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Abstract- 
Most popular evolutionary algorithms for multiobjec- 

tive optimisation maintain a population of solutions from 
which individuals are selected for reproduction. In this 
paper, we introduce a simpler evolution scheme for multi- 
objective problems, called the Pareto Archived Evolution 
Strategy (PAES). We argue that PAES may represent the 
simplest possible non-trivial algorithm capable of gener- 
ating diverse solutions in the Pareto optimal set. The al- 
gorithm is identified as being a (1 + l) evolution strategy, 
using local search from a population of one but using a 
reference archive of previously found solutions in order 
to identify the approximate dominance ranking of the cur- 
rent and candidate solution vectors. PAES is intended as 
a good baseline approach, against which more involved 
methods may be compared, and may also serve well in 
some real-world applications when local search seems su- 
perior to or competitive with population-based methods. 
The performance of the new algorithm is compared with 
that of a MOEA based on the Niched Pareto GA on a real 
world application from the telecommunications field. In 
addition, we include results from experiments carried out 
on a suite of four test functions, to demonstrate the algo- 
rithm’s general capability. 

1 Introduction 

Multiobjective optimisation using genetic algorithms has 
been investigated by many authors in recent years [2, 4, 5, 
8, 9, 1 I ,  12, 131. However, in some real-world optimisation 
problems the performance of the genetic algorithm is over- 
shadowed by local search methods such as simulated anneal- 
ing and tabu search, either when a single objective is sought 
or when multiple objectives have been combined by the use of 
a weighted sum, e.g. see [ IO]. Un.fortunately, little research 
has examined how local search methods can be applied to 
truly multiobjective problems (though see [6, 71) in order to 
find diverse solutions in the Pareto optimal set. In this paper 
we introduce a novel evolutionary algorithm which employs 
local search for the generation of new candidate solutions but 
utilises population information in its selection procedure. We 
identify this algorithm as a (1 + 1) evolution strategy [ I ] ,  and 
suggest several extensions to it including how it may sim- 
ply be converted to a ( p  + A) ES. Our algorithm, the Pareto 
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Archived Evolution Strategy (PAES), extends the range ofop- 
tions open to the engineer interested in multiobjective optimi- 
sation and provides a baseline against which more involved 
algorithms can be compared. In addition, in some problems 
where delta-evaluation of computationally expensive objec- 
tive functions can yield significant reduction in algorithm run- 
times, i t  may be advantageous to use a local search method 
such as PAES. 

The development of PAES arose from the investigation of 
a real world optimisation task in the field of telecommunica- 
tions, involving the routing of calls through a sparse network. 
This task, which we describe; in greater detail in Section 2, 
when posed as a single objective problem, can be solved 
very effectively using local search methods. In fact, we and 
other researchers have found simulated annealing and tabu 
search to be superior to or competitive with specialised EAs 
for searching the single-objective solution space IO]. How- 
ever, a more natural representation of the task is a s  a three- 
objective problem with multiple Pareto optimal solutions (for 
which MOGAs are well suited). Nonetheless, given the effi- 
cacy of local search methods in the single-objective case, we 
ask whether local search can be extended to find diverse non- 
dominated solutions to this problem as well. To answer this 
question we developed PAES and compared its performance 
to a specialised MOEA which is based on the Niched Pareto 
Genetic Algorithm of Horn add Nafpliotis 18, 91. Our results 
indicate that, on this problem, the PAES is able to generate a 
diverse set of good solutions comparable to the MOEA, and 
i t  does so in significantly less time. 

The PAES algorithm is also compared to a steady-state 
version of the Niched Pareto1 Genetic Algorithm on a suite 
of four test problems. Three of these problems have been 
used by several researchers previously [2,4, 8,9,  121, and the 
fourth is a new problem devisled by us a s  a further hard chal- 
lenge to find diverse Pareto optima. The aim of this compar- 
ison is to generally explore arrd demonstrate the applicability 
of the PAES approach to standard multiobjective problems. 
A more thorough comparative analysis is the topic of future 
work, where we intend to make use of the multiobjective as- 
sessment techniques put forward by Fonseca and Fleming [ 3 ] .  

The main focus of this paper is to introduce and describe 
the PAES algorithm, and to identify its status within the mul- 
tiobjective evolutionary algorithm continuum, indicating how 
it may be extended, and also making comparisons with sim- 
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ilar, recently proposed multiobjective EAs. Particularly, we 
wish to argue that PAES represents the simplest possible, 
non-trivial Pareto multiobjective optimiser, and should thus 
serve the purpose of a good baseline algorithm against which 
others may be compared. 

The remainder of this paper is organised as follows: Sec- 
tion 2 introduces the telecomms. routing problem, describes 
the objective function and provides background information 
regarding the performance of several algorithms on this task 
when it is posed as a single objective problem. In Section 3, 
we introduce PAES, describe its operation, and discuss how it 
may be used and extended in the future. Results are provided 
in Section 4. These include the solution sets found for the 
telecomms. routing task as well as results demonstrating the 
capability of PAES on a suite of four test problems. Finally, 
we summarise our findings in Section 5 .  

2 Off-line Routing in Circuit Switched Net- 
works 

The aim of this section is to describe the context in which 
the PAES algorithm was developed, thereby supporting the 
reader’s interpretation of the results in Section 4. To this 
end, we briefly specify the problem, giving the objective func- 
tion(s) used to compute solution quality. This is followed by 
a description of the heuristics we employ in the encoding and 
mutation operators. Finally, we report our findings on the 
performance of several algorithms on this task when it is cast 
in the form of a single-objective optimisation task (using a 
linear blend of the three underlying objectives). 

Problem specification 

The off-line routing task involves finding a set of routes for 
a given networWtraffic combination such that communica- 
tion costs and congestion are minimised. Its applications in- 
clude the routing of traffic in synchronous digital hierarchy 
(SDH) networks (where clients book bandwidth in advance), 
re-routing of traffic on ‘live’ telecommunications networks 
where current traffic profiles are known, and also in the or- 
ganisation of communications within a cluster for the com- 
putation of deterministic functions. 

Our formulation of the problem is based on work by Mann 
and Smith [lo] but differs in that we consider the problem 
over a series of discrete time steps in which traffic condi- 
tions change, whereas they considered the problem only in 
the static case. Our formulation of the problem is given be- 
low. 

We are given a bandwidth limited telecommunications 
network over which we must route multiple traffic requests 
in such a manner as to achieve a feasible routing assignment, 
i.e. no link is over-capacitated (hard constraint). This is the 
primary objective. In addition, we impose a secondary objec- 
tive that link utilisations should all be below a specified, fixed 
target utilisation. Finally, the routing assignment attempts to 
minimise the communications costs, costs being associated 

with the usage of each link. 
Specifically, we are given a network G = ( N ,  E ) ,  where 

N is the set of n nodes and E is the set of m bidirectional 
edges. Associated with each edge e E E is a bandwidth ca- 
pacity, b ( e ) ,  and a cost, .(e). The bandwidth capacities of 
edges in the network {b (e ) l e  E E } ,  lie in { 16, 64}, that is 
there are two link types, a ‘backbone’ type of capacity 64 
units and a ‘local’ type of capacity 16 units. The network 
exists in a time frame denoted by a set, T of 1 discrete time 
intervals, t E T .  

We are then given a set R of j communications which 
must be routed over G. Each communication, T E R speci- 
fies a source node U(.) and a destination node w ( T ) ,  such that 
Vr{v(r), W ( T )  E N ) .  Associated with each communication, 
T ,  there is also a connection time, T ~ ( T )  E T ,  a disconnection 
time, ~ p ( r )  E T ,  and a communication bandwidth h(r) .  

The problem is to determine a path P(r )  in G for each 
communication, T ,  which connects U(.) and W ( T )  over the 
time interval T,(T) 5 t < T ~ ( T ) ,  such that the objectives 
stated below are minimised. Note that there is only one path 
for each call, which exists over its entire time frame i.e. calls 
are not re-routed once they are connected. 

We may now note that the total traffic on an edge e for the 
time interval t is given by 

f ( e , t )  = C{W I e E P ( T ) , T a ( T )  5 t < .p(.)} (1) 

A viable routing is one in which the total traffic on each edge 
at each distinct time interval does not exceed the bandwidth 
capacity of that edge for that time interval, i.e. 

TER 

V e E E ,  V t E T { f ( e ,  t )  5 b ( e ) }  ( 2 )  
This can be achieved by minimising the deviation f ( e ,  t )  - 
b ( e ) ,  so long as f ( e ,  t )  > b ( e ) ,  i.e. 

min. m a z { j ( e ,  t )  - b ( e ) ,  01 (3) 
t E T  e E E  

which is our first objective. 
A second objective is to find a minimum cost allocation of 

traffic through the network, satisfying constraint (3). The cost 
of routing one communication, T E R, for one time interval, 
t E T ,  on the path, P(v ,  w), between U and w is given by 

g ( r ,  t )  = {h(r )  I 7oI (T)  I t < .a(7.)) x 4.1 (4) 
e E P ( r )  

Hence, the total cost of routing all communications over the 
entire time frame, T, is 

7 g(r1 t )  (5) 
t E T  TER 

Substituting (4) into (5) we have our second objective, which 
we wish to minimise 

0-7803-5536-9/99/$10.00 01999 IEEE 99 



The third and final objective specified is to minimise the devi- 
ation from a target utilisation, U , for each link in the network, 
summed over all time steps i.e. 

U x b(e) max { f (e ,  t )  - ~ 

100 
min. 

t€T  e E E  

Thus, so long as f ( e ,  t )  > (U x b(e)/100), for at least one 
link e E E , for at least one time step t E T, there will 
exist some pressure on the optimisation process to find a more 
balanced solution. For our experiments we set U = 50. The 
three objectives defined above were initially combined into 
a single objective function using a weighted sum, and using 
weighting coefficients reported to give well balanced, feasible 
routing strategies [IO]. 

Summary of Heuristics and Key Results 

Following [IO],  we pre-calculate the K-shortest paths be- 
tween each pair of nodes in the network, using a fast algo- 
rithm due to Yen [ 141. A candidate solution vector (geno- 
type) is then formulated so as to contain j K-ary elements 
i.e for each of the j communications, one of the K shortest 
paths associated with the source-destination pair of the com- 
munication is assigned. Solution vectors are initialised and 
mutated from a negative exponential probability distribution 
which biases them to strongly favour low values (and hence 
shorter paths). 

To ensure fast solution evaluation we employ delta- 
evaluation of candidate solutions. This lends a great speed 
advantage to local search methods, which only change one 
or two elements in the solution vector at a time. Standard 
evolutionary algorithms typically cannot make good use of 
delta-evaluation, however, due to the large changes induced 
in recombination. To overcome this problem we devised a 
specialised crossover operator which only crossed one gene 
from one parent into the chromosome of the other, the par- 
ticular gene chosen being a function of its allele value. We 
tested this specialised EA, together with a mutation only EA 
against a range of local search methods including standard 
hill-climbing, tabu search, simulated annealing and an evolu- 
tion strategy. 

Over a range of network sizes and traffic conditions we 
have found that the local search methods can converge to so- 
lutions of a given quality in significantly fewer evaluations 
than population based methods. Overall, we report that tabu 
search is the most effective algorithm, but there is little to 
choose between any of the local search methods we have 
tried. Our mutation-only EA performs worst, and an EA em- 
ploying our specialised crossover operator is better but still 
requires significantly more evaluations than the local search 
algorithms to find equivalently satisfactory solutions. These 
findings led us to develop PAES, described next, enabling lo- 
cal search methods to be used for multiobjective optimisation. 

3 The PAES Algorithm 

Overview 

The PAES algorithm was developed with two main objectives 
in mind. The first of these was that the algorithm should be 
strictly confined to local search i.e. it should use a small 
change (mutation) operator only, and move from a current 
solution to a nearby neighbour. This makes it quite differ- 
ent from most popular MOCfAs, notably the Niched Pareto 
C A  of Horn et al. [8, 93, Deb et al.’s Nondominated Sort- 
ing GA [ 131 and Schaffer’s VEGA [ 121, which all maintain 
a population of solutions from which selection and breeding 
are carried out. The second objective was that the algorithm 
should be a true Pareto optimiser, treating all nondominated 
solutions as having equal value. Achieving both of these ob- 
jectives together is problematic, however. This is because, in 
the majority of cases, when comparing a pair of solutions nei- 
ther one will dominate the ocher. This problem is overcome 
in PAES by maintaining an atchive of previously found non- 
dominated solutions. This archive is then used as a means of 
estimating the true dominance ranking of a pair of solutions. 

In fact, it is instructive to view PAES as comprising three 
parts: the candidate solution generator, the candidate solution 
acceptance function, and the Nondominated-Solutions (NDS) 
archive. Viewed in this way, PAES represents the simplest 
non-trivial approach to a multiobjective local search proce- 
dure. The candidate solution generator is akin to simple ran- 
dom mutation hillclimbing; ir maintains a single current so- 
lution, and at each iteration produces a single new candidate 
via random mutation. Since the objective of multiobjective 
search is to find a spread of nondominated solutions, PAES 
necessarily needs to provide an NDS-list to explicitly main- 
tain a limited number of these as and when they are found by 
the hillclimber. The design of the acceptance function is obvi- 
ous in the case of the mutant dominating the current solution 
or vice versa, but troublesom@ in the nondominated case. Our 
approach is to learn from Harn et al.’s seminal work [8, 91, 
and hence use a comparison set to help decide between the 
mutant and the current solution in the latter case. The NDS- 
archive provides a natural and convenient source from which 
we can obtain comparison sets. 

Arguably, even simpler multiobjective local search pro- 
cedures are possible. One might have a simpler acceptance 
function, which always accepts the mutant unless the current 
solution dominates it. Or, it could only accept the mutant if it 
dominates the current. We have tried both of these, however, 
and found the results to be very poor. Echoing Horn et al.’s 
findings [8, 91, we find that the use of a non-trivially sized 
comparison set is crucial to reasonable results. 

We must note that the idea of maintaining a list of non- 
dominated solutions is not new. Parks et al. [ 111 recently 
describe a MOGA which d S Q  maintains an ‘archive’ of non- 
dominated solutions. In their case, the overall algorithm is 
much more complicated than PAES. The archive is used as a 
repository for nondominated solutions, as in PAES, but also 
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plays a key role as a pool of possible parents for selection. 
However, i t  is not used as a source of comparison to aid in 
the ranking of solutions. In terms of our ‘three-part’ view, 
their solution generator is a MOGA based on nondominated 
sorting, their archive is used as an extra source from which 
to fill the intermediate population, and their acceptance func- 
tion simply replaces the current population with the newly 
constructed intermediate population in the normal way. 

They found the use of this archive gave improved results 
over a traditional MOGA, tested on a particular application. 
They do not provide results (but indicate this as a future di- 
rection) on the use of their ‘selective breeding’ method on 
other or standard multiobjective test problems. Also beyond 
the scope of their published work is the use of the archive as 
an aid to estimating the fitness of population members (as in 
PAES). However, using the archive as a pool for selection is 
an interesting idea which we intend to incorporate in future 
population-based versions of PAES. 

PAES 

The structure of PAES is shown in Figure 1 .  The algorithm 
begins with thc initialisation ofa single chromosome (the cur- 
rent solution) which is then evaluated using the multiobjective 
cost function. A copy is made and a mutation operator is ap- 
plied to the copy. This mutated copy is evaluated and forms 
the new candidate solution. The current and candidate solu- 
tions must then be compared. Acceptance is simple if one so- 
lution dominates the other but in the case where neither solu- 
tion dominates, the new candidate solution is compared with 
a reference population of previously archived nondominated 
solutions. If comparison to the population in the archive fails 
to favour one solution over the other, the tie is split to favour 
the solution which resides in the least crowded region of the 
space. 

The archive serves two separate purposes. First, i t  stores 
and updates all of the nondominated solutions [subject to di- 
versity criteria) generated, ready for presentation at the end 
of a run. Second, during the run, it is used as an aid to the 
accurate selection between the current and candidate solution 
vectors by acting as an approximation to the current nondomi- 
nated front. The latter is what provides the selection pressure, 
always pushing the process to find better solutions. Without 
this process, the algorithm is unable to differentiate between 
good and bad solutions with the result that it wanders rather 
aimlessly about the search space. 

The archiving process is similar to that proposed in [ 1 I ] ,  
but is not used as a pool for selection. The archive has a 
maximum size, re fpop ,  which is set by the user to reflect 
the required number of final solutions desired. Each candi- 
date solution generated which is not dominated by its parent 
(the current solution) is compared with each member of the 
cornparison set. Candidates which dominate the comparison 
set are always accepted and archived. Candidates which are 
dominated by the comparison set are always rejected, while 
those which are nondominated are accepted and/or archived 

Compare candidate solution 
with archive members 

Update archive 
1 

Select new current solution from 
candidate ;ind curKent solutions 

Figure 1 : The Pareto Archived Evolution Strategy 

based on the degree of crowding in their grid location. This 
archiving and acceptance logic is made explicit in Figure 2. 

To keep track of the degree of crowding in different re- 
gions of the solution space, a d-dimensional grid is used, 
where d is the number objectives in the problem. When each 
solution is generated its grid location is found using recur- 
sive subdivision and noted using a tree encoding. A map of 
the grid is also maintained, indicating for each grid location 
how many and which solutions in the archive currently reside 
there. When a candidate solution is in a position to join a 
full archive, it replaces one of the archived solutions with the 
highest grid-location count, so long as its own grid-location 
count is lower. This system is also used to select between 
the current and candidate solutions when the candidate is not 
dominated nor dominates any member in the archive. In this 
case the solution with the lower grid count is selected. 

Future development 

PAES may be identified as a (1 + 1) ES and thus serves 
as a good baseline algorithm for multiobjective optimisa- 
tion. However, we are also investigating the performance of 
(1 + A) and (p  + A) variants of it. The former is identical 
to PAES(1 + 1) except that X mutants are generated from the 
current solution. Each is compared with the current solution 
via the archive as in PAES(1 + l), and the best of these re- 
places the current solution. The (p  + A) version maintains 
a population of size p from which X copies are made, using 
tournament selection to select the fittest ones with respect to 
the archive. These copies are then mutated. Fitness is once 
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Figure 2: Archiving and Acceptance Logic 

again assigned with respect to the archive. The fittest p from 
the p + X solutions then replace the current population. 

4 Results and Discussion 

Off-line Routing Problem 

We compared PAES with a non-generational EA based on the 
NPCiA of Horn et al. [8, 91. Here we present typical results 
from a single run on a problem in which 150 communications 
must be routed over a sparse network of 30 nodes. 

PAES has only two parameters which must be set. These 
are the archive size, re f p o p  and the number of subdivisions 
of the space in the grid used for encouraging diversity. We 
have found both of these parameters easy to set on the prob- 
lems tried. The archive size, refpop is set to 100. At this 
level, the archive rarely fills up during a run of 20,000 evalu- 
ations. With re f p o p  set below 50, the performance of the 
algorithm begins to degrade, however. We recursively di- 
vide the phenotype space five times so that it is divided into 
(25)3 = 32768 cubes. Each solution can be tagged with its 
grid location using just 15 comparisons with this setting. 

Our NPEA uses tournament selection and a comparison 
set as described in [8, 91. We investigated a number of dif- 
ferent settings for population size, niche size, comparison 
set and tournament size. We found the best settings for 
the problem shown here to be Pop = 150, tdon2. = 20, 
Comparison set = 70 and C7shnre = 0.01 where the range 
of each objective is scaled to lie between 0 and 1. 

Figure 3 shows a plot of the nondominated front found 
by the PAES and the NPEA on a run of 20000 evaluations. 
Where no solution has been found a default value has been 
assigned to the cost objective (z-axis). The surface found by 
PAES lies 'below' or at least on the same level as that found 
by the EA at all points, showing it has found better solutions. 
In addition, there is a large region in which the PAES has 
found solutions but where NPEA with a population of 150 
has found none. 

Nichcd Parcti~ EA - Tournmcnl SIEC 20 

Pareto Archivad Evolurion Strategy 

ohjectiv 

so00 

4SOO 

4000 

3.500 

3000 
4000 

ohjective 3 (hilance) (over-utilisation) 

Figure 3: Nondominated surfaces obtained on an off-line 
routing task 

Test problems 

Following the potential shown by PAES on the off-line rout- 
ing problem, we have compared PAES with the NPEA on a 
suite of standard test functions. The first four of these are the 
same as used by Bentley [2] i1.e. Schaffer's functions F1, F2, 
and F3, and Fonseca's f l  [4], fienamed here as F4. These func- 
tions (see figure 4) are now commonly used by researchers 
to test multiobjective optimiwtion algorithms. For reasons 
noted next we also designed a further test function which we 
call here F5. Functions F1-F4 contain, respectively, a sin- 
gle objective and one optima, a single range of optima, two 
ranges of optima, and a single range of optima spread across 
two dimensions. Their use in testing multiobjective optimis- 
ers is in  their implicit setting of two challenges: First, the set 
of nondominated solutions delivered by the optimiser should 
contain all of the function's Pareto optima. Second, it is gen- 
erally felt best if there is no strong bias favouring one Pareto 
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optimum over others. In other words, in a MOEA, for exam- 
ple, the number of copies of each Pareto optimum in the final 
population should be similar. If not, this would seem to reveal 
a bias which may be undesirable in practical applications. 

We designed F5 (described below) to provide stronger 
challenges in these respects; it is easily defined, but is a non- 
trivial problem. Each Pareto optimum is intrinsically difficult 
to find for an EA, and there are n distinct Pareto optima for 
chromosomes of length n, each of which has a different fre- 
quency i.e. some are far easier to find than others. This makes 
both challenges (as described above) stringent tests for any 
multiobjective optimiser. 

The function F5 uses an n-ary chromosome of n genes. 
There are two objectives defined by the following two func- 
tions. 

(9) 
1 if Gi - Gi+l = 1 
0 otherwise fsz = n - 1 - 

i=O 

where Gi is the ith gene. We used n = 16 in our experiments. 
In all experiments, we compared the NPEA with PAES. 

For each case, preliminary parameter setting investigations 
were conducted to find reasonably good values for the NPEA, 
and the results recorded are for those settings. PAES is the 
same each time, with a maximum archive size of 100. NPEA 
always had a population size of 100, which seemed suitable 
for comparison with the similar setting for PAES. 

On problem F1, both PAES and the NPEA converge to the 
single optimal solution, as expected. Figures 5-8 indicate 
the performance of PAES and the NPEA on the remaining 
test functions. On each problem, both algorithms were run 20 
times for the same number of function evaluations. For PAES, 
the final archive list was recorded, whereas for the NPEA the 
recorded solutions were the population in the last generation. 
Thus, the total frequency distribution of solutions as seen by 
a user for each algorithm is plotted. In general, the frequen- 
cies of points for the NPEA are higher than PAES but this is 
due to the fact that repeated phenotypes are always removed 
from the archive list in PAES so that usually fewer than 100 
solutions are returned per run. 

On problem F2, both algorithms find solutions across the 
whole P - 0  range. PAES returns fewer solutions outside this 
range, as one might expect, because it is returning only the 
nondominated solutions which it has stored in its archive. The 
distribution is somewhat noisier with PAES but seems to be 
less biased than the NPEA. 

Similarly, on problem F3 PAES gives a clean, if Father 
noisy, distribution of points within the two separate Pareto 
optimal ranges and very few sub-optimal solutions. Its per- 
formance seems to compare well with NPEA, which gives 
relatively few results in the range 1.8-2.0 and 4.0-4.2. 

On problem F4 both algorithms perform well, spreading 
solutions across the entire P-0 range. However, the NPEA 

FUNCTION F1 

fl = X : + X : + X ~ ~  (p lot tedatf=O)  

11 - 

FUNCTION FZ 

fZl = x 2  

fZ2 =(x-2) 

p-~range  

10 

15 

in 

I5  

in 

5 

FUNCTION F3 
f31= - x where x <= 1 

= - 2 + x  w h e r e I < x < = 3  
= 4 .  x where 3 <  x <= 4 
= - 4 + x  w h e r e 4 i x  

f32 = (x-5) 2 

2 0 2 1 x 

Figure 4: Test functions F1 to F4 

distribution reveals that it finds very few solutions at the 
tradeoff point1 x1 = O.O,x2 = 0.0. It is also far more biased 
towards solutions centred around [ O S ,  -0.51 and [ - O S ,  0.51 . 
PAES, by contrast, generates an extremely clean and accurate 
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Figure 6: Test results - F3 

distribution with little bias away from the central point [0.0, 
0.01. The distribution is also tighter, concentrating closer to 
the true P - 0  range which lies on the straight line extending 
from [I .O, - I  .O] to [ - I  .O, 1 .0]. 

Both algorithms had trouble with problem F5, finding few 
P - 0  solutions (having f51 + f52 = 15) at the edges of the 
range, in 15000 evaluations. Both generate a good spread 
of solutions with f51 + f52 = 16 or 17 hut PAES is more 
successful on this problem than the NPEA. Its whole distri- 
bution is shifted slightly towards the optimum range and it 
has longer tails showing that it has found more of the difficult 
solutions. This is somewhat surprising on this difficult prob- 
Icni which one might suppose is more suited to a hyper-plane 
sampling algorithm (employing one-point crossover) than a 
local search algorithm such as PAES. 

5 Conclusion and Future Work 

We have described PAES, which in its (l+l)-ES form can 
be viewed as a simple baseline technique for multiobjective 
optimisation. When used to address the multiobjective form 
of thc off-line routing problem, (I+I)-PAES provided results 
strongly competitive with a MOEA. When then compared on 
a suite of test functions (I+I)-PAES was again found to be 
strongly competitive with a MOEA in each case. In terms of 
speed, coverage of the Pareto tradeoff frontier, and general 
absence of strong bias within that frontier, (1  +I)-PAES ap- 
pears to perform consistently well, despite being essentially a 
simple algorithm. 

However, certain disclaimers and qualifications are nec- 

essary. First, it could well be that further parameter-setting 
investigation of the NPEA, and also the MOEA used in the 
off-line routing experiments, might yield better results than 
we have found here. Further, several alternative MOEA al- 
gorithms could be tried, such as Deb et al.'s nondominated 
sorting algorithm 1131 as well as the strongly elitist MOEA 
put forward by Parks et al. [ 1 I ] ,  also employing an archive 
of nondominated solutions. 

In the absence of such further comparative studies, we can 
tentatively suggest that (1 + I)+PAES is a powerful stand-alone 
strategy for multiobjective optimisation problems. However, 
if comparisons with alternative MOEAs turn out to leave 
( 1 + 1 )-PAES foundering in their wake, we believe it remains 
true that (I+])-PAES is a good baseline algorithm against 
which such methods may be compared, and also that it repre- 
sents a good foundation upon which to design more sophisti- 
cated alternative MOEAs. The latter is currently under inves- 
tigation, whereby we are explming (1 + A) and (p  + A) PAES. 
Preliminary results suggest that this algorithm can outperform 
(I+])-PAES on certain probletms. 
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