obtained solutions by NSGA-III for DTLZ2.

points. Such a distribution was also reported in the original
MOEA/D study [10].

Table III shows that for the DTLZ1 problem NSGA-III
performs slightly better in terms of the IGD met-
ric, followed by MOEA/D-PBI. For the five-objective
DTLZ1 problem, MOEA/D performs better than NSGA-III,
but in 8-, 10-, and 15-objective problems, NSGA-III
performs better. MOEA/D-TCH consistently does not per-
form well in all higher dimensional versions of the prob-
lem. This observation is similar to that concluded in
the original MOEA/D study [10] based on two-objective
and three-objective problems.

For DTLZ2 problems, the performance of MOEA/D-PBI
is consistently better than NSGA-III; however, NSGA-III
performs better than the MOEA/D-TCH approach. Figs. 8–10
show the distribution of obtained points for NSGA-III,
MOEA/D-PBI, and MOEA/D-TCH algorithms on the three-
objective DTLZ2 problem, respectively. The figures show
that the performances of NSGA-III and MOEA/D-PBI are
comparable to each other, whereas the performance of
MOEA/D-TCH is poor.
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TABLE III

Best, Median, and Worst IGD Values Obtained for NSGA-III and Two Versions of MOEA/D on M -Objective DTLZ1,

DTLZ2, DTLZ3, and DTLZ4 Problems. Best Performance Is Shown in Bold

Fig. 11 shows the variation of the IGD metric value
with function evaluations for NSGA-III and MOEA/D-PBI
approaches for the eight-objective DTLZ2 problem. Average
IGD metric values for 20 runs are plotted. It is clear that both
approaches are able to reduce the IGD value with an elapse
of function evaluations.

A similar observation is made for the DTLZ3 problem. This
problem introduces a number of local Pareto-optimal fronts
that provide a stiff challenge for algorithms to come close
to the global Pareto-optimal front. While the performances of
NSGA-III and MOEA/D-PBI are similar, with a slight edge
for MOEA/D-PBI, the performance of MOEA/D-TCH is poor.

However, in some runs, MOEA/D-PBI is unable to get close
to the Pareto-optimal front, as evident from a large value of
IGD metric value. Fig. 12 shows variation of the average IGD
metric of 20 runs with function evaluations for NSGA-III and
MOEA/D-PBI approaches. NSGA-III manages to find a better
IGD value than the MOEA/D-PBI approach after about 80 000
function evaluations.

Problem DTLZ4 has a biased density of points away from
fM = 0; however, the Pareto-optimal front is identical to
that in DTLZ2. The difference in the performances between
NSGA-III and MOEA/D-PBI is clear from this problem. Both
MOEA/D algorithms are not able to find an adequate distribu-
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Fig. 9. Obtained solutions by MOEA/D-PBI for DTLZ2.

Fig. 10. Obtained solutions by MOEA/D-TCH for DTLZ2.

Fig. 11. Variation of IGD metric value with NSGA-III and MOEA/D-PBI
for DTLZ2.

Fig. 12. Variation of IGD metric value with NSGA-III and MOEA/D-PBI
for DTLZ3.

Fig. 13. Obtained solutions by NSGA-III for DTLZ4.

tion of points, whereas the NSGA-III algorithm performs as it
did in other problems. Figs. 13–15 show the obtained distribu-
tion of points on the three-objective DTLZ4 problem. The al-
gorithms are unable to find near f3 = 0 Pareto-optimal points,
whereas the NSGA-III is able to find a set of well-distributed
points on the entire Pareto-optimal front. These plots are
made using the median performed run in each case. Table III
clearly shows that the IGD metric values for NSGA-III
algorithm are better than those of MOEA/D algorithms.
Fig. 16 shows the value path plot of all obtained solutions
for the ten-objective DTLZ4 problem by NSGA-III. A spread
of solutions over fi ∈ [0, 1] for all ten objectives and a
trade-off among them are clear from the plot. In contrast,
Fig. 17 shows the value path plot for the same problem
obtained using MOEA/D-PBI. The figure clearly shows that
MOEA/D-PBI is not able to find a widely distributed set of
points for the ten-objective DTLZ4 problem. Points having
larger values of objectives f1 to f7 are not found by the
MOEA/D-PBI approach.
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Fig. 14. Obtained solutions by MOEA/D-PBI for DTLZ4.

Fig. 15. Obtained solutions by MOEA/D-TCH for DTLZ4.

The right-most column of Table III presents the performance
of the recently proposed MOEA/D-DE approach [46]. The
approach uses differential evolution (DE) instead of SBX and
polynomial mutation operators. Two additional parameters are
introduced in the MOEA/D-DE procedure. First, a maximum
bound (nr) on the number of weight vectors with which a child
can be associated is introduced and is set as nr = 2. Second,
for choosing a mating partner of a parent, a probability (δ)
is set for choosing a neighboring partner and the probability
(1 − δ) for choosing any other population member. Authors
suggested using δ = 0.9. We use the same values of these
parameters in our study. Table III indicates that this version
of MOEA/D does not perform well on the normalized DTLZ
problems; however, it performs better than MOEA/D-PBI on
the DTLZ4 problem. Due to its poor performance in these
problems in general, we do not apply it any further.

In the above runs with MOEA/D, we have used the SBX
recombination parameter index ηc = 20 (as indicated in
Table II) mainly because this value was chosen in the original
MOEA/D study [10]. Next, we investigate MOEA/D-PBIs

Fig. 16. NSGA-III solutions are shown using ten-objective value path format
for DTLZ4.

Fig. 17. MOEA/D-PBI solutions are shown using ten-objective value path
format for DTLZ4.

Fig. 18. NSGA-III solutions on the three-objective WFG6 problem.

performance with ηc = 30 (which was used with NSGA-III).
Table IV shows that the performance of MOEA/D does not
change much with the above change in the ηc value.

Next, we apply NSGA-III and MOEA/D-PBI approaches to
two WFG test problems. The parameter settings are the same
as before. Figs. 18 and 19 show the obtained points on the
WFG6 problem. The convergence is slightly better with the
NSGA-III approach. Similarly, Figs. 20 and 21 show a similar
performance comparison of the above two approaches for the
WFG7 problem. Table V shows the performances of the two
approaches up to 15-objective WFG6 and WFG7 problems.
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TABLE IV

IGD Values of MOEA/D-PBI Approach With ηc = 30.

Based on the results on three- to 15-objective normalized
DTLZ and WFG test problems, it can be concluded that:
1) MOEA/D-PBI performs consistently better than
MOEA/D-TCH approach; 2) MOEA/D-PBI performs
best in some problems, whereas the proposed NSGA-III
approach performs best in some other problems; and 3) in
a nonuniformly distributed Pareto-optimal front (as in the

Fig. 19. MOEA/D-PBI solutions on the three-objective WFG6 problem.

Fig. 20. NSGA-III solutions on the three-objective WFG7 problem.

Fig. 21. MOEA/D-PBI solutions on the three-objective WFG7problem.

DTLZ4 problem), both MOEA/D approaches fail to maintain
a good distribution of points, while NSGA-III performs well.

B. Classical Generative Method

For solving many-objective optimization problems, we re-
quire a set of reference points—either supplied by the user
or systematically constructed as discussed earlier. One may
then ponder how the proposed NSGA-III method will compare
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TABLE V

IGD Values for NSGA-III and MOEA/D-PBI Approaches on

Three- to 15-Objective WFG Problems

TABLE VI

Best, Median, and Worst IGD and Convergence Metric Values

Obtained for NSGA-III and Classical Generative Methods for

Three-Objective DTLZ1 and DTLZ2 Problems

with a classical generative method in which multiple scalarized
single-objective optimization problems can be formulated for
each of the preferred or structured reference points and solved
independently. For this purpose, we minimize the PBI-metric
for each case. Along the reference direction obtained by
joining the ideal point (z∗) to the supplied reference point (z̄)
dictated by a w-vector [a unit vector w = (z̄ − z∗)/|z̄ − z∗|)],
the distance (d1) along the w-direction and the distance (d2)
perpendicular to the w-direction are computed for any point
x. A weighted sum of these two directions is then minimized
as

Minimizex d1 + θd2 = wT f(x) + θ
(‖f(x) − wT f(x)

)
w‖. (6)

Fig. 22. Solutions obtained by classical generative method for DTLZ1. Only
the points obtained close to the true Pareto-optimal front are shown.

Fig. 23. Solutions obtained by the classical generative method for DTLZ2.

The parameter θ is set to 5 for all reference points [10]. In
other words, the above minimization process is likely to find
the intersection point between the reference direction w and
the Pareto-optimal surface, if there exists an intersection. Since
the ideal point (z∗) is required to be known for this method,
we use the origin to be the ideal vector.

To make a fair comparison, for H reference points
we allocate a maximum of T = FENSGA-III/H (where
FENSGA-III is the total number of solution evaluations needed
by NSGA-III) function evaluations to each optimization
process. For three-objective DTLZ1 and DTLZ2 problems,
FENSGA-III = 92 × 400 or 36 800 was required to find 91
solutions. Therefore, we allocate 36 800/91 or 405 function
evaluations to each optimization run by a fmincon routine
of MATLAB. A random solution is used for initialization.
Figs. 22 and 23 show the final solutions obtained by this
generative method.

The DTLZ1 problem has multiple local fronts and the
MATLABs fmincon routine could not find a global Pareto-
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TABLE VII

Best, Median and Worst IGD Values for Three-Objective

Scaled DTLZ1 and DTLZ2 Problems Using NSGA-III and MOEA/D

Algorithms. A Scaling Factor of 10i−1, i = 1, 2, . . . , M , Is Used

optimal solution every time with the allotted number of
function evaluations. Table VI shows the IGD and GD metric
(average distance of obtained points from the closest reference
points, a metric opposite in sense to IGD metric) values. For
the three-objective DTLZ2 problem, the generative method is
able to find a well-distributed set of points, as shown in the
figure. However, Table VI indicates that the distribution of
points is not as good as that obtained by NSGA-III with the
same number of function evaluations. The inherent parallel
search of NSGA-III constitutes a more efficient optimization.

C. Scaled Test Problems

To investigate the algorithm’s performance on problems that
have differently scaled objective values, we consider DTLZ1
and DTLZ2 problems again, but now we modify them as
follows. Objective fi is multiplied by a factor 10i−1. To
illustrate, objectives f1, f2, and f3 for the three-objective
scaled DTLZ1 problem are multiplied by 100, 101, and 102,
respectively.

To handle different scaling of objectives and make the
distances (d1 and d2) along and perpendicular to refer-
ence directions in the MOEA/D-PBI approach, we normalize
the objective values using the procedure suggested for the
MOEA/D-TCH approach in the original MOEA/D study [10].
We also use the code from the MOEA/D website [50] to
obtain the points. Figs. 24–26 show the obtained distribution
of points using NSGA-III, MOEA/D-PBI, and MOEA/D-TCH
approaches, respectively. It is clear that both MOEA/D ap-
proaches with objective normalization are not able to handle
the scaling involved in the objectives adequately, whereas
NSGA-IIIs operators, normalization of objectives, and the
adaptive hyper-plane construction process are able to negotiate
the scaling of the objectives quite well. In the scaled problems,
IGD metric is computed by first normalizing the objective
values using the ideal and nadir points of the exact Pareto-
optimal front and then computing the IGD value using the
reference points as before. Resulting IGD values are shown in
Table VII. Similar performance is also observed for the scaled
DTLZ2 problem as shown in Figs. 27–29 and normalized IGD
values are tabulated in Table VII.

Next, Table VIII shows the IGD values of the obtained solu-
tions for five-, eight-, ten-, and 15-objective scaled DTLZ1 and

Fig. 24. Obtained solutions by NSGA-III for scaled DTLZ1.

Fig. 25. Obtained solutions by MOEA/D-PBI for scaled DTLZ1.

Fig. 26. Obtained solutions by MOEA/D-TCH for scaled DTLZ1.
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Fig. 27. Obtained solutions by NSGA-III for scaled DTLZ2.

Fig. 28. Obtained solutions by MOEA/D-PBI for scaled DTLZ2.

DTLZ2 problems. Due to the poor performance of MOEA/D
algorithms in scaled three-objective problems, we do not apply
them further to the above higher-dimensional scaled problems.
Although it is difficult to visualize a higher-dimensional front,
a small IGD value in each case refers to a well-distributed set
of points.

It is interesting to note that the MOEA/D-PBI algorithm
that worked so well in the normalized test problems in the
previous subsection did not perform well for the scaled version
of the same problems. Practical problems are far from being
normalized and the objectives are usually scaled differently.
An efficient optimization algorithm must handle different
scaling of objectives as effectively as shown by NSGA-III.

D. Convex DTLZ2 Problem

The DTLZ1 problem has a linear Pareto-optimal front and
DTLZ2 to DTLZ4 problems have concave Pareto-optimal
fronts. To investigate the performance of NSGA-III and both
versions of MOEA/D on scalable problems having convex
Pareto-optimal fronts, we create a new problem based on
the DTLZ2 problem. After the objective values (fi, i =

Fig. 29. Obtained solutions by MOEA/D-TCH for scaled DTLZ2.

TABLE VIII

Best, Median, and Worst IGD Values for Scaled M -Objective

DTLZ1 and DTLZ2 Problems

1, 2, . . . , M) are computed using the original DTLZ2 objec-
tive functions, we map them as

fi ← f 4
i i = 1, 2, . . . , (M − 1)

fM ← f 2
M.

The Pareto-optimal surface is then given as

fM +
M−1∑
i=1

√
fi = 1. (7)
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Fig. 30. Obtained solutions by NSGA-III for the convex Pareto-optimal front
problem.

Fig. 30 shows the obtained points on a three-objective
convex Pareto-optimal front problem with H = 91 reference
points. As the figure shows, the Pareto-optimal surface is
almost flat at the edges, but changes sharply in the intermediate
region. Although the reference points are uniformly placed
on a normalized hyper-plane making an equal angle to all
objective axes, the distribution of points on the Pareto-optimal
front does not come out to be uniform. Despite such a nature
of the front, NSGA-III is able to find a widely distributed set of
points on the edges and also in the intermediate region of the
surface. Note that the range of each objective for the Pareto-
optimal set is identical (within [0, 1]); hence, MOEA/D-PBI
is expected to perform well. As shown in Fig. 31, a nicely
distributed set of points is found in the middle part of the
front, but the algorithm fails to find points on the boundary of
the Pareto-optimal front. This is due to a small slope of the
surface at the boundary region. The use of penalty parameter
value θ = 5 finds a nonboundary point to have a better PBI
metric value for the boundary reference directions. A larger
value of θ may allow MOEA/D-PBI to find the exact boundary
points, thereby requiring doing another parametric study with
θ. However, the advantage of parameter-less approach in
NSGA-III is clear from this problem. MOEA/D-TCH performs
poorly again, as shown in Fig. 32.

Table IX shows the best, median, and worst IGD values of
20 independent runs [obtained using (5)] for all three methods.
Clearly, NSGA-III performs the best by finding a set of points
having an order of magnitude smaller IGD values in three-,
five-, eight-, ten-, and 15-objective versions of the convex
DTLZ2 problem.

To demonstrate the distribution of obtained points on
a higher-objective problem, we show the obtained points
of the median performed run of the 15-objective convex
DTLZ2 problem on value path plots using NSGA-III and
MOEA/D-PBI approaches in Figs. 33 and 34, respectively.
It is clear from the plots that NSGA-III is able to find a good
spread of solutions in the entire range of Pareto-optimal front

Fig. 31. Obtained solutions by MOEA/D-PBI for the convex Pareto-optimal
front problem.

Fig. 32. Obtained solutions by MOEA/D-TCH for the convex Pareto-optimal
front problem.

TABLE IX

Best, Median, and Worst IGD Values for the

Convex DTLZ2 Problem
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Fig. 33. NSGA-III solutions are shown using 15-objective value path format
for the convex problem.

Fig. 34. MOEA/D-PBI solutions are shown using ten-objective value path
format for the convex problem.

(fi ∈ [0, 1] for all i), but MOEA/D-PBI is unable to find
solutions having larger objective values.

Before we evaluate the proposed NSGA-III approach fur-
ther, we highlight a couple of properties of MOEA/D-TCH
and MOEA/D-PBI approaches that become clear form the
simulation results above.

1) As observed in three-objective results with
MOEA/D-TCH above (Fig. 7, for example), it ends up
generating a nonuniform distribution of points. This is
due to the way the Tchebysheff metric is constructed.
Moreover, multiple weight vectors produce an identical
extreme solution, thereby wasting computational efforts.

2) Interestingly, although we have not demonstrated it
here, MOEA/D-PBI is potentially capable of generating
dominated solutions depending on the parameter θ. This
could cause MOEA/D-PBI approach to make a waste of
computational effort in carrying dominated solutions.

Although special care can be taken to reduce the chance of
above, they are important for one to be aware while working
with MOEA/D-PBI or MOEA/D-TCH approaches.

VI. Further Investigations of NSGA-III

Having performed well on all test problems in the above
sections, we now investigate NSGA-IIIs performance in cer-
tain special types of many-objective problem-solving tasks.

Fig. 35. Reference points used for Scenario 1 on normalized hyper-plane.

Fig. 36. Reference points used for Scenario 2 on normalized hyper-plane.

A. Finding a Preferred Part of Pareto-Front

In many-objective optimization problems, the user may not
always be interested in finding the entire Pareto-optimal front.
Practically speaking, a user is often interested in a particular
preferred part of the Pareto-optimal front. In such a scenario,
the user may represent his/her preferred region using a few
representative reference points (or aspiration points). The aim
in such a many-objective optimization task is to find Pareto-
optimal points that are in some sense closest to the supplied
reference points.

Recall from Section IV-B that the proposed NSGA-III
algorithm can also be applied with a set of H user-supplied
reference points, instead of Das and Dennis’s structured refer-
ence points used so far. Here, we demonstrate the working
of NSGA-III for scaled DTLZ1 and DTLZ2 problems for
a few user-supplied preference information. In such a case,
in order to determine the right normalized hyper-plane, by
default we also supply M additional reference points, one
at each objective axis at an intercept of unity. The presence
of these extreme points will attempt to keep extreme Pareto-
optimal points, thereby forming a proper normalized hyper-
plane needed to have appropriate scaling of the objectives.

For both scaled three-objective DTLZ1 and DTLZ2 prob-
lems, we supply ten reference points in the middle of the
normalized hyper-plane (scenario 1, as shown in Fig. 35).
As mentioned, three additional reference points (1, 0, 0)T ,
(0, 1, 0)T , and (0, 0, 1)T , are also included for the execution of
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Fig. 37. Preferred solutions (scenario 1) obtained by NSGA-III for
three-objective DTLZ1.

Fig. 38. Preferred solutions (scenario 1) obtained by NSGA-III for three-
objective DTLZ2.

the algorithm, thereby making a total of 13 supplied reference
points. Fig. 37 shows the points (without the extreme points)
obtained by NSGA-III on the scaled Pareto-optimal front of
the DTLZ1 problem. Fig. 38 shows ten obtained points for the
scaled DTLZ2 problem for scenario 1. Next, we supply a set
of ten reference points on a different part of the normalized
hyper-plane, as shown as scenario 2 in Fig. 36. Fig. 38 shows
the obtained points on the scaled DTLZ2 problem. In both
cases, a set of ten near-Pareto-optimal points are obtained close
to where the reference points were supplied.

Best, median, and worst IGD values for the obtained
points for three-objective and ten-objective scaled DTLZ1 and
DTLZ2 problems are shown in Table X. The IGD values are
computed by normalizing the obtained objective values by the-
oretical ideal and nadir points and by projecting ten supplied
reference points on the normalized Pareto-optimal front. A
small IGD value in each case ensures the convergence and
diversity of the obtained solutions. The success of NSGA-III in

Fig. 39. Preferred solutions (scenario 2) obtained by NSGA-III for
three-objective DTLZ2.

TABLE X

Best, Median, and Worst IGD Values for Scaled DTLZ1 and

DTLZ2 Problems With Ten Reference Points

finding just ten Pareto-optimal points on ten-objective scaled
problems indicates its potential use in finding a handful of
preferred solutions in a many-objective practical optimization
problem.

B. Randomly Generated Preferred Reference Points

The supplied preferred reference points considered in the
previous subsection are structured. In fact, they were created
using Das and Dennis’s [48] structured reference point creation
procedure. Here, we investigate NSGA-IIIs ability to deal with
a set of randomly created reference points. The procedure used
here is the same as in the previous subsection—M additional
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Fig. 40. Preferred solutions obtained by NSGA-III for three-objective
DTLZ1.

Fig. 41. Preferred solutions obtained by NSGA-III for three-objective
DTLZ2.

axis points are included as before for NSGA-III to adaptively
create its hyper-plane.

For decision-making purposes, only a few trade-off points
can be analyzed, even for a many-objective problem. Here, we
investigate if the proposed NSGA-III is able to find only five
Pareto-optimal points in a preferred region for three-objective
and ten-objective scaled DTLZ1 and DTLZ2 problems. Five
random points are supplied in the intermediate region of
the normalized hyper-plane (within zi ∈ [0.4, 0.6] for all
i). Figs. 40 and 41 show the obtained points on scaled
three-objective DTLZ1 and DTLZ2 problems, respectively.

Table XI shows the IGD values for three-objective and ten-
objective problems. In each case, a small IGD value indicates
that NSGA-III is adequate to successfully find the desired
solutions.

This application shows promise in applying NSGA-III to
many-objective problems (ten-objective or like) with a handful

TABLE XI

Best, Median, and Worst IGD Values for Scaled DTLZ1 and

DTLZ2 Problems With Randomly Supplied Reference Points

TABLE XII

Minimum Population Size and Best, Median and Worst

IGD Values of the Obtained Solutions for

the Scaled DTLZ2 Problem

(five or like) of preferred reference points—a matter that is of
great importance to practitioners.

C. Small Population Size

Previous subsections have shown that NSGA-III can work
with a small number of reference points in order to find a
few Pareto-optimal points in a preferred region. In previous
sections, we have used a population size that is almost equal to
the number of reference points. A natural question then arises,
“Can NSGA-III work well with a small population size?” We
investigate this aspect here.

Table XII tabulates the number of reference points (H)
and corresponding layer-wise p and the maximum number of
generations considered for different many-objective DTLZ2
problems. We perform this paper for three-, five-, and ten-
objective scaled DTLZ2 problems. Identical scaling factors as
those shown in Table VIII are used here.

In each case, the population size (N) is always kept as
the smallest multiple of four, but greater than the number of
reference points (H). A larger number of generations is kept
for higher objective problems. The chosen maximum number
of generations are also tabulated in the table.

For the three-objective DTLZ2 problem, when we are
interested in finding ten well distributed Pareto-optimal points,
we find that a population of size 12 is adequate to find all ten
Pareto-optimal points after 250 generations (Fig. 42). For the
ten-objective problem, if we desire 65 reference points (with
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Fig. 42. Obtained points using NSGA-III for the scaled DTLZ2 with a small
population size of 12.

two intermediate layers: boundary pB = 2 and intermediate
pI = 1), we find that a population of size 68 is adequate to
find all 65 solutions after 1000 generations. The best, median,
and worst IGD values are shown in the table for three-, five-,
and ten-objective DTLZ2 problems. These results show that
NSGA-III can work with a small population size at least on
DTLZ2 problem due to its focus and balanced emphasis for
finding near Pareto-optimal points corresponding to a supplied
set of reference points.

D. Nadir Point Estimation

In multiobjective optimization problems, the nadir point
is important to be found for various reasons. A nadir point
is constructed from the worst objective values for the entire
Pareto-optimal set. Thus, along with the ideal point, the nadir
point can be used to normalize the objective functions for
a systematic and reliable execution of many classical and
nonclassical optimization methods. In [54], a nadir point esti-
mation strategy was proposed based on a bilevel evolutionary
approach. In that study, three-objective to 20-objective DTLZ1
and DTLZ2 problems were considered for estimating the nadir
point. Since studies in the previous two subsections have
shown amply that NSGA-III can be used to find a few Pareto-
optimal solutions even in ten-objective problems, here we
apply NSGA-III to find only the extreme Pareto-optimal points
so that the nadir point can be estimated accurately and in a
computationally fast manner.

For this purpose, we suggest using M reference points, one
on each objective axis, located at unity. We apply NSGA-III to
three-objective to 20-objective DTLZ1 and DTLZ2 problems
and record the overall function evaluations needed to find
the true nadir point with the following termination condition.
When the error value (E) computed as

E =

√√√√ M∑
i=1

(
znad
i − zest

i

znad
i − z∗

i

)2

(8)

is less than a threshold (0.01, used here), the run is terminated.
Here, z∗, znad, and zest are the ideal point, the true nadir

TABLE XIII

Nadir Point Estimation by NSGA-III in Three-Objective to

20-Objective DTLZ1 and DTLZ2 Problems

Fig. 43. Value path plot for the ten-objective DTLZ2 problem shows that
NSGA-III is able to find the extreme objective values (zero and one) in each
objective.

point, and the estimated nadir point by NSGA-III, respectively.
Table XIII presents the results and compares them with the
evaluations needed to find the nadir point with an identical
termination condition in the previous study [54]. In most cases,
NSGA-III requires a smaller number of function evaluations
than the previous procedure to locate the nadir point reliably.

Fig. 43 shows the value path plot of obtained points
for estimating the nadir point for the ten-objective DTLZ2
problems. Understandably, the points near the extreme of the
Pareto-optimal front are found. From this plot, the nadir point
of the problem is estimated to be (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T .
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Fig. 44. Sixty solutions are found on the entire front on the three-objective
crush-worthiness problem.

VII. Two Problems from Practice

After solving a number of test problems, we now apply
NSGA-III to a couple of engineering design optimization
problems. The first problem has three objectives and the
second one has nine objectives.

A. Crash-Worthiness Design of Vehicles for Complete Trade-
Off Front

This problem aims at optimization of the frontal structure
of vehicle for crash-worthiness [55]. The thickness of five
reinforced members around the frontal structure is chosen as
design variables, while mass of vehicle, deceleration during
the full frontal crash (which is proportional to biomechanical
injuries caused to the occupants), and toe board intrusion
in the offset-frontal crash (which accounts for the structural
integrity of the vehicle) are taken as objectives. Mathematical
formulation for the three objectives can be found in the original
study [55].

All objectives are to be minimized. For this problem, we
choose p = 16 so that there are H =

(3−1+16
16

)
or 153 structured

reference points. The reference points are initialized on the
entire normalized hyper-plane in the three-objective space.
NSGA-III is applied with 156 population size and run for
200 generations. Other parameters are the same as before.
Fig. 44 shows the obtained points with an open circle. The
nonuniform scaling of objectives is clear from the figure.
Although 153 reference points were used, only 60 of them
have representative solutions on the final front. The other
93 reference do not correspond to any Pareto-optimal point,
thereby indicating discontinuities and holes in the Pareto-
optimal front. The ideal point (z∗) and the nadir point (znad)
are also estimated from the obtained front.

To investigate the nature of the true Pareto-optimal front,
we next create 7381 reference points zref,i (i = 1, . . . , 7381)
with p = 120. Using the ideal and nadir points obtained
as above, we normalize the objectives and then solve the
achievement scalarization function (ASF) [56] corresponding
to each weight vector wi = zref,i. Each ASF is minimized using
MATLABs fmincon routine. The resulting 7381 points are

collected and dominated points are removed. We noticed that
only 4450 points remain nondominated. These nondominated
points are shown in Fig. 44 with a dot. It is clear that the
NSGA-III obtained set of 60 points are widely distributed on
the entire front spanned by points obtained using a classical
generating method, but using only a fraction of the overall
computational effort. Interestingly, 4450 trade-off points reveal
the complex nature of Pareto-optimal front (having holes and
varying density of points) for this practical problem and the
ability of NSGA-III to find a few widely distributed points on
the entire front.

To investigate the closeness of NSGA-III points with the
classically optimized solutions, we compute the convergence
metric (average distance of NSGA-III points from the closest
fmincon-optimized points) and the minimum, median, and
maximum convergence metric values are found be 0.0019,
0.0022, and 0.0026, respectively. Since these values are small,
they indicate that obtained NSGA-III solutions are close to
the classically optimized front. This problem demonstrates the
use of NSGA-III in finding a representative set of points near
the entire Pareto-optimal front on problems having practical
difficulties (such as differences in scaling of objectives and
potential holes in the Pareto-optimal front).

B. Car Cab Design With Preference Information

Next, we consider a vehicle performance optimization prob-
lem having 11 decision variables involving dimensions of the
car body and bounds on natural frequencies. The problem
involves nine objectives on roominess of the car, fuel econ-
omy, acceleration time, and road noise at different speeds. A
mathematical formulation can be found elsewhere [57].

In this problem, we demonstrate NSGA-IIIs ability to use
preference information in finding a few preferred nondomi-
nated solutions on a part of the Pareto-optimal front, instead
of on the complete front. We apply NSGA-III with only ten
reference points in the intermediate part of the Pareto-optimal
front. For this purpose, we first create ten random points on
the entire unit hyper-plane and then shrink them within 25%
around the centroid of the unit hyper-plane. As suggested in
Section VI-A, nine extreme reference points are also included
for a better normalization purpose. A population of size 100
is used and NSGA-III is run for 4000 generations. Twenty
independent runs are made with different sets of reference
points and resulting solutions are compared with the classical
achievement scalarizing function approach implemented with
MATLABs fmincon routine. To have good representative so-
lutions in the chosen intermediate part, the fmincon routine is
run for 20 000 random reference points initialized in the same
intermediate range one at a time. A domination check of final
solutions makes 11 280 of them nondominated to each other.
Each set of ten solutions from NSGA-III runs is then compared
against these 11 280 fmincon solutions and the GD metric
value is computed. The solutions from the specific NSGA-III
run corresponding to the median GD metric value are shown
against the silhouette of 11 280 fmincon solutions on a value
path plot in Fig. 45 to make a visual comparison. The trade-
off information and spread of obtained NSGA-III solutions
are clear from the plot. While the large number of fmincon
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Fig. 45. Value path plot for the nine-objective car cab design problem shows
that NSGA-III is able to find as few as ten preferred solutions within the
silhouette of solutions found by classical means.

solutions provide a range of objective values for the chosen
range of reference points, only one out of ten NSGA-III
solutions has two objective values (f4 and f9) outside the
range. The nine other solutions quite nicely represent the
relevant part of the Pareto-optimal front. With NSGA-III’s
ability to find just ten preferred trade-off solutions on a nine-
objective non-dominated front should remain as a significant
step toward a convenient post-optimal multicriterion decision-
making task.

To quantify the convergence of NSGA-III solutions, the
best, median, and worst GD metric values against 11 280
fmincon solutions on the normalized objective space are
computed as 0.0245, 0.0408, and 0.0566. These values are
small enough to indicate the closeness of obtained NSGA-III
solutions from the fmincon solutions. The ability of NSGA-III
to find a handful of trade-off points in a preferred part of a
nine-objective practical optimization problem having different
scaling of objectives shows a promise of its use in practical
many-objective optimization problems.

VIII. Conclusion

In this paper, we have suggested a reference point based
approach to an earlier-proposed NSGA-II framework for
solving many-objective optimization problems. The proposed
NSGA-III approach has been applied to three-objective to
15-objective existing and new test problems and to three-
objective and nine-objective practical problems. The test prob-
lems involve fronts that have convex, concave, disjointed,
differently scaled, biased density of points across the front,
and multimodality involving multiple local fronts to which an
optimization algorithm can get stuck. In all such problems,
the proposed NSGA-III approach has been able to success-
fully find a well-converged and well-diversified set of points
repeatedly over multiple runs. The performance scaling to
15 objectives is achieved mainly due to the aid in diversity
preservation by supplying a set of well-distributed reference
points. In higher-dimensional problems, EMO algorithms face
with an increasingly difficult task of maintaining diversity,
as well as in converging to the Pareto-optimal front. The
supply of a set of reference points and NSGA-IIIs efficient
niching methodology in finding a Pareto-optimal solution
associated with each reference point has made the diversity

preservation of obtained solutions in as large as 15 objectives
possible.

The performance of NSGA-III has been compared with
several versions of a recently proposed MOEA/D procedure.
Although different MOEA/Ds have shown their working on
different problems, no single version is able to solve all
problems efficiently. Having solved all problems well by the
proposed NSGA-III procedure, there is another advantage of it
that is worth mentioning here. Unlike MOEA/D versions, the
NSGA-III procedure does not require any additional parameter
to be set.

Furthermore, NSGA-III has been tested for its ability to
solve a number of different types of many-objective problem-
solving tasks. It has been demonstrated that NSGA-III is
able to work with a small number of user-supplied struc-
tured or randomly assigned reference points, thereby making
the method suitable for a many-objective preference-based
optimization-cum-decision-making approach. It has also been
shown that the NSGA-III procedure can be used to quickly
estimate the nadir point in many-objective optimization prob-
lems, compared to another EMO-based method proposed
earlier. For a practical application, only a handful of trade-
off points are required for decision-making in multiobjective
and many-objective optimization problems. It has been shown
that NSGA-III can be used to find only a few points (20
in five-objective and 65 in a ten-objective problem) with
a small population size, thereby reducing the computational
efforts.

The proposed NSGA-III approach with a supply of a set of
reference points has a similar implicit principle to the hyper-
grid-based archiving techniques, such as adaptive grid algo-
rithm [58], [59] and ε-MOEA [60], [61]. Grid-based methods
require exponentially more grids to be considered with an
increase in objectives, whereas ε-domination concept, although
reducing the burden of finding an appropriate diversity in solu-
tions somewhat, still poses enough difficulties in finding well-
distributed Pareto-optimal solutions for a large-dimensional
problem. However, it remains an interesting future study
to compare NSGA-IIIs performance with an ε-domination-
based algorithm for many-objective optimization problems.
NSGA-IIIs performance has been found to be much better
than a classical generating method in many-objective problems
here. However, a more thorough study using population-
based aggregation methods [62], [63] in which multiple search
directions are used simultaneously is worth pursuing.

Results of many different problems with box constraints
used in this paper have clearly shown promise for NSGA-IIIs
further application in other challenging problems. In the sequel
of this paper [52], we have extended NSGA-III to solve
constrained many-objective optimization problems that have
generic inequality and equality constraints and also suggested
an adaptive NSGA-III approach for adding and deleting the
supplied reference points adaptively to maximize the number
of obtained Pareto-optimal solutions in a computationally effi-
cient manner. Nevertheless, this paper has addressed the issues
and difficulties related to solving many-objective optimization
problems, reviewed some past studies in this direction, sug-
gested a viable many-objective evolutionary algorithm, and
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demonstrated proof-of-principle results on many problems
including two engineering design problems.
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