
Genetic Programming and Simulated Annealing:
a Hybrid Method to Evolve Decision Trees

Gianluigi Folino, Clara Pizzuti and Giandomenico Spezzano

ISI-CNR, c/o DEIS
Univ. della Calabria

87036 Rende (CS), Italy
{folino,pizzuti,spezzano}@si.deis.unical.it

Abstract. A method for the data mining task of data classification, suit-
able to be implemented on massively parallel architectures, is proposed.
The method combines genetic programming and simulated annealing to
evolve a population of decision trees. A cellular automaton is used to
realise a fine-grained parallel implementation of genetic programming
through the diffusion model and the annealing schedule to decide the ac-
ceptance of a new solution. Preliminary experimental results, obtained
by simulating the behaviour of the cellular automaton on a sequential
machine, show significant better performances with respect to C4.5.

1 Introduction

Data mining consists in the extraction of implicit, previously unknown and in-
teresting knowledge from real-world databases [16, 3]. Data mining techniques
have been originally developed from related research studies in machine learning,
statistics and database systems. These research fields, however, did not address
the problem of effectively mine information from large databases. One of the
major data mining requirements is the applicability of the developed methods
to huge amounts of data in databases. Thus the knowledge discovery algorithms
must be efficient and scalable to large databases [1]. Several data mining tasks
have been defined based on different kinds of available knowledge. Among them
is data classification, which consists in identifying common characteristics in a
set of objects contained in a database and categorising them into different groups
(classes). To build a classification, a sample of the tuples (also called examples)
of the database is considered as the training set. Each tuple is composed of the
same set of attributes, or features, which are used to distinguish them, and an
additional class attribute, which identifies the class that the tuple belongs to.
The task of classification is to build a description or a model for each class by us-
ing the features available in the training data. The models of each class are then
applied to determine the class of the remaining data (test set) in the database.
Decision trees [17] currently represent one of the most highly developed tech-
niques for the classification of databases. A decision tree is a tree where the leaf
nodes are labelled with the classes, while the non leaf nodes (decision nodes)
are labelled with the attributes of the training set. The branches living a node

R. Poli et al. (Eds.): EuroGP 2000, LNCS 1802, pp. 294−304, 2000.
© Springer-Verlag Berlin Heidelberg 2000

represent a test on the values of the attribute. The path from the root to a leaf
represents a set of conditions attribute-value (a rule) which describes the class
labelling that leaf. There is a rule for every leaf node, thus a class is modelled
by a set of rules. Decision trees are evaluated with respect to two parameters:
accuracy and size. Accuracy measures the rate of misclassification. A totally ac-
curate tree should correctly predict the class of any example from the database.
The size regards the number of nodes of the tree. The simpler is the tree, the
more concise is the class description and the information described can be eas-
ily understood. C4.5 [17] is the most famous decision tree based classification
method.

In this paper a hybrid method that couples genetic programming (GP) and
simulated annealing (SA) for the data mining task of classification is proposed.
The method is based on a cellular genetic programming environment like that
proposed in [4] to evolve decision trees but enriched with the simulated anneal-
ing strategy for the selection of new individuals. A cellular genetic programming
environment [4] uses a cellular automaton to assign a spatial location on a low-
dimensional grid to each GP individual. Every GP individual encodes a decision
tree and it is allowed to interact only within a small neighbourhood. The new
proposed method, called CGA/SA, adopts the local selection strategy of sim-
ulated annealing (SA) to evolve decision trees. The current GP individual is
occasionally substituted with a new generated decision tree even if the latter
has a misclassification rate (in this case represented by the fitness) worst than
the former. The substitution is done under the guidance of a control parameter
called the temperature. The combination of a cellular automaton with genetic
programming and a simulated annealing based selection strategy of new indi-
viduals allows for a number of advantages. In fact, on one hand, the utilisation
of a cellular automaton to map a population of trees on a two dimensional grid
enables for a direct parallelisation of genetic programming through the diffusion
model [15]. On the other hand, simulated annealing avoids the problem of pre-
mature convergence inherent to genetic programming by allowing uphill moves
to solutions of worse fitness. A preliminary sequential implementation of the
method, which simulates the cellular automata framework, shows a very good
behaviour in both the complexity (that is the number of nodes) of the gener-
ated decision trees and the ability to generalise unknown examples. The paper
is organised as follows. In section 2 the standard approach to data classification
through genetic programming is shown. In section 3 the simulated annealing
method is presented. In section 4 the combination of genetic programming and
simulated annealing is discussed. In section 5 the hybrid method to evolve deci-
sion trees, which combines cellular genetic programming and simulated anneal-
ing, is presented. In section 6, finally, we give the results of the method obtained
by a sequential implementation.

295Genetic Programming and Simulated Annealing

2 Genetic Programming and Data Classification

Genetic programming is a variation of genetic algorithms [6] in which the evolv-
ing individuals are themselves computer programs instead of fixed length strings
from a limited alphabet of symbols [9]. Programs are represented as trees with
ordered branches in which the internal nodes are functions and the leaves are
so-called terminals of the problem. The GP approach evolves a population of
trees by using the genetic operators of reproduction, recombination and mutation.
Each tree represents a candidate solution to a given problem and it is associated
with a fitness value that reflects how good it is, with respect to the other solu-
tions in the population. The reproduction operator copies individual trees of the
current population into the next generation with a probability proportionate to
their fitness (this strategy is also called roulette wheel selection scheme). The
recombination operator generates two new individuals by crossing two trees at
randomly chosen nodes and exchanging the subtrees. The two individuals par-
ticipating in the crossover operation are again selected proportionate to fitness.
The mutation operator replaces one of the nodes with a new randomly generated
subtree.

Genetic programming can be used to inductively generate decision trees for
the task of data classification. Decision trees can be interpreted as composition
of functions where the function set is the set of attribute tests and the terminal
set are the classes. The function set can be obtained by converting each attribute
into an attribute-test function. Thus there are as many functions as there are at-
tributes. For each attribute A, if A1, . . . An are the possible values A can assume,
the corresponding attribute-test function fA has arity n and if the value of A
is Ai then fA(A1, . . . An) = Ai. When a tuple has to be evaluated, the function
at the root of the tree tests the corresponding attribute and then executes the
argument outcoming from the test. If the argument is a terminal, then the class
name for that tuple is returned, otherwise the new function is executed. The
fitness is the number of training examples classified in the correct class. Both
crossover and mutation must generate syntactically correct decision trees. This
means that an attribute can not be repeated more than once in any path from
the root to a leaf node. In order to balance the accuracy against the size of the
tree, the fitness is augmented with an optional parameter, the parsimony, which
measures the complexity of the individuals [9]. Higher is the parsimony, simpler
is the tree, but accuracy diminishes.

Several methods for data classification based on genetic programming have
recently been proposed [11, 12, 18, 5, 4].

Interesting results, however, have been obtained when such methods are ap-
plied to problems that evolve small decision trees. If the database contains a
high number of examples with many features, large decision trees are requested
to accurately classify them. In data mining applications, databases with several
millions of examples are common. A decision tree generator based on genetic pro-
gramming should then cope with a population of large sized trees. Furthermore,
it has already been pointed out [18] that, in order to obtain the same classi-
fication accuracy of a decision tree generated by C4.5, small population size

296 G. Folino, C. Pizzuti, and G. Spezzano

is inadequate. Processing large populations of trees that contain many nodes
considerably degrades the execution time and requires an enormous amount of
memory. The utilisation of parallel strategies used to increase the performances
of genetic programming and to realise a really scalable data classification package
for data mining applications, seems to be the only choice.

3 Simulated Annealing

Simulated annealing [7] is a randomised technique for finding a near-optimal ap-
proximate solution of difficult combinatorial optimisation problems. A SA algo-
rithm starts with a randomly generated candidate solution. Then, it repeatedly
attempts to find a better solution by moving to a neighbour with higher fitness,
until it reaches a solution where none of its neighbours have a higher fitness.
Such a solution is called locally optimal. In order to avoid getting trapped in
poor local optima, simulated annealing strategy occasionally allows for uphill
moves to solutions of lower fitness by using a temperature parameter to control
the acceptance of the moves. At the beginning the temperature has a high value
and then a cooling schedule reduces its value. The new solution is kept if it
has a better fitness than the previous solution, otherwise it is accepted with a
probability depending on the current temperature. As the temperature becomes
cooler, it is less likely that bad solutions are accepted and that good solutions are
discarded. In this way it should be possible to avoid getting trapped into local
minima early in the execution and to explore the search space in its entirety.

4 Parallel Genetic Programming and Simulated
Annealing

Genetic programming is well suited to be implemented on parallel architectures
because the population can be distributed across the nodes of the system. One of
the main problems in parallelising GP comes from the global selection of individ-
uals, proportionate to their fitness, both in the reproduction and recombination
steps. This kind of selection forces the sharing of the new solutions until the new
population can be chosen. Two main approaches to parallel implementations of
GP have been proposed to avoid this bottleneck. The island model [13] and the
diffusion model [15].

The island model divides the population into smaller subpopulations. A stan-
dard genetic programming algorithm works on each partition and is responsible
for initialising, evaluating and evolving its own subpopulation. The standard GP
algorithm is augmented with a migration operator that periodically exchanges
individuals among the subpopulations.

In the diffusion model each individual is associated with a spatial location
on a low-dimensional grid. The population is considered as a system of active
individuals that interact only with their direct neighbours. Different neighbour-
hoods can be defined for the cells. The most common neighbourhoods in the

297Genetic Programming and Simulated Annealing

two-dimensional case are the 4-neighbour (von Neumann neighbourhood) con-
sisting of the North, South, East, West neighbours and 8-neighbour (Moore
neighbourhood) consisting of the same neighbours augmented with the diago-
nal neighbours. Fitness evaluation is done simultaneously for all the individuals
and selection, reproduction and mating take place locally within the neighbour-
hood. Information slowly diffuses across the grid thus clusters of solutions are
formed around different optima.

Another shortcoming of genetic programming due to the roulette wheel se-
lection scheme is that those candidates having the better fitness are allowed
to assume more places in the new population. In this way, individuals having
higher fitness rapidly spread through the population and low fitness individuals
are gradually lost. After a few number of generations the population presents
a high degree of homogeneity and the power of recombination is considerably
weakened. As a consequence, GP is not able to improve the solution getting
trapped into a local optimum.

Simulated annealing, on the contrary, always accepts the new solution if it
has a better fitness than the previous one and it accepts an inferior solution
with a probability depending on the current temperature. As the temperature
becomes cooler, it is less likely that bad solutions are accepted and that good
solutions are discarded. This strategy, as already pointed out, guarantees the
convergence property of the method. The combination of the two methods can
thus take advantage of the suitability of genetic programming to be parallelised
and of the capability of simulated annealing to avoid poor local solutions and
to maintain a good diversity in the population. In the next section we propose
a cellular genetic programming method enriched with the simulated annealing
strategy, called CGP/SA, for classification of databases.

5 The CGP/SA Method

A new method for the task of data classification, suitable to be implemented
on massively parallel architectures, is proposed. The method combines genetic
programming and simulated annealing to evolve a population of decision trees. A
cellular automaton (CA) [21] is used to realise a fine-grained parallel implemen-
tation of GP through the diffusion model and the annealing schedule is applied
to establish the acceptance of a new solution. Preliminary experimental results,
obtained from a sequential implementation of the approach that simulates the
behaviour of the cellular automaton, show significant better performances with
respect to C4.5 and comparable performances with respect to CGP [4].

The method follows other recent hybrid methods [8, 2], that incorporate sim-
ulated annealing into genetic algorithms, and the Cellular Genetic Algorithm
proposed in [22]. Our approach, however, is the first proposal that couples cel-
lular genetic programming and simulated annealing for classifying databases.

A cellular automaton is composed of a set of cells in a regular spatial lattice,
either one-dimensional or multidimensional. Each cell can have a finite number
of states. The states of all the cells are updated synchronously according to a

298 G. Folino, C. Pizzuti, and G. Spezzano

local rule, called a transition function. The state of a cell at a given time depends
only on its own state at the previous time step and the states of its ”nearby”
neighbours (however defined) at that previous step. Thus the state of the entire
automaton advances in discrete time steps. The global behaviour of the system
is determined by the evolution of the states of all the cells as a result of multiple
interactions. Thus the recombination mechanism, that is responsible to generate
the offspring, can be done by choosing the mate of the current individual in the
local neighbourhood.

A Cellular Genetic Programming algorithm coupled with Simulated Anneal-
ing technique, called CGP/SA, can be designed by associating with each cell of a
CA two substates: one contains an individual (tree) and the other its fitness. At
the beginning a population of individuals is randomly generated and the fitness
is evaluated. Then, at each generation, every tree undergoes one of the genetic
operators (reproduction, crossover, mutation) depending on the probability test.
If crossover is applied, the mate of the current individual is selected as the neigh-
bour, in the Moore’s neighbourhood, having the best fitness and the offspring is
generated. The current tree is then replaced by one of the two offspring, the one
having the best fitness, if fitness increase is less than or equal to the current tem-
perature, defined by an annealing schedule. The algorithm on a 2-dimensional
toroidal grid can be described by the pseudo-code shown in figure 1. The ini-
tial temperature is different for each cell and it is randomly set between 2 and
6 percent of the number of tuples. A parameter α, which has a value between
0.95 and 1.0, is chosen to reduce the temperature at each generation and such
that the temperature assumes the final value when MaxNumberOfGeneration
steps have been executed. select(ti, t0, t1, temperature) first chooses between t0
and t1 the one having the best fitness. Suppose it is t0. Then, ti is replaced by t0
only if fitness(t0)− fitness(ti) ≤ temperature. This deterministic criterion [2]
has been shown to be less expensive and to perform equivalently to the random
technique.

6 Implementation and Experimental Results

In this section we present the experiments and results obtained by a preliminary
implementation of the method on a sequential machine. The CGP/SA classifier
has been implemented in C by modifying the sgpc1.1 standard tool for genetic
programming [20] to meet the requirements of our classification method. A pro-
cedure that does not allow for the generation of trees with repeated attributes
on the branches, after the application of crossover and mutation operators, has
been added. In order to simulate the cellular automata framework, the popula-
tion has been mapped into a two-dimensional array of fixed dimensions 20× 20.
CGP/SA accepts discretised data sets (training and test set) as input. The en-
vironment runs on a Sun Ultraspark workstation with two 200-Mhz processors
and 256 Mbytes of memory.

Experiments have been executed on standard databases contained in the
UCI Machine Learning Repository [14]. Table 1 contains the description of these

299Genetic Programming and Simulated Annealing

begin
Let pc, pm, be the crossover and mutation
probability
temperature= initial temperature()
for each cell i in CA do in parallel

generate a random individual ti
evaluate the fitness of ti

end parallel for
while not MaxNumberOfGeneration do
for each cell i in CA do in parallel
generate a random probability p
if (p < pc) then
select the cell j, in the neighbourhood of i,
such that tj has the best fitness

(t0, t1)= crossover(ti, tj)
ti = select(ti, t0, t1, temperature)
else
if (p < pm + pc) then
mutate the individual
else
copy the current individual in the new population

end if
end if

end parallel for
temperature = temperature× α

end while
end

Fig. 1. Pseudo-code of the CGP/SA algorithm.

300 G. Folino, C. Pizzuti, and G. Spezzano

databases. They present different characteristics in the number and type (numer-
ical and nominal) of attributes, two-classes versus multiple classes and number
of examples. A population of 400 elements has been used with a probability of
0.095 for reproduction, 0.890 for crossover and 0.01 for mutation. The maximum
depth of the new generated subtrees is 4 for the step of population initialisation,
5 for crossover and 2 for mutation. The algorithm stops after 200 generations.
In table 2 the results generated by C4.5 with pruning compared with those of
CGP/SA are shown. The results of CGP/SA have been obtained by running the
algorithm 10 times. In the table the best result, with respect to the misclassifica-
tion error on the test set, is shown along with the average result in parenthesis. It
is clear from the table that the trees generated by the CGP/SA algorithm with
respect to C4.5 are smaller, for almost all the dataset, they have a misclassifica-
tion error on the training set comparable, but, more important, they generalise
better than C4.5. In particular, for the cancer, monk1 and monk3 datasets the
results are very good. The tree obtained for the cancer dataset contains 9 nodes
with respect to 41 of C4.5 and the test error is 18.95 instead of 30.6. The tree
generated for monk1, with a size of 37, is able to correctly classify both the

training and the test sets. The decision tree for monk3, although has a tree size
of 17 nodes with respect to 12 of C4.5, it has an error of 4.92 on the training
set, with respect to 6.6 of C4.5 and correctly generalise to the test set. For these
two last datasets, C4.5 is not able to find the correct tree.

In table 3 the results of the CGP/SA and the CGA methods are presented
on a bigger set of examples of those reported in [4]. Both algorithms stops after
200 generations. The behaviour of CGP/SA is almost always better than CGP.
For example, for the Australian and German databases CGA obtains a size of
69 and 66 respectively, while CGA/SA obtains 30 and 44. Thus it seems that
the method takes advantages of the introduction of simulated annealing strategy
which is essentially based on allowing the substitution of the current string with a
high probability when the temperature is high, and with a decreasing probability
as long as the temperature diminishes. A better tuning of the parameters and
the effect of population size could improve the performance of the method.

7 Conclusions and Future Work

A new approach to data classification based on a cellular genetic programming
framework, augmented with simulated annealing technique, has been presented.
The introduction of SA strategy to decide the acceptance of a new individual
proved to be profitable. The approach showed to outperform Quinlan’s C4.5
method by generating both smaller and more accurate trees on standard ma-
chine learning problems. The sequential implementation of the cellular genetic
programming algorithm, however, needs running times that, as expected, are
not competitive with respect to C4.5. This behaviour is obvious since CGP/SA
manages a population of trees, while C4.5 works with only one tree at a time.
On the other hands C4.5 performances notably degrades as the size of the tree
increases, thus it is not able to deal with real data mining applications, having

301Genetic Programming and Simulated Annealing

Table 1. Databases description

DATABASE ATTRIBUTES TUPLES

Australian 14 690
Cancer 9 286
Crx 15 690
German 20 1000
Heart 13 270
Hypo 29 3772
Iris 4 150
Monk1 6 124
Monk2 6 169
Monk3 6 122
Pima 8 768
Vote 16 435

Table 2. Results generated by C4.5 and CGP/SA

C4.5 CGA/SA

DATABASE Size Training set Test set Size Training set Test set

Australian 60 4.6 12.1 30 (35.0) 10.43 (11.46) 10.00 (11.74)
Cancer 41 19.9 30.6 9 (63.9) 25.67 (22.44) 18.95 (21.25)
Crx 44 5.9 11.7 25 (22.7) 10.41 (12.16) 14.00 (16.15)
German 127 10.2 23.8 44 (46.6) 24.92 (27.44) 22.75 (24.10)
Heart 27 7.2 17.6 30 (18.7) 14.44 (19.22) 12.22 (14.77)
Hypo 21 0.2 0.9 39 (28) 0.60 (0.95) 0.87 (1.25)
Iris 7 1.0 6.3 14 (10.4) 2.00 (2.60) 2.00 (3.80)
Monk1 18 16.1 24.3 37 (40.1) 0 (0) 0 (0)
Monk2 31 23.7 35.0 65 (54) 14.75 (19.10) 30.32 (33.10)
Monk3 12 6.6 2.8 17 (16.8) 4.92 (5.58) 0 (1.90)
Pima 99 6.2 18.3 77 (45.4) 19.14 (24.57) 21.48 (22.34)
Vote 7 4.3 6.9 16 (19) 3.33 (3.77) 2.22 (2.37)

302 G. Folino, C. Pizzuti, and G. Spezzano

Table 3. Results generated by CGA and CGP/SA

hundreds of attributes and thousands of tuples, in reasonable times. Parallel im-
plementation of our method, which is in progress, should successfully cope with
big sized databases.

References

1. M. Chen, J. Han and P.S. Yu (1996). Data Mining: an Overview from Database
Perspective. IEEE Transaction on Knowledge and Data Engineering, 8(6), pp.866-
883.

2. H.Chen, N.S.Flann and D.W.Watson (1998). Parallel Genetic Simulated Anneal-
ing: A Massively Parallel SIMD Algorithm. In IEEE Transaction on Parallel and
Distributed Systems, vol. 9, No.2.

CGA CGA/SA

DATABASE Size Training set Test set Size Training set Test set

Australian 69 (30.1) 10.65 (13.00) 9.56 (11.48) 30 (35.0) 10.43 (11.46) 10.00 (11.74)
Cancer 9 (51.2) 16.23 (22.25) 17.90 (21.05) 9 (63.9) 25.67 (22.44) 18.95 (21.25)
Crx 38 (26.4) 9.18 (11.96) 14.50 (16.15) 25 (22.7) 10.41 (12.16) 14.00 (16.15)
German 66 (61.4) 24.62 (24.56) 21.86 (23.92) 44 (46.6) 24.92 (27.44) 22.75 (24.10)
Heart 31 (32.9) 16.67 (17.50) 12.22 (14.87) 30 (18.7) 14.44 (19.22) 12.22 (14.77)
Hypo 30 (25.9) 0.48 (1.23) 0.87 (1.59) 39 (28) 0.60 (0.95) 0.87 (1.25)
Iris 15 (9.9) 2.00 (2.30) 2.00 (4.00) 14 (10.4) 2.00 (2.60) 2.00 (3.80)
Monk1 37 (39.4) 0 (0) 0 (0) 37 (40.1) 0 (0) 0 (0)
Monk2 21 (33.4) 27.87 (25.16) 32.18 (34.07) 21 (32.9) 27.87 (25.98) 32.17 (33.56)
Monk3 17 (15.4) 4.92 (5.82) 0.0 (1.76) 17 (16.8) 4.92 (5.58) 0 (1.90)
Pima 69 (43.2) 22.65 (24.08) 20.70 (22.15) 77 (45.4) 19.14 (24.57) 21.48 (22.34)
Vote 13 (27.40) 4.67 (4.53) 2.22 (2.58) 16 (19) 3.33 (3.77) 2.22 (2.37)

3. U.M. Fayyad, G. Piatesky-Shapiro and P. Smith (1996). From Data Mining to
Knowledge Discovery: an overview. In U.M. Fayyad & al. (Eds) Advances in Knowl-
edge Discovery and Data Mining, pp.1-34, AAAI/MIT Press.

4. G. Folino, C. Pizzuti and G. Spezzano (1999). A Cellular Genetic Programming Ap-
proach to Classification. Proc. Of the Genetic and Evolutionary Computation Con-
ference GECCO99, Morgan Kaufmann, pp. 1015-1020, Orlando, Florida.

5. A.A. Freitas (1997). A Genetic Programming Framework for two Data Mining Tasks:
Classification and Generalised Rule Induction. GP’97: Proc. 2nd Annual Conference,
pp.96-101, Stanford University, CA, USA.

6. D.E. Goldberg (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Welsey.

7. S. Kirkpatrick, C. D. Gellant and M. P. Vecchi (1983). Optimization by Simulated
Annealing. Science 220, pp. 671-680.

8. F. T. Lin, C. Y. Kao and C. C. Hsu (1991). Incorporating Genetic Algorithms
into Simulated Annealing. Proc. Fourth Int. Symposium Artificial Intelligence, pp.
290-297.

303Genetic Programming and Simulated Annealing

9. J. R. Koza (1992). Genetic Programming: On Programming Computers by Means
of Natural Selection and Genetics, MIT Press.

10. J. R. Koza and D.Andre (1995) Parallel genetic programming on a network of
transputers. Technical Report CS-TR-95-1542, Computer Science Department, Stan-
ford University.

11. N.I. Nikolaev and V. Slavov (1997). Inductive Genetic Programming with Decision
Trees. Proceedings of the 9th International Conference on Machine Learning, Prague,
Czech Republic, April 1997.

12. R.E. Marmelstein and G.B. Lamont (1998). Pattern Classification using a Hybrid
Genetic Program - Decision Tree approach. Proceedings of the Third Annual Confer-
ence on Genetic Programming, Morgan Kaufmann.

13. W.N. Martin, J. Lienig and J. P. Cohoon (1997), Island (migration) models:
evolutionary algorithms based on punctuated equilibria, in T. Back, D.B. Fogel,
Z. Michalewicz (eds.), Handbook of evolutionary Computation. IOP Publishing and
Oxford University Press.

14. C.J. Merz and P.M. Murphy (1996). UCI repository of Machine Learning.
http://www.ics.uci/mlearn/MLRepository.html.

15. C. C. Pettey (1997), Diffusion (cellular) models, in T. Back, D.B. Fogel, Z.
Michalewicz (eds.), Handbook of evolutionary Computation. IOP Publishing and Ox-
ford University Press.

16. G. Piatesky-Shapiro and W. J. Frawley (1991). Knowledge Discovery in Databases.
AAAI/MIT Press.

17. J. Ross Quinlan (1993). C4.5 Programs for Machine Learning. San Mateo, Calif.:
Morgan Kaufmann.

18. M.D. Ryan and V.J. Rayward-Smith (1998). The Evolution of Decision Trees.
Proceedings of the Third Annual Conference on Genetic Programming, Morgan Kauf-
mann.

19. W.A. Tackett (1993). Genetic Programming for feature discovery and image dis-
crimination. Proceedings of the Fifth International Conference on Genetic Algorithms.

20. W.A. Tackett and A. Carmi. Simple Genetic Programming in C. Avail-
able through the genetic programming archive at ftp://ftp.io.com/pub/genetic-
programming/code/sgpc1.tar.Z.

21. T. Toffoli and N. Margolus (1986). Cellular Automata Machines A New Environ-
ment for Modeling. The MIT Press, Cambridge, Massachusetts.

22. D.Whitley (1993). Cellular Genetic Algorithms. Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, Morgan Kaufmann.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

