
392 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 3, AUGUST 1998

A Multi-Objective Genetic Local Search Algorithm
and Its Application to Flowshop Scheduling

Hisao Ishibuchi,Member, IEEE, and Tadahiko Murata,Member, IEEE

Abstract—In this paper, we propose a hybrid algorithm for
finding a set of nondominated solutions of a multi-objective
optimization problem. In the proposed algorithm, a local search
procedure is applied to each solution (i.e., each individual) gen-
erated by genetic operations. Our algorithm uses a weighted sum
of multiple objectives as a fitness function. The fitness function is
utilized when a pair of parent solutions are selected for generating
a new solution by crossover and mutation operations. A local
search procedure is applied to the new solution to maximize
its fitness value. One characteristic feature of our algorithm is
to randomly specify weight values whenever a pair of parent
solutions are selected. That is, each selection (i.e., the selection of
two parent solutions) is performed by a different weight vector.
Another characteristic feature of our algorithm is not to examine
all neighborhood solutions of a current solution in the local search
procedure. Only a small number of neighborhood solutions are
examined to prevent the local search procedure from spending
almost all available computation time in our algorithm. High
performance of our algorithm is demonstrated by applying it to
multi-objective flowshop scheduling problems.

Index Terms—Genetic algorithms (GA’s), local search, multi-
objective optimization, scheduling, search direction.

I. INTRODUCTION

GENETIC algorithms (GA’s) [1] have been successfully
applied to various optimization problems (see, for ex-

ample, Goldberg [2] and Davis [3]). The extension of GA’s to
multi-objective optimization was proposed in several manners
(for example, see Schaffer [4], Kursawe [5], Hornet al. [6],
Fonseca and Fleming [7], [8], Murata and Ishibuchi [9], and
Tamakiet al. [10]). In this paper, we propose a multi-objective
genetic local search algorithm, which is a hybrid algorithm of a
multi-objective GA [9] and a modified local search procedure.
Many hybrid algorithms [11]–[15] of GA’s and neighborhood
search algorithms (e.g., local search, simulated annealing, and
tabu search) were proposed for single-objective optimization
problems to improve the search ability of GA’s, and their
high performance was reported in the literature. In those
studies, it was clearly shown that the performance of GA’s
for traveling salesman problems and scheduling problems
was significantly improved by combining neighborhood search
algorithms. While we can expect significant improvement of
the performance of multi-objective GA’s by such hybridiza-
tion, multi-objective hybrid GA’s have not been proposed.

Manuscript received July 5, 1996; revised October 22, 1997.
H. Ishibuchi is with the Department of Industrial Engineering, Osaka

Prefecture University, Sakai, Osaka, 599-8531 Japan.
T. Murata is with the Department of Industrial and Systems Engineering,

Ashikaga Institute of Technology, Ashikaga, Tochigi, 326-8558 Japan (e-mail:
murata@ashitech.ac.jp).

Publisher Item Identifier S 1094-6977(98)03906-6.

Fig. 1. Nondominated solutions (closed circles) and dominated solutions
(open circles).

When we try to implement multi-objective hybrid GA’s, one
difficulty lies in determining appropriate search directions for
neighborhood search algorithms. This paper proposes a multi-
objective genetic local search algorithm in which a simple but
efficient idea for coping with this difficulty is employed.

Our multi-objective genetic local search algorithm tries to
find all nondominated solutions of an optimization problem
with multiple objectives. Let us consider the following multi-
objective optimization problem with objectives:

Maximize (1)

where are objectives to be maxi-
mized. When the following inequalities hold between two
solutions and , the solution is said to dominate the
solution :

and (2)

If a solution is not dominated by any other solutions of the
multi-objective optimization problem, that solution is said
to be a nondominated solution. Examples of nondominated
solutions are shown in Fig. 1, where dominated solutions
and nondominated solutions are depicted by open circles and
closed circles in a two-dimensional (2-D) objective space,
respectively. The 2-D objective space in Fig. 1 corresponds
to the following two-objective optimization problem:

Maximize and (3)

As is shown in Fig. 1, multi-objective optimization problems
usually have several nondominated solutions.

The aim of our hybrid algorithm is not to determine a single
final solution but to try to find all nondominated solutions
of the multi-objective optimization problem in (1). When we

1094–6977/98$10.00 1998 IEEE

ISHIBUCHI AND MURATA: GENETIC LOCAL SEARCH ALGORITHM APPLIED TO FLOWSHOP SCHEDULING 393

apply GA’s to the multi-objective optimization problem, we
have to evaluate a fitness value of each solution. We define a
fitness function of the solution by the following weighted
sum of the objectives:

(4)

where are nonnegative weights for the objec-
tives, which satisfy the following relations:

for (5)

(6)

If we use constant weight values, the search direction by
GA’s is fixed. For example, the search direction in Fig. 1
corresponds to the weight vector
in the 2-D objective space. When the search direction is
fixed, it is not easy to obtain a variety of nondominated
solutions. In Fig. 1, GA’s with the constant weight vector

may easily find the solutions
B and C, but it is very difficult to find the solutions A and D.

An alternative approach is to choose one of theobjectives
as a fitness function of each solution. For example, Schaffer
[4] divided a population (i.e., a set of solutions) into
subpopulations, each of which was governed by one of the

objectives. Kursawe [5] suggested an idea to choose one
of the objectives according to the user definable probability
assigned to each objective. Thus, GA’s hadsearch directions
in Schaffer [4] and Kursawe [5]. We show the search directions

and of these approaches in Fig. 1 for the case of the
two-objective optimization problem in (3). As we can expect
from Fig. 1, these approaches with the search directions
and can easily find the solutions A and D, but it is not
easy to find the solutions B and C.

From the above discussions, we can see that neither the
constant weight value approach nor the choice of one objective
is appropriate for finding all of the nondominated solutions
of the multi-objective optimization problem in (1). This is
because various search directions are required to find a variety
of nondominated solutions. In order to realize various search
directions, we suggested an idea of randomly specified weight
values in our former work [9]. The weight values were
determined as

(7)

where are nonnegative
random real numbers (or nonnegative random integers). It
should be noted that the weight values are specified by (7)
whenever a pair of parent solutions are selected for generating
a new solution by a crossover operation. For example, when

pairs of parent solutions are selected for generate a new
population, different weight vectors are specified by (7).
This means that search directions are utilized in a single
generation of GA’s. In other words, each selection (i.e., the
selection of two parent solutions) is governed by its own fitness
function.

In the multi-objective genetic local search algorithm in this
paper, we use the same idea as in our former work [9]. That is,

we specify the weight values by (7) whenever a pair of parent
solutions are selected. These randomly specified weight values
are also used in a local search procedure because the local
search is performed to maximize the fitness function in (4). In
our hybrid algorithm, the local search is applied to each new
solution generated by the genetic operations (i.e., selection,
crossover, and mutation). The fitness function of the new
solution is defined by the weight values that were used for
selecting its parent solutions. Thus, the search direction of
the local search for each solution is determined by the fitness
function used in the selection of its parent solutions. In this
manner, each solution has its own direction of the local search.
Thus, both the selection operation and the local search have
various search directions in the-dimensional objective space
of the multi-objective optimization problem in (1).

Another issue to be addressed in the hybrid algorithm is
how to divide the available computation time between the local
search and the genetic operations. If we simply combine the
local search with the genetic operations, almost all available
computation time may be spent by the local search and only a
few populations are generated by the genetic operations. This
is because a time-consuming local search procedure is iterated
for each solution generated by the genetic operations until a
locally optimum solution is found. In order to prevent the
local search from spending almost all available computation
time, we propose an idea to restrict the number of solutions
examined for each move in the local search. In conventional
local search procedures, the local search is terminated when a
better solution than the current one is not found by examining
all neighborhood solutions. On the other hand, in our local
search procedure, the local search is terminated when a better
solution is not found by examining a prespecified number
(say,) of randomly selected neighborhood solutions. That
is, if there is no better solution among randomly selected
neighborhood solutions, the local search is terminated. When
we assign a very small value to (e.g.,), the local
search may be terminated soon. Thus, the local search does
not spend a long computation time and the generation update
by the genetic operations can be iterated many times. On the
contrary, when we assign a large value to(e.g.,),
almost all computation time may be spent by the local search
and only a few populations can be generated by the genetic
operations. In this manner, we can adjust the computation time
spent by the local search.

The proposed hybrid algorithm is applied to multi-objective
flowshop scheduling problems. Flowshop scheduling is one
of the most well-known scheduling problems. Since John-
son’s work [16], various scheduling criteria have been con-
sidered (see, for example, reviews by Baker and Scudder
[17] and Dudeket al. [18]). Among them are makespan,
maximum tardiness, total tardiness, maximum flowtime, and
total flowtime. Several researchers extended single-objective
flowshop scheduling problems to multi-objective problems.
For example, Daniels and Chambers [19] considered the
tradeoff between the makespan and the maximum tardiness.
Rajendran [20] proposed a branch-and-bound algorithm and
two heuristic algorithms to minimize the total flowtime with
a constraint condition on the makespan. Morizawaet al. [21]

394 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 3, AUGUST 1998

proposed a modified random sampling method for obtaining
a set of nondominated solutions of a flowshop scheduling
problem with two objectives: to minimize the makespan and
the maximum tardiness. A three-objective flowshop scheduling
problem was considered in Morizawaet al. [22], where the
makespan, the maximum tardiness, and the total flowtime
were used as scheduling criteria. In this paper, we apply
our hybrid algorithm to the two-objective and three-objective
flowshop scheduling problems in Morizawaet al. [21], [22].
By computer simulations on randomly generated test problems,
we compare our hybrid algorithm with other multi-objective
genetic algorithms and a random sampling technique. While
various approaches have been proposed for multi-objective
flowshop scheduling problems, they are special-purpose al-
gorithms. That is, each algorithm is only applicable to a
special flowshop scheduling problem because it was tailored
by utilizing domain knowledge. For example, some algorithms
are only applicable to two-machine problems. Other algorithms
can handle only the makespan and the total tardiness as
objective functions. One advantage of our hybrid algorithm
over those approaches is its generality. That is, it is a general-
purpose algorithm applicable to any multi-objective flowshop
scheduling problems with many machines and many objec-
tives. Actually, our hybrid algorithm is applicable to not
only flowshop scheduling problems, but also to any other
multi-objective optimization problems by adjusting genetic
operations and a local search procedure.

The organization of this paper is as follows. Section II ex-
plains each step of the proposed hybrid algorithm. Section III
illustrates the proposed algorithm by small-size multi-objective
optimization problems. Section III also demonstrates that the
proposed algorithm can find nondominated solutions of a
multi-objective optimization problem with a nonconvex feasi-
ble region in the objective space. Section IV compares the pro-
posed algorithm with other multi-objective GA’s by applying
them to multi-objective flowshop scheduling problems. High
performance of the proposed algorithm is demonstrated by
various computer simulations. Section V concludes this paper.

II. PROPOSEDALGORITHM

In this section, we propose a hybrid algorithm to find
all nondominated solutions of the-objective optimization
problem in (1): Maximize .

A. Selection Operation

When a pair of parent solutions are to be selected from a
current population for generating an offspring by a crossover
operation, first the weight values () are
randomly specified by (7) and then a fitness value of each
solution in the current population is calculated as the
weighted sum of the objectives by (4). The selection
probability of each solution is defined by the roulette
wheel selection using the linear scaling (see Goldberg [2]) as

(8)

Fig. 2. Various search directions of our hybrid algorithm.

where is the fitness value of the worst solution in the
current population . That is, .
According to this selection probability, a pair of parent solu-
tions are selected from the current population.

An offspring (i.e., a new solution) is generated by a
crossover operation from the selected pair of parent solutions.
Then a mutation operation is applied to the new solution. A
local search procedure is applied to the new solution after the
mutation. The local search tries to maximize the fitness value
[i.e., the weighted sum of the objectives defined by (4)] of
the new solution. This means that the direction of the local
search of the new solution is defined by the weight values
used in the selection of its parent solutions.

When another pair of parent solutions are selected, we ran-
domly specify the weight values () again.
That is, we use a different weight vector for the selection of
each pair of parent solutions. Because the local search for a
new solution uses the same weight values as in the selection of
its parent solutions, each new solution has its own local search
direction. Thus, the selection and the local search in our hybrid
algorithm have various search directions, as shown in Fig. 2.

B. Local Search Procedure

As is explained in the above, a local search procedure is
applied to each new solution generated by the genetic opera-
tions (i.e., selection, crossover, and mutation) to maximize its
fitness value in (4). The local search is also applied to
elite solutions inherited from previous populations.

Generally, a local search procedure can be written as
follows.

Local Search Procedure:

Step 0) Specify an initial solution.
Step 1) Examine a neighborhood solutionof the current

solution .
Step 2) If is a better solution than [i.e.,],

replace the current solution with (i.e., let
) and return to Step 1).

Step 3) If all of the neighborhood solutions of the current
solution have been already examined (i.e., if
there is no neighborhood solution that improves

), end this procedure. Otherwise, return to Step 1)
[i.e., another neighborhood solution is examined in
Step 1)].

ISHIBUCHI AND MURATA: GENETIC LOCAL SEARCH ALGORITHM APPLIED TO FLOWSHOP SCHEDULING 395

As we can see from Step 3), this local search procedure
is terminated when there is no better solution in the neigh-
borhood of the current solution. This means that all of
the neighborhood solutions of the current solutionshould
be examined before the procedure is terminated. Therefore,
the total number of solutions examined by this local search
procedure for a single initial solution is more than or equal
to the number of neighborhood solutions. For example, if we
define the neighborhood solutions by exchanging arbitrarily
two jobs for a flowshop scheduling problem with 20 jobs,
the number of the neighborhood solutions is .
This means that at least 190 solutions are examined before
the local search procedure is terminated for a single initial
solution. Therefore, almost all available computation time is
spent by the local search procedure if we apply this local
search procedure to each new solution generated by the genetic
operations in our hybrid algorithm.

If we want to efficiently utilize the global search ability of
GA’s in our hybrid algorithm, we have to reduce the compu-
tation time spent by the local search. This can be realized by
restricting the number of neighborhood solutions examined by
the local search procedure. In our hybrid algorithm, we use
the following modified local search procedure.

Modified Local Search Procedure:

Step 0) Specify an initial solution.
Step 1) Examine a neighborhood solutionof the current

solution .
Step 2) If is a better solution than, replace the current

solution with and return to Step 1).
Step 3) If randomly chosen neighborhood solutions of

the current solution have been already examined
(i.e., if there is no better solution among the ex-
amined neighborhood solutions of), end this
procedure. Otherwise, return to Step 1).

This algorithm is terminated if no better solution is found
among neighborhood solutions that are randomly selected
from the neighborhood of the current solution. Therefore, if
we use a very small value of (e.g.,), the local search
procedure may be terminated soon. On the contrary, if we use
a large value of (e.g.,), the local search procedure
examines many solutions. In this manner, we can adjust the
computation time spent by the local search procedure in our
hybrid algorithm.

C. Elitist Strategy

Our hybrid algorithm stores two sets of solutions: a current
population and a tentative set of nondominated solutions. After
the local search, the current population is replaced with the
improved population by the local search (i.e., the current
population is improved by the local search) and then the
tentative set of nondominated solutions is updated by the
new current population. That is, if a solution in the current
population is not dominated by any other solutions in the
current population and the tentative set of nondominated
solutions, this solution is added to the tentative set. Then
all solutions dominated by the added one are eliminated
from the tentative set. In this manner, the tentative set of

Fig. 3. Update of the two sets of solutions stored in our hybrid algorithm.

nondominated solutions is updated at every generation in our
hybrid algorithm.

From the tentative set of nondominated solutions, a few
solutions are randomly selected as initial solutions of the local
search. That is, the local search is applied to the selected
nondominated solutions as well as new solutions generated
by the genetic operations. The direction of the local search
for each nondominated solution is determined by the fitness
function (i.e., the weighted sum of the objectives) used in
the selection of its parent solutions. If a nondominated solution
does not have parent solutions (i.e., if a nondominated solution
is a randomly generated initial solution), random weight values
are assigned to that nondominated solution to perform the local
search. The randomly selected nondominated solutions may be
viewed as kinds of elite solutions because they are added to
the current population with no genetic operations. Update of
the current population and the tentative set of nondominated
solutions are illustrated in Fig. 3.

D. Multi-Objective Genetic Local Search Algorithm

Let us denote the population size by . We also denote
the number of nondominated solutions added to the current
population by (i.e., is the number of elite so-
lutions, see Fig. 3). Our hybrid algorithm can be written as
follows.

Step 0) Initialization: Randomly generate an initial popu-
lation of solutions.

Step 1) Evaluation: Calculate the values of theobjectives
for each solution in the current population, and then
update the tentative set of nondominated solutions.

Step 2) Selection: Repeat the following procedures to se-
lect () pairs of parent solutions.

a) Randomly specify the weight values
in the fitness function (4) by (7).

b) According to the selection probability in (8),
select a pair of parent solutions.

396 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 3, AUGUST 1998

TABLE I
PROCESSINGTIME OF EACH JOB ON EACH MACHINE

IN THE TEN-JOB AND FIVE-MACHINE TEST PROBLEM

Step 3) Crossover and Mutation: Apply a crossover oper-
ator to each of the selected (–) pairs of
parent solutions. A new solution is generated from
each pair of parent solutions. Then apply a mutation
operator to the generated new solutions.

Step 4) Elitist Strategy: Randomly select solutions
from the tentative set of nondominated solutions,
and then add the selected solutions to the
(–) solutions generated in Step 3) to
construct a population of solutions.

Step 5) Local Search: Apply the modified local search
procedure in Section II-B to all solutions
in the current population. The search direction of
the local search for each solution is specified by
the weight values in the fitness function by which
its parent solutions were selected. The current
population is replaced with the solutions
improved by the local search.

Step 6) Termination Test: If a prespecified stopping con-
dition is satisfied, end the algorithm. Otherwise,
return to Step 1).

III. I LLUSTRATION OF THE PROPOSEDALGORITHM

In this section, we illustrate the proposed hybrid algorithm
by applying it to a small size flowshop scheduling problem
and a simple test problem with a nonconvex feasible region.

A. Application to a Flowshop Scheduling Problem

We generated a ten-job and five-machine flowshop sched-
uling problem as a small-size test problem for illustrating our
hybrid algorithm. The processing time of each job on each
machine was specified as a random integer in the interval
[1, 99]. The due date of each job was specified as follows.

1) Randomly generate a sequence of the ten jobs.
2) Calculate the completion time of each job when the

given jobs are processed in the sequence specified in
1).

3) Specify the due date of each job by

random (9)

where is the due date of job, is the completion
time of job , and random is a random
integer in the interval [100, 100].

We show the processing time and the due date of each job
specified in this manner in Tables I and II, respectively.

For the test problem in Tables I and II, we use two schedul-
ing criteria: the makespan and the maximum tardiness, which

TABLE II
DUE DATE OF EACH JOB IN THE TEN-JOB AND FIVE-MACHINE TEST PROBLEM

Fig. 4. Two-point crossover.

were considered in Morizawaet al. [21]. Because the variance
of the makespan is much smaller than that of the maximum
tardiness, we normalize these two scheduling criteria and
specify the following two objectives:

makespan (10)

maximum tardiness (11)

where is a feasible solution of the flowshop scheduling
(i.e., is a permutation of the given jobs). Constant multipliers
in (10) and (11) were introduced to handle the two scheduling
criteria equally. Using (10) and (11), our test problem can be
written as follows.

Test Problem 1:

Minimize and

Because these two objectives should be minimized, we
define the fitness function as

(12)

This fitness function is used in the selection and the local
search of our hybrid algorithm.

As a crossover operator, we used a two-point crossover
illustrated in Fig. 4. A single offspring is generated from two
parent solutions, as shown in Fig. 4. As a mutation operator,
we use a shift mutation illustrated in Fig. 5, where a randomly
selected job is removed and inserted into a randomly selected
position. High performance of these genetic operators was
demonstrated in Murata and Ishibuchi [15] for single-objective
flowshop scheduling problems to minimize the makespan. For
the local search, we defined neighborhood solutions by the
shift mutation. That is, neighborhood solutions of the current
solution are generated by a single application of the shift
mutation to . The total number of the neighborhood solutions
of is for -job flowshop scheduling problems
(i.e., 81 for our ten-job test problem). The neighborhood
structure defined by the shift mutation was often used for tabu
search algorithms and simulated annealing algorithms (see, for
example, Taillard [23], Osman and Potts [24], and Ishibuchi
et al. [25]).

We applied the proposed hybrid algorithm to Test Problem 1
with the following parameter specifications: population size:

ISHIBUCHI AND MURATA: GENETIC LOCAL SEARCH ALGORITHM APPLIED TO FLOWSHOP SCHEDULING 397

Fig. 5. Shift mutation.

Fig. 6. Initial population and the tentative set of nondominated solutions.

, crossover probability: 0.9, mutation probability
for each string: 0.3, number of elite solutions: ,
number of neighborhood solutions examined for each move in
the local search: , and stopping condition: evaluation
of 10 000 solutions. It should be noted that the mutation
probability is assigned not to each position of a string but
to each string (i.e., to each solution), as in many GAs’
applications to permutation problems (e.g., TSP).

Now we illustrate our hybrid algorithm in Section II-D by
our test problem. In Step 0), our hybrid algorithm randomly
generates 20 initial solutions. Then each solution is evaluated
in Step 1). We show each solution in the 2-D objective space
in Fig. 6. Our hybrid algorithm also updates the tentative set of
nondominated solutions in Step 1). Nondominated solutions in
the initial population, which are indicated in Fig. 6, are stored
as the initial tentative set of nondominated solutions.

In Step 2), pairs of parent solutions
are selected from the current population by randomly spec-
ifying the weight values () 17 times. For example, a
pair of parent solutions are selected with the weight values

and . Those parent solutions are
shown in Fig. 7. In Step 3), the two-point crossover and
the shift mutation are applied to the selected 17 pairs of
parent solutions with the prespecified crossover and mutation
probabilities. Thus, 17 new solutions are generated. In Step 4),

solutions (i.e., three solutions) are randomly selected
from the tentative set of nondominated solutions and added
to the set of the 17 new solutions to form a population of
20 solutions. In Step 5), the modified local search procedure in
Section II-B is applied to each solution with . In Fig. 7,
we show a new solution generated by the crossover and the
mutation. Because the parent solutions of this new solution
in Fig. 7 were selected with the weight values
and , these weight values are also used in the

Fig. 7. Pair of selected solutions and their offspring generated by the genetic
operations.

Fig. 8. Population before the local search (i.e., after the genetic operations)
and after the local search.

local search in Step 5) for the new solution. That is, the local
search is applied to the new solution in Fig. 7 to maximize
the following fitness function:

(13)

In Fig. 8, we show the population of 20 solutions before
the local search (i.e., closed circles) and after the local search
(i.e., open circle). That is, the 20 solutions denoted by closed
circles are used as initial solutions of the local search and
the 20 solutions denoted by open circles are obtained by the
local search. From the comparison between Figs. 6 and 8, we
can see that the quality of the solutions was improved by the
genetic operations and the local search.

The above procedures [i.e., steps 1)–5)] were iterated until
the prespecified stopping condition was satisfied (i.e., until
10 000 solutions were examined). In our computer simulation,
the hybrid algorithm was terminated after 158 iterations of
the above procedure. Because each generation consisted of
20 solutions, we can see that solutions were
examined in the generation update by the genetic operations.
The other solutions were examined during the local search.

398 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 3, AUGUST 1998

Fig. 9. Final population.

Fig. 10. Final set of nondominated solutions.

We show the final population in Fig. 9 and the final set of
nondominated solutions in Fig. 10. Because our test problem
is small, we can examine all feasible solutions (i.e., all
permutations of ten jobs: solutions). By such
an enumeration method, we confirmed that all nondominated
solutions of our test problem were obtained by the proposed
hybrid algorithm. That is, 12 solutions in Fig. 10 are all
nondominated solutions of our test problem.

In order to demonstrate the effect of the modification
of the local search, we also applied the hybrid algorithm
with the original local search procedure in Section II-B to
our test problem. In the original local search procedure,
all 81 neighborhood solutions of a current solution were
examined for each move in the local search. The hybrid
algorithm was iterated four times while 10 000 solutions
were examined. This means that the generation update was
iterated only four times. Thus, we can see that almost all of
the computation time was spent by the local search. Three
solutions out of the 12 nondominated solutions in Fig. 10
were not found by the hybrid algorithm with the original local
search. From this result, we can see that the modification of
the local search has a good effect on the performance of the
hybrid algorithm.

For comparison, we also applied the vector evaluated ge-
netic algorithm (VEGA) by Schaffer [4] and a constant weight
genetic algorithm (CWGA). In Fig. 11, we show the search
directions of the VEGA and the obtained nondominated solu-
tions. We can see from Fig. 11 that all nondominated solutions
were not found by the VEGA. This is because each of its

Fig. 11. Search directions of the VEGA and the obtained nondominated
solutions.

Fig. 12. Search direction of the CWGA withw1 = w2 = 0:5 and the
obtained nondominated solutions.

search directions is parallel to one axis of the objective space,
as shown in Fig. 11. On the other hand, we show the search
direction of the CWGA with and the obtained
nondominated solutions in Fig. 12. In the execution of the
CWGA, we stored the tentative set of nondominated solutions
in the same manner as in the proposed hybrid algorithm. From
Figs 11 and 12, we can see that neither the VEGA nor the
CWGA found all nondominated solutions. These results show
the effectiveness of variable weight values in the proposed
hybrid algorithm.

B. Application to a Test Problem with a Nonconvex
Feasible Region

Weighted-sum approaches usually do not work well for
multi-objective optimization problems with nonconvex feasi-
ble regions in objective spaces. In this subsection, we demon-
strate that the proposed hybrid algorithm can handle such a
multi-objective optimization problem. As a test problem, let
us consider the following two-objective optimization problem.

Test Problem 2:

Minimize and

(14)

subject to and (15)

where . This test problem was used for examining
some multi-objective GA’s in Tamakiet al. [10]. We show

ISHIBUCHI AND MURATA: GENETIC LOCAL SEARCH ALGORITHM APPLIED TO FLOWSHOP SCHEDULING 399

Fig. 13. Feasible region and nondominated solutions of Test Problem 2.

the feasible region of this test problem and the nondominated
solutions in the 2-D objective space in Fig. 13. From Fig. 13,
we can see that this test problem has the nonconvex feasible
region.

Because the two objectives of Test Problem 2 should be
minimized, we specified the fitness function of each solution

by (12), as in Test Problem 1. In the same manner as in
Tamaki et al. [10], we denoted each decision variable by
a 10-bit string. For example

and (16)

Thus, each solution of the test problem was
denoted by a 20-bit string. For example

(17)

For 20-bit strings, we used a two-point crossover and the stan-
dard bit mutation (i.e., and) in the same manner
as in Tamakiet al. [10]. We applied the proposed algorithm to
the test problem with the following parameter specifications:
population size: ; crossover probability: 0.9; mu-
tation probability for each bit: 0.01; number of elite solutions:

; number of neighborhood solutions examined for
each move in the local search: ; and stopping condition:
20 generations. These parameter specifications are similar to
those in Tamakiet al. [10]. Because this test problem is simple,
we did not use the local search in the proposed method. Thus,
we specified as .

We show the final population and the final set of nondomi-
nated solutions in Figs. 14 and 15, respectively. From Fig. 15,
we can see that nondominated solutions on the nonconvex
surface of the feasible region were obtained by the proposed
algorithm.

IV. COMPARISON WITH OTHER APPROACHES

In this section, we examine the performance of the proposed
hybrid algorithm by computer simulations on two-objective
and three-objective flowshop scheduling problems.

A. Test Problems

In the same manner as in Section III-A, we generated a
20-job and ten-machine flowshop scheduling problem. The
size of this problem is much larger than that of Test Problem
1 in Section III-A. The total number of feasible solutions

Fig. 14. Final population.

Fig. 15. Final set of nondominated solutions.

(i.e., all permutations of 20 jobs) is over 10. Thus, we cannot
apply enumeration methods to this problem.

As scheduling criteria, we used the makespan, the maxi-
mum tardiness, and the total flowtime as in Morizawaet al.
[21], [22]. Using these scheduling criteria, we specified the
following three objectives:

makespan (18)

maximum tardiness (19)

total flowtime (20)

In computer simulations, we examined the following test
problems.

Test Problem 3:

Minimize and

Test Problem 4:

Minimize and

Test Problem 3 seems to be the same as Test Problem 1 in
Section III-A, but the problem size is different. Test Problem
3 is a 20-job and ten-machine problem, while Test Problem 1
was a ten-job and five-machine problem. For Test Problem 4,
we used the following fitness function:

(21)

We applied the following four methods to these two test
problems to compare their performance:

1) proposed hybrid algorithm with and ;
2) VEGA in Schaffer [4];

400 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 3, AUGUST 1998

Fig. 16. Solutions obtained by the proposed hybrid algorithm and the random
sampling method.

3) CWGA (the weight values were specified as
in Test Problem 3 and

in Test Problem 4);
4) random sampling method (a large number of feasible

schedules are randomly generated and each schedule is
evaluated in this method).

The first three methods were applied to the test problems
with the same parameter specifications: population size:

; crossover probability: 0.9; mutation probability
for each string: 0.3; and stopping condition: evaluation
of 100 000 solutions. In the random sampling method, we
examined 2 000 000 feasible solutions of each test problem,
which are 20 times as many as in the other three methods.

B. Simulation Results for Two-Objective
Flowshop Scheduling Problems

We applied the proposed hybrid algorithm, VEGA in Schaf-
fer [4], CWGA, and the random sampling method to Test
Problem 3. Nondominated solutions obtained by each method
are shown in Figs. 16 and 17. From Figs. 16 and 17, we can
see the following.

1) Some solutions obtained by the VEGA have very small
values of the makespan, and others have very small
values of the maximum tardiness (see Fig. 17). But no
solutions obtained by the VEGA have very small values
of both objectives if compared with nondominated so-
lutions obtained by the proposed hybrid algorithm (see
Fig. 16).

2) The variety of solutions obtained by the CWGA is not
large (see Fig. 17).

3) The quality of solutions obtained by the random sam-
pling method is very poor, while it examined much more
solutions than the other three algorithms (see Fig. 16).

In order to clarify these observations, all solutions obtained
by the four algorithms were compared with each other and
only nondominated solutions among all obtained solutions
were selected. Some solutions obtained by one algorithm
were dominated by other solutions obtained by other algo-
rithms. The number of the nondominated solutions is shown
in Table III. From Table III, we can see the high performance
of the proposed hybrid algorithm because many solutions

Fig. 17. Solutions obtained by the VEGA and the CWGA.

TABLE III
SIMULATION RESULTS OF A SINGLE TRIAL

OF EACH ALGORITHM FOR TEST PROBLEM 3

TABLE IV
AVERAGE RESULTS OVER 20 TRIALS OF EACH ALGORITHM FOR TEST PROBLEM 3

TABLE V
AVERAGE CPU TIME OF EACH ALGORITHM FOR TEST PROBLEM 3

(i.e., 11 solutions: 69% of the obtained solutions) are not
dominated by any other solutions.

Because all four algorithms are probabilistic search meth-
ods, their performance cannot be evaluated by a single trial.
Thus, we applied each algorithm to Test Problem 3, 20 times.
In each trial, obtained solutions by the four algorithms were
compared in the same manner as in Table III. The average
performance of each algorithm over the 20 trials is shown in
Table IV. From Table IV, we can also see the high perfor-
mance of the proposed hybrid algorithm.

The average CPU time of each algorithm is shown in
Table V. From Table V, we can see that the average CPU
times of the three GA’s (i.e., the proposed hybrid algorithm,
the VEGA, and the CWGA) were almost the same. This
is because these three algorithms used the same stopping
condition (i.e., evaluation of 100 000 solutions).

C. Simulation Results for Three-Objective
Flowshop Scheduling Problems

In the same manner as in Table IV, we applied the four
algorithms to Test Problem 4, 20 times. Average results of

ISHIBUCHI AND MURATA: GENETIC LOCAL SEARCH ALGORITHM APPLIED TO FLOWSHOP SCHEDULING 401

TABLE VI
AVERAGE RESULTS OF OVER 20 TRIALS OF

EACH ALGORITHM FOR TEST PROBLEM 4

TABLE VII
AVERAGE QUALITY OF THE SOLUTION SET OBTAINED BY EACH ALGORITHM

the 20 trials of each algorithm are shown in Table VI. From
Table VI, we can see the high performance of the proposed
hybrid algorithm because many solutions (i.e., 92.8% of the
obtained solutions by the hybrid algorithm) are not dominated
by any other solutions.

Because it is not easy to compare nondominated solutions
of Test Problem 4 by depicting them in the three-dimensional
(3-D) objective space, we use an evaluation method in Es-
bensen [26] to measure the quality of a set of nondominated
solutions obtained by each algorithm. Let us denote a set of
nondominated solutions by. Then the best solution for
a given weight vector can be chosen from

as follows:

(22)

Esbensen [26] proposed an idea of measuring the quality of a
set of solutions by calculating the expected value of over
possible weight vectors . In this paper, we
calculate the expected value of by randomly generating
10 000 weight vectors (say,) by (7).
That is, the quality of the set of nondominated solutions
is calculated as follows:

(23)

where is the quality of the solution set and
are randomly

specified weight values.
For the set of nondominated solutions obtained by each trial

of each algorithm, we calculated the quality of the solution
set by (23). We iterated this calculation 20 times for each
algorithm to evaluate the average quality of the solution set
obtained by each algorithm. Simulation results are summarized
in Table VII. From Table VII, we can see that the best result
(i.e., the maximum average quality) was obtained by the
proposed hybrid algorithm.

D. Discussions on Parameter Specifications

We have already demonstrated high performance of our
multi-objective genetic local search algorithm by computer

simulations on multi-objective flowshop scheduling problems.
In this subsection, we discuss the dependency of its per-
formance on parameter specifications. Our hybrid algorithm
has the following additional parameters that are not used in
standard single objective GA’s:

1) number of neighborhood solutions examined for each
move in the local search procedure (i.e.,);

2) number of nondominated solutions added to the current
population at each generation (i.e.,);

3) constant multipliers introduced for normalizing differ-
ent objectives [i.e., five for the makespan in (10) and
(18), two for the maximum tardiness in (11) and (19),
and one for the total flowtime in (20)].

First, we examined the effect of the choice ofon the
performance of our hybrid algorithm by computer simulations
on Test Problem 1. Because each solution of Test Problem 1
with ten jobs has 81 neighborhood solutions, we can chose any
integer in the closed interval [0, 81] for. If we specified as

, our hybrid algorithm reduced to a multi-objective GA
with no local search procedure. On the other hand,
means that the standard local search procedure was used in
our hybrid algorithm. In the same manner as in Section III, we
applied our hybrid algorithm to Test Problem 1 using various
values of (i.e.,). The
value of was specified as . We iterated this
computer simulation 100 times for each value of. In each
trial, we examined whether all 12 nondominated solutions of
this problem in Fig. 10 were obtained (i.e., how many solu-
tions among the 12 nondominated solutions were obtained).
We also calculated the average number of generation updates
in our hybrid algorithm for each value of. Simulation results
are summarized in Table VIII, where the successful trial means
that all 12 nondominated solutions were obtained in that trial.
From these results, we can see that good results were obtained
by – . From Table VIII, we can also see that only
a small number of generations were updated in our hybrid
algorithm in the case of a large value of. Because at least

solutions are examined at each generation of
our hybrid algorithm, the number of generation updates can
be roughly approximated by the following formulation:

(24)

where is the number of generation updates,
is the total number of examined solutions used as the stopping
condition, and is the population size (i.e., the number
of solutions at each generation). In Table VIII, and

were specified as and ,
respectively. From Table VIII, we can see that the above
formulation is a good approximation for the relation between
the value of and the number of generation updates. In
general, a certain number of generation updates are required
for obtaining good results by GA’s. Thus, we can specify the
value of by (24) when the number of required generation
updates is given.

Next we examine the dependency of the performance of our
hybrid algorithm on the choice of . In the same manner as
in Section III, we applied our hybrid algorithm to Test Problem

402 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 3, AUGUST 1998

TABLE VIII
SIMULATION RESULTS WITH VARIOUS VALUES OF k FOR TEST PROBLEM 1

TABLE IX
SIMULATION RESULTS WITH VARIOUS VALUES OF Nelite FOR TEST PROBLEM 1

1 using various values of (i.e.,).
The value of was specified as . For each value of ,
we iterated the computer simulation 100 times. Simulation
results are summarized in Table IX. From Table IX, we can see
that the performance of our hybrid algorithm was significantly
deteriorated by specifying as . This means that
elite solutions play a significant role in our hybrid algorithm.
We can also see that the performance of our hybrid algorithm
is not sensitive to the choice of if .

Finally, we examine the dependency of the performance
of our hybrid algorithm on the choice of the normalization
factors. Because the weight value for each objective in
the fitness function (4) is randomly specified whenever a pair
of parent solutions are selected in our hybrid algorithm, its
performance is not sensitive to the choice of the normalization
factors. In the computer simulations of the previous sections,
we used the normalization factors (5, 2, 1) for the makespan,
the maximum tardiness, and the total flowtime, respectively.
We performed the same computer simulations without the
normalization factors. Simulation results by our hybrid algo-
rithm without the normalization factors were almost the same
as those with the normalization factors. Only the simulation
results by CWGA were directly affected by the values of
the normalization factors. This is because the fixed search
direction in the CWGA is specified by the values of the
normalization factors. While almost the same results were
obtained by our hybrid algorithm without the normalization
factors for the test problems in this paper, they may remedy
the difficulty in obtaining nondominated solutions of multi-
objective flowshop scheduling problems when the difference
of the variance of each objective is very large. In such a case,
we can determine the value of each normalization factor by
the inverse of the standard deviation of the corresponding
objective. The standard deviation of each objective can be
estimated by randomly generating a number of schedules.

V. CONCLUSION

In this paper, we proposed a multi-objective genetic local
search algorithm. The proposed algorithm is an extension of
our multi-objective GA in [9] to a hybrid algorithm. In the
proposed algorithm, a local search procedure is applied to
each solution generated by genetic operations. By computer

simulations on flowshop scheduling problems, high perfor-
mance of the proposed algorithm was demonstrated. It was
also shown that the proposed algorithm can handle a multi-
objective optimization problem with a nonconvex feasible
region in the objective space.

The characteristic features of the proposed hybrid algorithm
can be summarized as follows.

1) A weighted sum of multiple objectives is used as a
fitness function in a selection operation. The weight
values in the fitness function are randomly specified
whenever a pair of parent solutions are selected. That
is, each selection is performed with a different weight
vector.

2) A local search procedure is applied to each new solu-
tion generated by the genetic operations (i.e., selection,
crossover, and mutation). The local search for each new
solution is performed to maximize the fitness function
that was used for selecting its parent solutions. Thus,
each new solution has its own local search direction in
the objective space.

3) In the local search, all neighborhood solutions of a
current solution are not examined for each move. That
is, the number of examined neighborhood solutions of
a current solution is restricted in the local search. This
is to prevent the local search from spending almost all
available computation time.

4) A tentative set of nondominated solutions is stored and
updated at every generation. The tentative set is stored
separately from a current population. A few solutions
randomly selected from the tentative set are used as a
kind of elite solutions.

The proposed algorithm is simple, and its computation time is
almost the same as that of a CWGA with no local search, as
shown in computer simulations in Section IV. This simplicity
is also an advantage of the proposed hybrid algorithm.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems.Ann
Arbor, MI: Univ. of Michigan Press, 1975.

[2] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[3] L. Davis, Ed., Handbook of Genetic Algorithms.New York: Van
Nostrand Reinhold, 1991.

ISHIBUCHI AND MURATA: GENETIC LOCAL SEARCH ALGORITHM APPLIED TO FLOWSHOP SCHEDULING 403

[4] J. D. Schaffer, “Multi-objective optimization with vector evaluated
genetic algorithms,” inProc. 1st Int. Conf. Genetic Algorithms,1985,
pp. 93–100.

[5] F. Kursawe, “A variant of evolution strategies for vector optimization,”
in Parallel Problem Solving from Nature,H.-P. Schwefel and R. M̈anner,
Eds. Berlin, Germany: Springer-Verlag, 1991, pp. 193–197.

[6] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic
algorithm for multi-objective optimization,” inProc. 1st IEEE Int. Conf.
Evolutionary Computat.,1994, pp. 82–87.

[7] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization,” inProc. 5th
Int. Conf. Genetic Algorithms,1993, pp. 416–423.

[8] , “An overview of evolutionary algorithms in multiobjective
optimization,” Evolutionary Computat.,vol. 3, no. 1, pp. 1–16, 1995.

[9] T. Murata and H. Ishibuchi, “MOGA: Multi-objective genetic algo-
rithms,” in Proc. 2nd IEEE Int. Conf. Evolutionary Computat.,1995,
pp. 289–294.

[10] H. Tamaki, M. Mori, and M. Araki, “Generation of a set of Pareto-
optimal solutions by genetic algorithms,”Trans. Soc. Instrum. Contr.
Eng., vol. 31, no. 8, pp. 1185–1192, 1995 (in Japanese).

[11] P. Jog, J. Y. Suh, and D. V. Gucht, “The effects of population size,
heuristic crossover and local improvement on a genetic algorithm for the
traveling salesman problem,” inProc. 3rd Int. Conf. Genetic Algorithms,
1989, pp. 110–115.

[12] N. L. J. Ulder, E. H. L. Aarts, H.-J. Bandelt, P. J. M. von Laarhoven, and
E. Pesch, “Genetic local search algorithms for the traveling salesman
problem,” in Parallel Problem Solving from Nature,H.-P. Schwefel
and R. Männer, Eds. Berlin, Germany: Springer-Verlag, 1991, pp.
109–116.

[13] C. A. Glass, C. N. Potts, and P. Shade, “Genetic algorithms and
neighborhood search for scheduling unrelated parallel machines,” Univ.
Southampton, Southampton, U.K., Preprint Series OR47, 1992.

[14] H. Ishibuchi, N. Yamamoto, T. Murata, and H. Tanaka, “Genetic
algorithms and neighborhood search algorithms for fuzzy flowshop
scheduling problems,”Fuzzy Sets Syst.,vol. 67, pp. 81–100, 1994.

[15] T. Murata and H. Ishibuchi, “Performance evaluation of genetic algo-
rithms for flowshop scheduling problems,” inProc. 1st IEEE Int. Conf.
Evolutionary Computat.,1994, pp. 812–817.

[16] S. M. Johnson, “Optimal two- and three-stage production schedules with
setup times included,”Naval Res. Logistics Quart.,vol. 1, no. 1, pp.
61–68, 1954.

[17] K. R. Baker and G. D. Scudder, “Sequencing with earliness and tardiness
penalties: A review,”Oper. Res.,vol. 38, no. 1, pp. 22–36, 1990.

[18] R. A. Dudek, S. S. Panwalkar, and M. L. Smith, “The lessons of
flowshop scheduling research,”Oper. Res.,vol. 40, no. 1, pp. 7–13,
1992.

[19] R. L. Daniels and R. J. Chambers, “Multiobjective flow-shop schedul-
ing,” Naval Res. Logistics Quart.,vol. 37, pp. 981–995, 1990.

[20] C. Rajendran, “Two-stage flowshop scheduling problem with bicriteria,”
J. Oper. Res. Soc.,vol. 43, no. 9, pp. 871–884, 1992.

[21] K. Morizawa, H. Nagasawa, and N. Nishiyama, “A new procedure for
generating initial solutions in a multiobjective scheduling method using
complex random sampling,”J. Jpn. Ind. Manage. Assoc.,vol. 44, no. 6,
pp. 510–516, 1994 (in Japanese).

[22] , “Two-machine flowshop scheduling to minimize makespan, total
flow time and maximum tardiness,”J. Jpn. Ind. Manage. Assoc.,vol.
43, no. 3, pp. 186–192, 1992 (in Japanese).

[23] E. Taillard, “Some efficient heuristic methods for the flow shop se-
quencing problem,”Eur. J. Oper. Res.,vol. 47, no. 1, pp. 65–74,
1990.

[24] I. H. Osman and C. N. Potts, “Simulated annealing for permutation
flow-shop scheduling,”OMEGA,vol. 17, no. 6, pp. 551–557, 1989.

[25] H. Ishibuchi, S. Misaki, and H. Tanaka, “Modified simulated annealing
algorithms for the flow shop sequencing problem,”Eur. J. Oper. Res.,
vol. 81, no. 2, pp. 388–398, 1995.

[26] H. Esbensen, “Defining solution set quality,“ Elect. Res. Lab., College
Eng., Univ. California, Berkeley, Memo. UCB/ERL M96/1, Jan. 1996.

Hisao Ishibuchi (M’93) received the B.S. and M.S.
degrees in precision mechanics from Kyoto Univer-
sity, Kyoto, Japan, in 1985 and 1987, respectively,
and the Ph.D. degree from Osaka Prefecture Uni-
versity, Osaka, Japan, in 1992.

He was a Visiting Research Associate at the
University of Toronto, Toronto, Ont., Canada, from
August 1994 to March 1995 and from July 1997 to
March 1998. He is currently an Associate Professor
in the Department of Industrial Engineering, Osaka
Prefecture University. His current research interests

include fuzzy rule-based classification systems, fuzzy neural networks, genetic
algorithms, fuzzy scheduling, and evolutionary games.

Dr. Ishibuchi is a member of INNS and IFSA.

Tadahiko Murata (M’96) received the B.S., M.S.,
and Ph.D. degrees from the Department of Industrial
Engineering, Osaka Prefecture University, Osaka,
Japan, in 1994, 1996, and 1997, respectively.

He is currently an Assistant Professor in the
Department of Industrial and Systems Engineering,
Ashikaga Institute of Technology, Tochigi, Japan.
His research interests include genetic algorithms,
scheduling problems, and pattern classification
problems.

