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and Its Application to Flowshop Scheduling
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Abstract—In this paper, we propose a hybrid algorithm for £(x)
finding a set of nondominated solutions of a multi-objective 2
optimization problem. In the proposed algorithm, a local search 4 P\
procedure is applied to each solution (i.e., each individual) gen- o L
erated by genetic operations. Our algorithm uses a weighted sum ° o ® B
of multiple objectives as a fitness function. The fitness function is o|lw? L
utilized when a pair of parent solutions are selected for generating 0© © oC
a new solution by crossover and mutation operations. A local o o e
search procedure is applied to the new solution to maximize o © Wb ®
its fitness value. One characteristic feature of our algorithm is oo oo ° 5 o
to randomly specify weight values whenever a pair of parent o o .0 ®
solutions are selected. That is, each selection (i.e., the selection of o %00 OW _, ep
two parent solutions) is performed by a different weight vector. 0 o) ° , fl(x)

Another characteristic feature of our algorithm is not to examine

all neighborhood solutions of a current solution in the local search rig 1. Nondominated solutions (closed circles) and dominated solutions
procedure. Only a small number of neighborhood solutions are (gpen circles).

examined to prevent the local search procedure from spending

almost all available computation time in our algorithm. High

performance of our algorithm is demonstrated by applying it to  When we try to implement multi-objective hybrid GA'’s, one

multi-objective flowshop scheduling problems. difficulty lies in determining appropriate search directions for
Index Terms—Genetic algorithms (GA’s), local search, multi- neighborhood search algorithms. This paper proposes a multi-
objective optimization, scheduling, search direction. objective genetic local search algorithm in which a simple but
efficient idea for coping with this difficulty is employed.
|. INTRODUCTION Our multi-objective genetic local search algorithm tries to

ENETIC algorithms (GA's) [1] have been successfullfmd all nondominated solutions of an optimization problem

. . o ith multiple objectives. Let us consider the following multi-
applied to various optimization problems (see, for ex-

ample, Goldberg [2] and Davis [3]). The extension of GA’s tgbjec'uve optimization problem with objectives:

multi-objective optimization was proposed in several manners Maximize fi(z), fo(z), - -, fulz) (1)
(for example, see Schaffer [4], Kursawe [5], Hahal. [6], I .
Fonseca and Fleming [7], [8], Murata and Ishibuchi [9], anwhere £1(), f2(), -+, fa(-) aren objectives to be maxi-

Tamakiet al. [10]). In this paper, we proposeamulti-objectivémzed' When the following inequalities hold between two

genetic local search algorithm, which is a hybrid algorithm of§plutionsz and g, the solutiony is said to dominate the

multi-objective GA [9] and a modified local search proceduréomtion z:

Many hybrid.algorithms [11]-[15] of GA’s and neighbor_hood Vi fi(x) < fi(y) and 3j: fi(x) < f;(y). (2)
search algorithms (e.g., local search, simulated annealing, and o ) _

tabu search) were proposed for single-objective optimizatiéh@ Selution is not dominated by any other solutions of the
problems to improve the search ability of GA’s, and theimulti-objective opt|m|zat|on !oroblem, that solution is _sa|d
high performance was reported in the literature. In thod@ Pe @ nondominated solution. Examples of nondominated
studies, it was clearly shown that the performance of GAgolutions are shown in Fig. 1, where dominated solutions
for traveling salesman problems and scheduling problerd8d nondominated solutions are depicted by open circles and
was significantly improved by combining neighborhood sear@sed circles in a two-dimensional (2-D) objective space,
algorithms. While we can expect significant improvement ¢€SPectively. The 2-D objective space in Fig. 1 corresponds
the performance of multi-objective GA's by such hybridizal® the following two-objective optimization problem:

tion, multi-objective hybrid GA’s have not been proposed. Maximize fi(z) and fa(z). A3)
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apply GA’s to the multi-objective optimization problem, wewe specify the weight values by (7) whenever a pair of parent
have to evaluate a fitness value of each solution. We definsautions are selected. These randomly specified weight values
fithess function of the solution by the following weighted are also used in a local search procedure because the local
sum of then objectives: search is performed to maximize the fitness function in (4). In
our hybrid algorithm, the local search is applied to each new
f@) =wifil@) +wafol@) + -+ wnfalz) ) oo ion generated by the genetic operations (i.e., selection,
wherews, - - -, w, are nonnegative weights for the objec- crossover, and mutation). The fitness function of the new
tives, which satisfy the following relations: solution is defined by the weight values that were used for
w >0 for i=1.92 - n 5) selecting its parent solutions..Thl.Js, the sgarch directipn of
‘= T the local search for each solution is determined by the fithess
wi +wy+ - +w, = 1. (6) function used in the selection of its parent solutions. In this
manner, each solution has its own direction of the local search.
If we use constant weight values, the search direction s, both the selection operation and the local search have
GA's is fixed. For example, the search directiefi in Fig. 1 various search directions in taedimensional objective space
corresponds to the weight vecter’ = (wy, w;) = (0.5, 0.5)  of the multi-objective optimization problem in (1).
in the 2-D objective space. When the search direction isAnother issue to be addressed in the hybrid algorithm is
fixed, it is not easy to obtain a variety of nondominateHow to divide the available computation time between the local
solutions. In Fig. 1, GA’s with the constant weight vectogsearch and the genetic operations. If we simply combine the
w’ = (wi, w2) = (0.5, 0.5) may easily find the solutions |ocal search with the genetic operations, almost all available
B and C, but it is very difficult to find the solutions A and D.Computation time may be spent by the local search and only a

An alternative approach is to choose one ofthebjectives few populations are generated by the genetic operations. This
as a fitness function of each solution. For example, Schaffglecause a time-consuming local search procedure is iterated
[4] divided a population (i.e., a set of solutions) inio for each solution generated by the genetic operations until a
subpopulations, each of which was governed by one of thgally optimum solution is found. In order to prevent the
n objectives. Kursawe [5] suggested an idea to choose gggal search from spending almost all available computation
of then objectives according to the user definable probabilitime, we propose an idea to restrict the number of solutions
assigned to each objective. Thus, GA’s hasearch directions examined for each move in the local search. In conventional
in Schaffer [4] and Kursawe [5]. We show the search directiofscal search procedures, the local search is terminated when a
w® andw* of these approaches in Fig. 1 for the case of theetter solution than the current one is not found by examining
two-objective optimization problem in (3). As we can exped|| neighborhood solutions. On the other hand, in our local
from Fig. 1, these approaches with the search directiofis search procedure, the local search is terminated when a better
and w® can easily find the solutions A and D, but it is nokolution is not found by examining a prespecified number
easy to find the solutions B and C. (say, k) of randomly selected neighborhood solutions. That

From the above discussions, we can see that neither {§eif there is no better solution among randomly seledted
constant weight value approach nor the choice of one objectiygighborhood solutions, the local search is terminated. When
is appropriate for finding all of the nondominated solutionge assign a very small value to (e.g., ¥ = 2), the local
of the multi-objective optimization problem in (1). This issearch may be terminated soon. Thus, the local search does
because various search directions are required to find a Variﬁ&Y Spend a |0ng Computation time and the genera’[ion update
of nondominated solutions. In order to realize various searpl} the genetic operations can be iterated many times. On the
directions, we suggested an idea of randomly specified weiglgntrary, when we assign a large valuektge.g.,k = 100),
values in our former work [9]. The weight values wergymost all computation time may be spent by the local search
determined as and only a few populations can be generated by the genetic
operations. In this manner, we can adjust the computation time
spent by the local search.

The proposed hybrid algorithm is applied to multi-objective
where random;, randoms, -- -, random,, are nonnegative flowshop scheduling problems. Flowshop scheduling is one
random real numbers (or nonnegative random integers).oft the most well-known scheduling problems. Since John-
should be noted that the weight values are specified by &)n’s work [16], various scheduling criteria have been con-
whenever a pair of parent solutions are selected for generatsigered (see, for example, reviews by Baker and Scudder
a new solution by a crossover operation. For example, whElY] and Dudeket al. [18]). Among them are makespan,

N pairs of parent solutions are selected for generate a nevaximum tardiness, total tardiness, maximum flowtime, and
population, N different weight vectors are specified by (7)total flowtime. Several researchers extended single-objective
This means thatV search directions are utilized in a singldlowshop scheduling problems to multi-objective problems.

generation of GA’s. In other words, each selection (i.e., tHeor example, Daniels and Chambers [19] considered the
selection of two parent solutions) is governed by its own fitnegmdeoff between the makespan and the maximum tardiness.
function. Rajendran [20] proposed a branch-and-bound algorithm and

In the multi-objective genetic local search algorithm in thisvo heuristic algorithms to minimize the total flowtime with
paper, we use the same idea as in our former work [9]. That&sconstraint condition on the makespan. Morizatal. [21]

w; = random,; /(randomy + - - - + random,,)
i21,2,"',ﬂ (7)
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proposed a modified random sampling method for obtaining £(x)

a set of nondominated solutions of a flowshop scheduling i

problem with two objectives: to minimize the makespan and o L P

the maximum tardiness. A three-objective flowshop scheduling © ]

problem was considered in Morizave al. [22], where the Plo ° o
makespan, the maximum tardiness, and the total flowtime o 740 00
were used as scheduling criteria. In this paper, we apply o o y( d
our hybrid algorithm to the two-objective and three-objective o o OVO °
flowshop scheduling problems in Morizavea al. [21], [22]. 0° © o o/o'o L
By computer simulations on randomly generated test problems, o %00 oo/g ]
we compare our hybrid algorithm with other multi-objective 0 — f1(x)

genetic algorithms and a random sampling technique. While _ o _ _
various approaches have been proposed for multi-objectﬁ}é 2. Various search directions of our hybrid algorithm.
flowshop scheduling problems, they are special-purpose al-

gorithms. That is, each algorithm is only applicable t0 @here f,,.,(¥) is the fitness value of the worst solution in the
special flowshop scheduling problem because it was tailorggrrent populationV. That is, finin(¥) = min{ f(z)|z € U}.

by utilizing domain knowledge. For example, some algorithmgccording to this selection probability, a pair of parent solu-
are only applicable to two-machine problems. Other algorithnigns are selected from the current populatibn

can handle only the makespan and the total tardiness agn offspring (i.e., a new solution) is generated by a
objective functions. One advantage of our hybrid algorith@ossover operation from the selected pair of parent solutions.
over those approaches is its generality. That is, it is a generhen a mutation operation is applied to the new solution. A
purpose algorithm applicable to any multi-objective flowshogcal search procedure is applied to the new solution after the
scheduling problems with many machines and many objagutation. The local search tries to maximize the fitness value
tives. Actually, our hybrid algorithm is applicable to nofje. the weighted sum of the objectives defined by (4)] of
only flowshop scheduling problems, but also to any oth@fe new solution. This means that the direction of the local
multi-objective optimization problems by adjusting genetigearch of the new solution is defined by the weight values

operations and a local search procedure. _ used in the selection of its parent solutions.
The organization of this paper is as follows. Section Il ex- when another pair of parent solutions are selected, we ran-
plains each step of the proposed hybrid algorithm. Section Hbmly specify then weight values 1, w,, - --, w,) again.

illustrates the proposed algorithm by small-size multi-objectivenat is, we use a different weight vector for the selection of
optimization problems. Section Ill also demonstrates that tlagch pair of parent solutions. Because the local search for a
proposed algorithm can find nondominated solutions of f@w solution uses the same weight values as in the selection of
multi-objective optimization problem with a nonconvex feasits parent solutions, each new solution has its own local search
ble region in the objective space. Section IV compares the pifirection. Thus, the selection and the local search in our hybrid

posed algorithm with other multi-objective GA’s by applyingagorithm have various search directions, as shown in Fig. 2.
them to multi-objective flowshop scheduling problems. High

performance of the proposed algorithm is demonstrated by
various computer simulations. Section V concludes this papBr. Local Search Procedure
As is explained in the above, a local search procedure is
Il. PROPOSEDALGORITHM a}pplieq to each new solution generated by the genet.ic opera-
i ) . ) . tions (i.e., selection, crossover, and mutation) to maximize its
In this section, we propose a hybrid algorithm to finginess valuef(x) in (4). The local search is also applied to
all nondominated solutions of the-objective optimization 4ite solutions inherited from previous populations.
problem in (1): Maximizef, (z), fa(), ---, fu(®)- Generally, a local search procedure can be written as
follows.
A. Selection Operation Local Search Procedure:
When a pair of parent solutions are to be selected from aStep 0) Specify an initial solutioms.
current population for generating an offspring by a crossover Step 1) Examine a neighborhood solutigrof the current

operation, first then weight values 4, wo, ---, w,) are solution x.
randomly specified by (7) and then a fitness value of eachStep 2) Ify is a better solution thag [i.e., f(z) < f(y)],
solution z in the current populationl is calculated as the replace the current solutiom with y (i.e., let
weighted sum of then objectives by (4). The selection z: = y) and return to Step 1).
probability P(x) of each solutione is defined by the roulette  Step 3) If all of the neighborhood solutions of the current
wheel selection using the linear scaling (see Goldberg [2]) as solution z have been already examined (i.e., if
w there is no neighborhood solution that improves
P(x) = F(#@) = fin(¥) (8) x), end this procedure. Otherwise, return to Step 1)
Z {f(®) = fain(¥)} [i.e., another neighborhood solution is examined in

rew Step 1)].
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As we can see from Step 3), this local search procedure  cyrrent Next
is terminated when there is no better solution in the neigh-  population population

borhood of the current solutiom. This means that all of
the neighborhood solutions of the current solutiorshould © O
be examined before the procedure is terminated. Therefore, Genetic OX®) Local OO
the total number of solutions examined by this local search © O overations O O search O O
procedure for a single initial solution is more than or equal P O O @ O
to the number of neighborhood solutions. For example, if we O O
define the neighborhood solutions by exchanging arbitrarily
two jobs for a flowshop scheduling problem with 20 jobs, (jpgate Elite Update
the number of the neighborhood solutionsqig?s = 190. solutions
This means that at least 190 solutions are examined before
the local search procedure is terminated for a single initial O O
solution. Therefore, almost all available computation time is @ -l O O
spent by the local search procedure if we apply this local
search procedure to each new solution generated by the genetic OO
operations in our hybrid algorithm.

If we want to efficiently utilize the global search ability of ~Non-dominated Non-dominated

solutions solutions

GA’s in our hybrid algorithm, we have to reduce the compu-
tation time spent by the local search. This can be realized by. 3. Update of the two sets of solutions stored in our hybrid algorithm.
restricting the number of neighborhood solutions examined by
the local search procedure. In our hybrid algorithm, we u
the following modified local search procedure.

Modified Local Search Procedure:

Hondominated solutions is updated at every generation in our

hybrid algorithm.

) - . From the tentative set of nondominated solutions, a few
Step 0) Specify an initial solutiom. solutions are randomly selected as initial solutions of the local
Step 1) Examine a neighborhood solutigrof the current gearch. That is, the local search is applied to the selected

solution z. _ nondominated solutions as well as new solutions generated
Step 2) Ify is a better solution tham, replace the current j,y the genetic operations. The direction of the local search
solutionz with y and return to Step 1). for each nondominated solution is determined by the fitness
Step 3) If randomly chosei neighborhood solutions of fnction (i.e., the weighted sum of the objectives) used in
the current solution: have been already examinegne selection of its parent solutions. If a nondominated solution
(i.e., if there is no better solution among the exgoes not have parent solutions (i.e., if a nondominated solution
amined & neighborhood solutions af), end this g 5 randomly generated initial solution), random weight values
procedure. Otherwise, return to Step 1). are assigned to that nondominated solution to perform the local
This algorithm is terminated if no better solution is foundearch. The randomly selected nondominated solutions may be
amongk neighborhood solutions that are randomly selectegewed as kinds of elite solutions because they are added to
from the neighborhood of the current solution. Therefore, ife current population with no genetic operations. Update of
we use a very small value df (e.g.,k = 2), the local search the current population and the tentative set of nondominated

procedure may be terminated soon. On the contrary, if we ussiutions are illustrated in Fig. 3.

a large value of: (e.g.,k = 100), the local search procedure

examines many solutions. In this manner, we can adjust the Multi-Objective Genetic Local Search Algorithm

computation time spent by the local search procedure in our, . .
hybrid algorithm. Let us denote the population size B¥,.,. We also denote

the number of nondominated solutions added to the current
population by N (i.€., Naite IS the number of elite so-
C. Elitist Strategy lutions, see Fig. 3). Our hybrid algorithm can be written as

Our hybrid algorithm stores two sets of solutions: a curreffllows. o o
population and a tentative set of nondominated solutions. AfterStep 0) Initialization: Randomly generate an initial popu-

the local search, the current population is replaced with the lation of Ve, solutions.

improved population by the local search (i.e., the currentStep 1) Evaluation: Calculate the values of thebjectives
population is improved by the local search) and then the for each solution in the current population, and then
tentative set of nondominated solutions is updated by the update the tentative set of nondominated solutions.
new current population. That is, if a solution in the current Step 2) Selection: Repeat the following procedures to se-
population is not dominated by any other solutions in the lect (Vpop — Netite) pairs of parent solutions.
current population and the tentative set of nondominated a) Randomly specify the weight valuesv,
solutions, this solution is added to the tentative set. Then wa, -+, wy N the fitness function (4) by (7).

all solutions dominated by the added one are eliminated b) According to the selection probability in (8),

from the tentative set. In this manner, the tentative set of select a pair of parent solutions.
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TABLE | TABLE I
PrROCESSING TIME OF EACH JoB ON EACH MACHINE Due DATE oF EAcH JoB IN THE TEN-JOB AND FIVE-MACHINE TEST PROBLEM
IN THE TEN-JOB AND FIVE-MACHINE TEST PROBLEM

Jobl Job2 Job3 Job4 JobS Job6 Job7 Job8 Job9 Job 10
Job1l Job2 Job3 Job4 JobS Job6 Job7 Job8 Job9 Job10 674 396 431 369 626 597 790 437 656 780
Machine 1__ 32 1 61 42 62 61 3 97 26 9
Machine 2 21 27 87 45 59 24 71 34 20 28
Machine3 10 42 66 75 41 24 3 36 85 74

Machine 4 51 19 23 85 86 81 93 31 75 23 Parent 1 I” IJZ I 13 | J4 | IS | J16 l 17 IJS I 19 IJIOI
Machine 5 33 45 58 97 91 85 30 38 17 51

offspring [71 [32 35 [13]J6 [17 34 Lig Juo Jiio]

Step 3) Crossover and Mutation: Apply a crossover oper-
ator to each of the selectedVfo,—Nelite) pairs of
parent solutions. A new solution is generated from  Parent2 [J5 [J3 [ J6 JJ9JIi0f Ji §J7 | J2]J4 |8
each pair of parent solutions. Then apply a mutation )
operator to the generated new solutions. Fig. 4. Two-point crossover.

Step 4) Elitist Strategy: Randomly seleft,;,. solutions
from the tentative set of nondominated solutiongyere considered in Morizawet al. [21]. Because the variance
and then add the selecté¥.j;. solutions to the of the makespan is much smaller than that of the maximum
(Npop—Netite) Solutions generated in Step 3) tdardiness, we normalize these two scheduling criteria and
construct a population aiV,.,, solutions. specify the following two objectives:

Step 5) Local Search: Apply the modified local search e
procedure in Section II-B to allV,,, solutions fil@) =5 (mak.espa)'l _ (10)
in the current population. The search direction of fa(x) =2 > (maximum tardinegs (11)

the local search for each solution is specified Byhere  is a feasible solution of the flowshop scheduling
the weight values in the fitness function by whicly ¢ . is a permutation of the given jobs). Constant multipliers
its parent solutions were selected. The curreqf 10y and (11) were introduced to handle the two scheduling

population is replaced with théVp,o, SolUtions  criteria equally. Using (10) and (11), our test problem can be
improved by the local search. written as follows.

Step 6) Termination Test: If a prespecified stopping con- 1est Problem 1:
dition is satisfied, end the algorithm. Otherwise, o
return to Step 1). Minimize fi(z) and fo(x).

I1l. I LLUSTRATION OF THE PROPOSEDALGORITHM Because these two objectives should be minimized, we
In this section, we illustrate the proposed hybrid algorithiiefine the fitness function as
by applying it to a small size flowshop scheduling problem

" : . . = — — . 12
and a simple test problem with a nonconvex feasible region. (@) = —wi fi(®) = wa folw) (12)
This fitness function is used in the selection and the local
A. Application to a Flowshop Scheduling Problem search of our hybrid algorithm.

We generated a ten-job and five-machine f|OWSh0p sche _AS a crossover operator, we used a two-point crossover

uling problem as a small-size test problem for illustrating ol ustrated in Fig. 4. A single offspring is generated from two

hybrid algorithm. The processing time of each job on cadiprent solutions, as shown in Fig. 4. As a mutation operator,

machine was specified as a random integer in the interVi§ use a shift mutation illustrated in Fig. 5, where a randomly
[1, 99]. The due date of each job was specified as follows selected job is removed and inserted into a randomly selected

. ition. High f f th ti t
1) Randomly generate a sequence of the ten jobs. position. High performance of these genetic operators was

) . ) demonstrated in Murata and Ishibuchi [15] for single-objective
2) Calculate the completion time of each job when thﬁ%owshop scheduling problems to minimize the makespan. For

glp)ven Jobs are processed in the sequence Spec'f'edﬂll% local search, we defined neighborhood solutions by the
o . shift mutation. That is, neighborhood solutions of the current
3) Specify the due date of each job by solution £ are generated by a single application of the shift
d; = ¢; + randonj—100, 100] (9) mutation toz. The total number of the neighborhood solutions
of z is (n — 1)? for n-job flowshop scheduling problems
whered; is the due date of jol, ¢, is the completion (j.e., 81 for our ten-job test problem). The neighborhood
time of job j, and randorp-100, 100] is a random structure defined by the shift mutation was often used for tabu
integer in the interval £100, 100]. search algorithms and simulated annealing algorithms (see, for
We show the processing time and the due date of each @kample, Taillard [23], Osman and Potts [24], and Ishibuchi
specified in this manner in Tables | and Il, respectively. et al. [25]).
For the test problem in Tables | and I, we use two schedul- We applied the proposed hybrid algorithm to Test Problem 1
ing criteria: the makespan and the maximum tardiness, whialith the following parameter specifications: population size:



EREZ £ K6 D A AT
|

v
i s e 7 LIa ] 99 [0

ISHIBUCHI AND MURATA: GENETIC LOCAL SEARCH ALGORITHM APPLIED TO FLOWSHOP SCHEDULING

397

® : nitial population
@ : Selected parent solutions

m A new solution

800 T
@700 r e Yo 0
. . . S L [ ] ° Y
Fig. 5. Shift mutation. = 600 ./? .
= L
S 500 ° .o
®& @ : Initial population 400 1
200 ¢ @ : Non-dominated solutions g 300 ..
" . & 200 | .
% 700 [ ® °° 100 F
E 600 [ e o0 °
= e ® 0 : : : :
< 500 | . c
= ® . 650 750 850 950 1050
g 400 F Makespan
g 3001 * . . . . . .
R, Fig. 7. Pair of selected solutions and their offspring generated by the genetic
5200 ® :
0perat|ons.
100 |
0 ‘ I l . e : Before the local search
650 750 850 950 1050 gl :
Makespan O : After the local search
800 [ .
Fig. 6. Initial population and the tentative set of nondominated solutions. 2 700 | . ©
g o
g 600 [ S . [¢]
Npop = 20, crossover probability: 0.9, mutation probability 5 500 [ 0o o
for each string: 0.3, number of elite solution¥y;;,. = 3, g 400 | c
number of neighborhood solutions examined for each move in E 300 b °© Oc(;) o
the local searcht = 2, and stopping condition: evaluation % 200t 0°®
of 10000 solutions. It should be noted that the mutation 100t
probability is assigned not to each position of a string but 0

to each string (i.e., to each solution), as in many GAs' 650 750 850 950 1050
applications to permutation problems (e.g., TSP).

Now we illustrate our hybrid algorithm in Section II-D by . _ _ .
our test problem. In Step 0), our hybrid algorithm randomlzg' iﬁef?r?eljlﬁcflc(;rll ggggithe local search (i.e., after the genetic operations)
generates 20 initial solutions. Then each solution is evaluate '
in Step 1). We show each solution in the 2-D objective space
in Fig. 6. Our hybrid algorithm also updates the tentative set §fcal search in Step 5) for the new solution. That is, the local
nondominated solutions in Step 1). Nondominated solutions§garch is applied to the new solution in Fig. 7 to maximize
the initial population, which are indicated in Fig. 6, are storeife following fitness function:
as the initial tentative set of nondominated solutions. Fl@) = —wifu(x) —

. . = 1J1 iﬂ) w2f2($)

In Step 2), Npop — Netite = 17 pairs of parent solutions .
are selected from the current population by randomly spec- = —0.503f1(z) — 0.497f>(z). (13)
ifying the weight values«,, w) 17 times. For example, a |n Fig. 8, we show the population of 20 solutions before
pair of parent solutions are selected with the weight valugse |ocal search (i.e., closed circles) and after the local search
wy = 0.503 and w; = 0.497. Those parent solutions are(je  open circle). That is, the 20 solutions denoted by closed
shown in Fig. 7. In Step 3), the two-point crossover anglrcles are used as initial solutions of the local search and
the shift mutation are applied to the selected 17 pairs @fe 20 solutions denoted by open circles are obtained by the
parent solutions with the prespecified crossover and mutatiggal search. From the comparison between Figs. 6 and 8, we
probabilities. Thus, 17 new solutions are generated. In Step dan see that the quality of the solutions was improved by the
Neiite soOlutions (i.e., three solutions) are randomly selectgfénetic operations and the local search.
from the tentative set of nondominated solutions and addedThe above procedures [i.e., steps 1)-5)] were iterated until
to the set of the 17 new solutions to form a population ahe prespecified stopping condition was satisfied (i.e., until
20 solutions. In Step 5), the modified local search procedurelio 000 solutions were examined). In our computer simulation,
Section II-B is applied to each solution with= 2. In Fig. 7, the hybrid algorithm was terminated after 158 iterations of
we show a new solution generated by the crossover and the above procedure. Because each generation consisted of
mutation. Because the parent solutions of this new soluti@® solutions, we can see thzi x 158 = 3016 solutions were
in Fig. 7 were selected with the weight valuegs = 0.503 examined in the generation update by the genetic operations.
and wo = 0.497, these weight values are also used in th€he other solutions were examined during the local search.

Makespan
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Fig. 9. Final population. Fig. 11. Search directions of the VEGA and the obtained nondominated
solutions.
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Fig. 10. Final set of nondominated solutions.

Fig. 12. Search direction of the CWGA witlhy = ws = 0.5 and the
. L . . obtained nondominated solutions.
We show the final population in Fig. 9 and the final set of

nondominated solutions in Fig. 10. Because our test problem o _ o
is small, we can examine all feasible solutions (i.e. apearch directions is parallel to one axis of the objective space,

permutations of ten jobs0! = 3628800 solutions). By such &S shown in Fig. 11. On the other hand, we show the search
an enumeration method, we confirmed that all nondominatétiection of the CWGA withw, = w; = 0.5 and the obtained

solutions of our test problem were obtained by the proposB@ndominated solutions in Fig. 12. In the execution of the
hybrid algorithm. That is, 12 solutions in Fig. 10 are alFWGA, we stored the tentative set of nondominated solutions

nondominated solutions of our test problem. in the same manner as in the proposed hybrid algorithm. From
In order to demonstrate the effect of the modificatioi'dS 11 and 12, we can see that neither the VEGA nor the
of the local search, we also applied the hybrid algorithisWGA found all nondominated solutions. These results show

with the original local search procedure in Section II-B téhe effectiveness of variable weight values in the proposed
our test problem. In the original local search procedurBYyPrid algorithm.

all 81 neighborhood solutions of a current solution were

examined for each move in the local search. The hybri Application to a Test Problem with a Nonconvex

algorithm was iterated four times while 10000 solutioneasible Region

were examined. This means that the generation update WaWeighted_Sum approaches usua”y do not work well for
iterated only four times. Thus, we can see that almost all gfulti-objective optimization problems with nonconvex feasi-
the computation time was spent by the local search. Thrg regions in objective spaces. In this subsection, we demon-
solutions out of the 12 nondominated solutions in Fig. 1&rate that the proposed hybrid algorithm can handle such a
were not found by the hybrid algorithm with the original locaulti-objective optimization problem. As a test problem, let

search. From this result, we can see that the modification @ consider the following two-objective optimization problem.
the local search has a good effect on the performance of therest Problem 2:

hybrid algorithm.

For comparison, we also applied the vector evaluated gelinimize  fi(z) =2\/z1 and fo(z) =21(1 —22) +5
netic algorithm (VEGA) by Schaffer [4] and a constant weight (14)
gfenet_ic algorithm (CWGA). In Fig. 1_1, we show _the search subjectto 1<z, <4 and 1<y <2 (15)
directions of the VEGA and the obtained nondominated solu-
tions. We can see from Fig. 11 that all nondominated solutionderexz = (1, x2). This test problem was used for examining
were not found by the VEGA. This is because each of isome multi-objective GA’s in Tamakét al. [10]. We show
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Fig. 13. Feasible region and nondominated solutions of Test Problem 2.Fig. 14. Final population.

the feasible region of this test problem and the nondominated 507
solutions in the 2-D objective space in Fig. 13. From Fig. 13, 40 : :
we can see that this test problem has the nonconvex feasible
region. 3071
Because the two objectives of Test Problem 2 should be f2(%)
L i~ ; . . 2.0
minimized, we specified the fitness function of each solution
z by (12), as in Test Problem 1. In the same manner as in 1.0}
Tamaki et al. [10], we denoted each decision variable by 00

a 10-bit string. For example 15 20 25 30 35 40

z1 = 1010101000 and z» = 1111010100. (16) S1(x)

Thus, each solutiomr = (371, $2) of the test problem was Fig. 15. Final set of nondominated solutions.
denoted by a 20-bit string. For example

z — 10101010001111010100. (17) (i-e., all permutations of 20 jobs) is over'f0Thus, we cannot
apply enumeration methods to this problem.
For 20-bit strings, we used a two-point crossover and the stanAs scheduling criteria, we used the makespan, the maxi-
dard bit mutation (i.e.p) — 1 and1 — 0) in the same manner mum tardiness, and the total flowtime as in Morizaetaal.
as in Tamaket al.[10]. We applied the proposed algorithm td21], [22]. Using these scheduling criteria, we specified the
the test problem with the following parameter specificationfollowing three objectives:
population sizeV,., = 100; crossover probability: 0.9; mu-

tation probability for each bit: 0.01; number of elite solutions: i) =5x (mak.espa}n _ (18)
Neite = 5; number of neighborhood solutions examined for f2(z) =2 x (maximum tardiness (19)
each move in the local search:= 0; and stopping condition: J3(x) =1 x (total flowtime). (20)

20 generations. These parameter specifications are similar to
those in Tamaket al.[10]. Because this test problem is simple, N computer simulations, we examined the following test
we did not use the local search in the proposed method. ThREQblems.
we specifiedk ask = 0. Test Problem 3:
We show the final population and the final set of nondomi- Minimize fi(z) and f:(x)
nated solutions in Figs. 14 and 15, respectively. From Fig. 15,
we can see that nondominated solutions on the nonconveXest Problem 4:
surface of the feasible region were obtained by the proposed

algorithm. Minimize fi(x), fo(z), and fs(z).
Test Problem 3 seems to be the same as Test Problem 1 in
IV. COMPARISON WITH OTHER APPROACHES Section IlI-A, but the problem size is different. Test Problem

In this section, we examine the performance of the proposads a 20-job and ten-machine problem, while Test Problem 1
hybrid algorithm by computer simulations on two-objectivavas a ten-job and five-machine problem. For Test Problem 4,
and three-objective flowshop scheduling problems. we used the following fitness function:

A. Test Problems f(@) = —wifi(x) — w2 fo(x) — ws f3(x). (21)

In the same manner as in Section lll-A, we generated aWe applied the following four methods to these two test
20-job and ten-machine flowshop scheduling problem. Tioblems to compare their performance:
size of this problem is much larger than that of Test Problem1) proposed hybrid algorithm with = 2 and N = 3;
1 in Section lll-A. The total number of feasible solutions 2) VEGA in Schaffer [4];
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Fig. 16. Solutions obtained by the proposed hybrid algorithm and the rand@iig. 17. Solutions obtained by the VEGA and the CWGA.
sampling method.

TABLE Il
P i _ SIMULATION RESULTS OF A SINGLE TRIAL
3) CWGA (Fhe weight values were specified ag = or Ench ALGORITM tom Tear ProBLEM 3
wg = 0.5 in Test Problem 3 and; = ws = w3 =1/3
in Test Problem 4), Algorithm The numbér of obtained Th_e number n}cnom Ratio:
4) random sampling method (a large number of feasible : solutions (A) dominated solutions (B) B/A
. _Hybrid 16 11 69%
schedules are randomly generated and each schedule iSygga 13 7 54%
evaluated in this method). CWGA 9 4 44%
Random 9 0 0%

The first three methods were applied to the test problems
with the same parameter specifications: population size: TABLE IV

Npop = 20; crossover probability: 0.9; mutation probabilityaverace Resuirs Over 20 TriaLs OF EACH ALGORITHM FOR TEST PROBLEM 3
for each string: 0.3; and stopping condition: evaluation

of 100000 solutions. In the random sampling method, we aigorithm The“?;ﬁﬁf;fsf(":)‘ained dog’;:;’(’i‘i’:u‘;for:;"('m Ratic:
exa_tmmed ZOQOOOO feasible so!unons of each test problem 0 8.60 15.50 32.5%
which are 20 times as many as in the other three methods.___vEca 1535 675 44.0%
CWGA 11.65 2.75 23.1%
Random 10.65 0.00 0.0%

B. Simulation Results for Two-Objective

Flowshop Scheduling Problems TABLE V

AVERAGE CPU TiME OF EACH ALGORITHM FOR TEST PROBLEM 3

We applied the proposed hybrid algorithm, VEGA in Schaf-
fer [4], CWGA, and the random sampling method to Test
Problem 3. Nondominated solutions obtained by each method

are shown in E|gs. 16 and 17. From Figs. 16 and 17, we ¢ |.ne., 11 solutions: 69% of the obtained solutions) are not
see the following.

i ) dominated by any other solutions.

1) Some solutions obtained by the VEGA have very small gecqse all four algorithms are probabilistic search meth-
values of the makespan, a_nd others h{?\ve Very SMals, their performance cannot be evaluated by a single trial.
values of the maximum tardiness (see Fig. 17). BUt iy ,s e applied each algorithm to Test Problem 3, 20 times.
solutions obtained by the VEGA have very small valué§, each trial, obtained solutions by the four algorithms were
of both objectives if compared with nondominated SGs,mnareq in the same manner as in Table Ill. The average

lutions obtained by the proposed hybrid algorithm (s&&.tormance of each algorithm over the 20 trials is shown in

Fig. 16)-_ ] ] . Table IV. From Table IV, we can also see the high perfor-
2) The variety of solutions obtained by the CWGA is Nof,o1ca of the proposed hybrid algorithm.

large (se_e Fig. 17)'_ . The average CPU time of each algorithm is shown in
3) The quality of solutions obtained by the random saMpje v From Table V, we can see that the average CPU

pling method is very poor, while it examined much morg e of the three GA's (i.e., the proposed hybrid algorithm,

solutions than the other three algorithms (see Fig. 16}t VEGA and the CWGA) were almost the same. This
In order to clarify these observations, all solutions obtaingdl pecause these three algorithms used the same stopping

by the four algorithms were compared with each other ar@ndition (i.e., evaluation of 100000 solutions).
only nondominated solutions among all obtained solutions

were selected. Some solutions obtained by one algorithm ) o

were dominated by other solutions obtained by other alghy: Simulation Results for Three-Objective

rithms. The number of the nondominated solutions is shovioWwshop Scheduling Problems

in Table Ill. From Table Ill, we can see the high performance In the same manner as in Table IV, we applied the four
of the proposed hybrid algorithm because many solutioatgorithms to Test Problem 4, 20 times. Average results of

Hybrid VEGA CWGA Random
26.58(sce.) 26.23(scc) 29.07(sec) 82 7(scc.)
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TABLE VI simulations on multi-objective flowshop scheduling problems.
AVERAGE RESULTS OF OVER 20 TRIALS OF In this subsection, we discuss the dependency of its per-
EACH ALGORITHM FOR TEST PROBLEM 4 - . . .
formance on parameter specifications. Our hybrid algorithm
Algorithm The number of obtained  The number of non- Ratio: has the following additional parameters that are not used in
solutions (A) dominated solutions (B) B/A standard Single Objective GA’s:

Hybrid 93.75 86.85 92.8% . . .

VEGA 59.45 27.10 45.7% 1) number of neighborhood solutions examined for each
CWGA 38.30 8.10 23.5% move in the local search procedure (i.B),

Random 270 200 0.0% 2) number of nondominated solutions added to the current

population at each generation (i.&ejite);
3) constant multipliers introduced for normalizing differ-
ent objectives [i.e., five for the makespan in (10) and
lvbrid VEGA CWGA Random (18), two for the maximum tardiness in (11) and (19),
-9736.41 -9907.90 -9837.65 -10489.22 . .
and one for the total flowtime in (20)].

the 20 trials of each algorithm are shown in Table VI. From First, we examined the effec_t of the chaice Iofpn the_
Table VI, we can see the high performance of the proposBarformance of our hybrid algorithm by c_omputer simulations
hybrid algorithm because many solutions (i.e., 92.8% of 1! JESt _PLObLem 1 Be'cil;)sehea%h scl)lqtlon of Test PLobIem 1
obtained solutions by the hybrid algorithm) are not dominatéﬂt ten_Jo s has 81 neighborhood so utions, we can cnose any
by any other solutions. integer in the cI_osed mt_erval [0, 81] far. If we speu_ﬂed_k as
Because it is not easy to compare nondominated squtic{ﬁ_s:h 0, Oll” h3|’b”d algorlthm (;educed toha mlﬁltl-ohbjectlve GA

of Test Problem 4 by depicting them in the three-dimensiongft! no local search procedure. On the other hainds 81 .
(3-D) objective space, we use an evaluation method in EL€aNS that the standard local search procedure was used in
bensen [26] to measure the quality of a set of nondominat8t" hyb”d algont_hm. In t.he Same manner as in Se(?tlon I”.’ we
solutions obtained by each algorithm. Let us denote a setacﬂpl'ed our hybrid algorithm to Test Problem 1 using various

nondominated solutions b§2. Then the best solutios™* for values ofk (i.e., k = O’_?’ 2,3, 4,5, 10, 20, 497 81). The_
a given weight vectow = (wy, ws, ws) can be chosen from value of Nt Was specified a®Veie = 4. We iterated this
Q as follows: T computer simulation 100 times for each valuekofin each

trial, we examined whether all 12 nondominated solutions of
f(@") = —wifi(z") — w2 fo(x") — w3 f3(z") this problem in Fig. 10 were obtained (i.e., how many solu-
= max{—w f1(x) — waf2(x) — w3 f3(x)|x € Q}. tions among the 12 nondominated solutions were obtained).
(22) We also calculated the average number of generation updates
in our hybrid algorithm for each value & Simulation results
Esbensen [26] proposed an idea of measuring the quality o&i® summarized in Table VIII, where the successful trial means
set of solutions by calculating the expected valug@f*) over that all 12 nondominated solutions were obtained in that trial.
possible weight vectorsr = (w1, wo, ws). In this paper, we From these results, we can see that good results were obtained
calculate the expected value ffx*) by randomly generating by % = 1-10. From Table VIII, we can also see that only

TABLE VII
AVERAGE QUALITY OF THE SOLUTION SET OBTAINED BY EACH ALGORITHM

10000 weight vectors (sayw!, w2, ---, w!?%%0) by (7). a small number of generations were updated in our hybrid
That is, the quality of the set of nondominated solutiéhs algorithm in the case of a large value bf Because at least
is calculated as follows: Npop - (k + 1) solutions are examined at each generation of

1 1000 ‘ ‘ our hybrid algorithm, the number of generation updates can

() = 10000 Z max{—wi f(z) — w; f(x) be roughly approximated by the following formulation:
=1
i . ~ Nstop
wgf(.’l:)|.’l,' S Q} (23) Ngeneratlon Npop - (k‘ T 1) (24)

where ¢(?) is the quality of the solution sef? and

w' = (wy, wy, ws), 4 =1,2,---,10000 are randomly g he total number of examined solutions used as the stopping

specified weight values. _ _ condition, andNV,,., is the population size (i.e., the number
For the set of nondominated solutions obtained by each tral solutions at each generation). In Table VIN,.., and
- stop

of each algorithm, we calculated the quality of the solutiog, were specified asV..,, = 10 000 and X, — 20
pop stop — pop — ’

set by (23). We iterated this calculation 20 times for ea%spectively. From Table VIIl. we can see that the above
algorithm to evaluate the average quality of the solution Sgfmyation is a good approximation for the relation between
obtained by each algorithm. Simulation results are summari value ofk and the number of generation updates. In
in Table VII. From Table VII, we can see that the best resulfanera 4 certain number of generation updates are required
(ie., the maximum average quality) was obtained by thg, ghiaining good results by GA's. Thus, we can specify the
proposed hybrid algorithm. value of & by (24) when the number of required generation
updates is given.

Next we examine the dependency of the performance of our

We have already demonstrated high performance of duybrid algorithm on the choice d¥.y;.. In the same manner as
multi-objective genetic local search algorithm by computén Section Ill, we applied our hybrid algorithm to Test Problem

where Ngeneration IS the number of generation updat@g,.o,

D. Discussions on Parameter Specifications
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TABLE VIl
SIMULATION RESULTS WITH VARIOUS VALUES OF k& FOR TEST PROBLEM 1

‘The value of k 0 1 2 3 4 S 10 20 40 81

The number of successful trials 24 36 26 45 29 33 25 20 8 0

The number of obtained solutions  10.26 10.88 10.61 10.76 10.73 10.70 10.57 1024 9.85 848
The number of generation updates  500.0 218.7 138.6 101.7 79.0 64.8 33.1 16.1 8.0 4.1

TABLE IX
SIMULATION RESULTS WITH VARIOUS VALUES OF Ngjjte FOR TEST PROBLEM 1

The value of Nelite 0 1 2 3 4 5 6 7 8 9

The number of successful trials 0 2 16 33 45 43 42 32 39 35

The number of obtained solutions  7.44 920 10.06 10.67 10.76 10.88 11.05 10.76 11.11 10.92

1 using various values oWy (i.€., Naie = 0, 1, ---, 9). simulations on flowshop scheduling problems, high perfor-

The value oft was specified aB = 3. For each value V..., mance of the proposed algorithm was demonstrated. It was
we iterated the computer simulation 100 times. Simulatialso shown that the proposed algorithm can handle a multi-
results are summarized in Table IX. From Table IX, we can sebjective optimization problem with a nonconvex feasible

that the performance of our hybrid algorithm was significantlsegion in the objective space.

deteriorated by specifyiny.j;i. asNejite = 0. This means that

The characteristic features of the proposed hybrid algorithm

elite solutions play a significant role in our hybrid algorithmcan be summarized as follows.

We can also see that the performance of our hybrid algorithmy)
is not sensitive to the choice @.jie if Neite > 3.

Finally, we examine the dependency of the performance
of our hybrid algorithm on the choice of the normalization
factors. Because the weight value for each objective in
the fitness function (4) is randomly specified whenever a pair
of parent solutions are selected in our hybrid algorithm, its 2)
performance is not sensitive to the choice of the normalization
factors. In the computer simulations of the previous sections,
we used the normalization factors (5, 2, 1) for the makespan,
the maximum tardiness, and the total flowtime, respectively.
We performed the same computer simulations without the
normalization factors. Simulation results by our hybrid algo-
rithm without the normalization factors were almost the same 3)
as those with the normalization factors. Only the simulation
results by CWGA were directly affected by the values of
the normalization factors. This is because the fixed search
direction in the CWGA is specified by the values of the
normalization factors. While almost the same results were
obtained by our hybrid algorithm without the normalization 4)
factors for the test problems in this paper, they may remedy
the difficulty in obtaining nhondominated solutions of multi-
objective flowshop scheduling problems when the difference
of the variance of each objective is very large. In such a case,

A weighted sum of multiple objectives is used as a
fithess function in a selection operation. The weight
values in the fitness function are randomly specified
whenever a pair of parent solutions are selected. That
is, each selection is performed with a different weight
vector.

A local search procedure is applied to each new solu-
tion generated by the genetic operations (i.e., selection,
crossover, and mutation). The local search for each new
solution is performed to maximize the fitness function
that was used for selecting its parent solutions. Thus,
each new solution has its own local search direction in
the objective space.

In the local search, all neighborhood solutions of a
current solution are not examined for each move. That
is, the number of examined neighborhood solutions of
a current solution is restricted in the local search. This
is to prevent the local search from spending almost all
available computation time.

A tentative set of nondominated solutions is stored and
updated at every generation. The tentative set is stored
separately from a current population. A few solutions
randomly selected from the tentative set are used as a
kind of elite solutions.

we can determine the value of each normalization factor By,e proposed algorithm is simple, and its computation time is
the inverse of the standard deviation of the correspondigy,qst the same as that of a CWGA with no local search. as

objective. The standard deviation of each objective can Bfown in computer simulations in Section IV. This simplicity
estimated by randomly generating a number of schedules. ;s 5150 an advantage of the proposed hybrid algorithm.
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