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Abstract—Memetic computation is a paradigm that uses the
notion of meme(s) as units of information encoded in compu-
tational representations for the purpose of problem-solving. It
covers a plethora of potentially rich meme-inspired computing
methodologies, frameworks and operational algorithms including
simple hybrids, adaptive hybrids and memetic automaton. In this
paper, a comprehensive multi-facet survey of recent research in
memetic computation is presented.

Index Terms—Adaptive memetic algorithms, evolution and
learning, hybridization, memes imitation, memetic algorithm
design issues, memetic algorithms in uncertain environments,
memetic automaton, memetic computation, multiagent system,
multiobjective memetic algorithms, surrogate-assisted memetic
algorithms.

I. Introduction

FOR THE PAST three decades, many population based
search techniques have surfaced to become a mainstay

of optimization [1]–[4]. These techniques rely on search
ideologies that work on the basis of manipulating samples
representative of the search sub-regions within the solution
landscape. Such inherently parallel or multi-track search algo-
rithms derive its strength from the simultaneous explorations
of multiple search regions and exploitative interactions or
coupling between the different search tracks.

Typically, each search track manifests itself as an individual
within a population which represents a potential solution to
the problem that the algorithm is intended to solve [2], [5]–
[7]. The transitional states of each individual are governed
by nature-inspired processes such as evolutionary and swarm
intelligence including but not limited to genetic algorithm [8],
evolution strategy [9], evolutionary programming [10], genetic
programming [11], differential evolution [12], estimation of
distribution algorithm [13], ant colony optimization [14], par-
ticle swarm optimization [15], and artificial immune system
[16], which are generally classified under two main factors;
modes of replacement for each individual and the guiding
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principles dictating the rule of behavior or interactions of the
population as a whole [17]–[19].

Individuals within a population go through processes that
operate on them. These processes are usually effected through
operations that manipulate the solution coding in the form
of strings (binary bit string, integer permutation, etc.), trees
or graphs; most notably with selection (such as ranking,
roulette wheel, stochastic sampling, tournament, etc.) and
reproduction (crossover, mutation, elitism, etc.). Among the
three main operations, mutation serves to introduce random
variations into the population, essentially a mechanism to
circumvent population stagnation. What is evident is that such
processes introduce well-defined procedural manipulations of
the solution.

These days the evolutionary processes are typically inspired
metaphorically by processes observed in nature, more specifi-
cally in population genetics. One should take care to note that
such processes usually do not instill any higher level domain or
problem-specific information beyond that required to evaluate
the fitness of the individuals in the population. Recent trends
in research on optimization have biased toward algorithms that
incorporate higher level of evolutionary and adaptive behavior
[17]–[21]. As with genetics, the science of memetics [22]
has served as a motivational pillar and inspiration toward the
possibility of meme developing into a proper hypothesis of
the human mind. In the context of computing [23], memes
denote the recurring real-world patterns or domain-specific
knowledge encoded in computational representations for the
purpose of effective problem-solving. In the last decade, there
are signs of increasing effort in research on evolutionary
methodologies inspired by population memetics that further
enhances the capacity of algorithms in establishing a good
balance of explorative and exploitative traits.

As with genes in genetics, a meme is synonymous to
memetics as being a building block of cultural know-how
that is transmissible and replicable. While genes form the
“instructions for building proteins,” memes are “instructions
for carrying out behavior, stored in brains (or other objects)”
and passed on by means such as imitation [22]. The term meme
can be traced back to Dawkins [24] in his book The Selfish
Gene. The term has inspired the new science of memetics
which today represents the mind-universe analog to genetics in
cultural evolution, stretching across the fields of anthropology,
biology, cognition, psychology, sociology and socio-biology
[22]. In computer science and engineering, the meme-inspired
computing methodology or more concisely memetic compu-
tation has become an increasing focus of research in recent
years [23]. One of the most direct applications of memetic
computation in problem-solving, in recent years, has been
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memetic algorithms [25]. It is notably one of the simplest
forms of memetics inspired techniques, establishing itself as
one of the key methodologies in complex optimization and
operational research tackling large-scale, real-world search
problems.

The term memetic algorithms (MAs) originated from
Moscato [26] as being the algorithmic pairing of a population-
based search method with one or more refinement methods.
MAs have been successfully applied to a wide range of do-
mains that cover problems in combinatorial optimization [27]–
[29], continuous optimization [30], [31], dynamic optimization
[3], [32], and multiobjective optimization [1], [33], [34]. In
particular, remarkable success on significant instantiations of
MAs across a wide range of real-world applications have been
reported, ranging from the field of bioinformatics [35], [36],
permutation flow shop scheduling [27], scheduling and routing
[28], [29], to nonlinear programming problems including aero-
dynamic design [30], atomic and molecular structure problems
[37], optimal control systems with machine learning [38]–[43],
and computationally expensive and uncertain environments
[44], [45].

It is clear that MA has managed to stir up a wide interest in
the field of evolutionary optimization algorithms [46] and at
times, it is an easy source of confusion whereby any meme-
inspired paradigms are conveniently taken to be synonymous
to MA [23]. There are potentially many other rich meme-
inspired designs, operational models, and algorithm frame-
works which form the cornerstones of memetic computation as
tools for problem-solving [3], [18], [23], [47]–[51]. To capture
the essence of existing and potential research in this field, it is
necessary to clarify memetic computation as being a paradigm
that uses the notion of meme(s) as units of information, i.e.,
the building blocks, encoded in computational representations
for the purpose of problem-solving. From the algorithmic
point of view, memes are units of domain-specific information
useful for problem-solving. For instance, in hybrid algorithms,
memes are taken as instructions, rules, strategies, a priori
knowledge, etc., for search, and in more general problem-
solving context, memes are encoded in various computational
representations of the problem solvers which acquire increas-
ing level of problem-solving capability [52].

To date, work on memetic computation can be divided
into several unique categories for the sake of brevity. In the
present survey, we classify them from the perspective of simple
hybrids, adaptive hybrids, and subsequently memetic compu-
tation that culminates into framework that integrates memes
into units of information for problem-solving, henceforth
memetic automaton. Simple hybrids like MAs [26] represent
a form of synergistic combination between population-based
and local refinement heuristics. The rationale is that, often the
performance of population-based search such as evolutionary
algorithms can be enhanced if problem-specific refinement
techniques are incorporated. These simple hybrids incorporate
domain-specific information to augment the population-based
search with refinement components. The term memetic algo-
rithm has stemmed from the fact that the local refinement
procedure is akin to a meme representing some form of
domain-specific a priori knowledge of the human expert

on how the solution can be better refined [26]. Since the
individual in the population is perceived as undergoing a form
of continuous refinement, the process is often referred to as
local search, lifetime learning or individual learning.

Although achieving remarkable success on significant in-
stantiations of specialized MAs across a wide range of appli-
cation domains, researchers have also actively ventured into
the emerging field of adaptive memetic algorithms. Adaptive
hybrids [17]–[21], [53] are a class of memetic computation
methodologies with great capacity of acclimatizing to suit
a given problem in hand, by methodically utilizing acquired
information about the matching of problems to procedures, and
reconfiguring itself to adapt to the domain or instances of prob-
lems being solved. The potential algorithmic improvements
have been attempted by adapting several key design issues
including frequency of refinement, selection of the individual
subset for refinement, intensity of refinement, choice of memes
to undergo refinement as well as the choice of population-
based search and fitness functions [54].

To address the ever increasing complexity and dynamic
nature of problem-solving, memetic automaton is conceptu-
alized in memetic computation. A memetic automaton is a
software entity that autonomously acquires increasing level of
capability and intelligence through embedded memes learnt
independently or via interactions [52], [55]. Memes compete
and cooperate in an evolutionary process, undergoing memetic
transmission, selection, replication and variation. From a sys-
tem level perspective, this serves as a rudimentary illustration
whereby Universal Darwinism [24], [56] is put into practice. It
liberates the conceptualization of memes to be building blocks
of information (knowledge, belief, emotion, etc.) encoded in
computational representations suitable for problem-solving.
Although not explicitly referred to as memes, artificial neural
networks [57], inductive logic programming procedures [58],
graphs [59], etc. may be viewed as forms of memetic represen-
tations. Unsupervised, supervised, and reinforcement learning
are potential tools that can facilitate learning pertaining to
memes.

The purpose of the present survey is to present a compre-
hensive multi-facet exposition of recent research in memetic
computation. For the sake of completeness, the survey begins
in Sections II and III with a brief review on the early
manifestations of memetic computation within the context of
evolutionary computation, often construed as memetic algo-
rithms, hybrids and adaptive hybrids. To give a multi-facet
survey of memetic computation, a review on the more recent
memetic algorithms, hybrids and adaptive hybrids is provided.
In particular, the current review takes focus on the recent
developments of hybrids and adaptive hybrids, during which
there is a clear exponential growth of research publications in
the area. Subsequently, Section IV highlights “Memetic Au-
tomaton,” a natural progression toward establishing “meme”
as the focal point of memetic computation and pinpoints
some noteworthy emerging research trends in the field that
have remained under-explored. Specifically, Section IV takes
a meme-centric review of ongoing research in computational
intelligence that focus on reusability, transferability, pattern
generalization, as exhibited by various meme-based and agent-
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based cultural systems, etc. Lastly, we conclude this paper with
some remarks on memetic computation. It is hoped that the
classifications presented in this survey will assist in identifying
fresh and exciting research frontiers of memetic computation.

II. Simple Hybrids

Many of the early works in memetic computation have ma-
terialized in the form of hybridization between the population-
based search and refinement procedures [60]. They are often
known as genetic local search, canonical memetic algorithm
or simply as hybrids. From the algorithmic perspective, two or
more distinct methods when combined together in a synergistic
manner with the incorporation of domain knowledge [61] can
greatly enhance the problem-solving capability of the derived
hybrid. Furthermore, hybrids capitalize on the complementary
advantage of population-based search (more explorative) and
refinement (more exploitative) in that the former provides
a reliable estimate of the global optimum while the latter
concentrates the search effort around the best solutions found
so far by searching the neighborhoods to produce better
solutions more efficiently [17]. As such, hybridization is one
important feature evident in the field of memetic computation.
In this section, we discuss the main issues in simple hybrids,
including the types of population-based search methods and
refinement procedures, the levels of hybridization, modes of
inheritance as well as the types of domain-specific information
incorporated into simple hybrids.

A. Types of Search Methods

Here we present some of the well-established population-
based search approaches typically used in the literature, and
the refinement approaches used to enhance them, in the form
of hybrids. What constitutes the population-based search and
refinement procedure in simple hybrids is motivated by the
presence of a priori knowledge on the problem domain.

Typical population-based search frameworks including ge-
netic algorithm (GA) [8], evolution strategy (ES) [9],
evolutionary programming [10], genetic programming [11],
differential evolution (DE) [12], estimation of distribution
algorithm (EDA) [13], ant colony optimization (ACO) [14],
particle swarm optimization (PSO) [15], artificial immune
system [16], etc. are stochastic in nature [2]. These are generic
population-based search frameworks applicable to many prob-
lem domains. However, due to the ease of use, some are
observed to be favored in particular domains. ACO and GA
have stronger presence in the domain of order-based discrete
combinatorial optimization, while DE, EDA, PSO are more
often used for handling continuous variable problems.

In the domain of multiobjective optimization (MOO)
[7], [33], [48], the more popular population-based methods
include the non-dominated sorting genetic algorithm-II [62],
evolutionary multiobjective optimization algorithms [27],
Pareto archived evolutionary strategy [63], multiobjective PSO
[64], etc. It is worth noting that to date many of the notably
successful multiobjective evolutionary algorithms involve
some forms of hybridizations specially designed for dealing

with their respective challenges [27], [33], [34]. Special-
purpose reproduction operators [65], specialized fitness
function management schemes [66]–[68], multiobjective
refinement operators [27], [69], etc. are among some of those
introduced into multiobjective MA (MOMA) hybrids, as a
way of improving, the rate of convergence to the Pareto
optimum solutions, spread of solutions along the Pareto front,
or dealing with the presence of non-linear constraints.

The refinement procedure used in hybrids, on the other
hand, comes in the form of both deterministic [70] and
stochastic [71]. Among the deterministic refinement ap-
proaches, branch and bound has been used for handling
combinatorial problems such as longest common subsequence
[72], while Hooke–Jeeves algorithm, Nelder–Mead simplex
search method, Rosenbrock algorithm, etc., for handling con-
tinuous problems such as complex engineering design [73].
To cope with the scale-up in problem complexity, such as
high multi-modality, researchers have ventured into stochastic
refinement to enhance search diversity in the neighborhood. In
combinatorial optimization domain, some of these include the
tabu search for finding low auto-correlation binary sequences
[74], simulated annealing to discover the optimal resources
in p2p networks [75], etc. While many of these refinement
methods have been designed for single-objective optimization,
others specifically for multiobjective optimization have also
emerged [7], [63], [76], [77]. One of the earlier work in
MOMA [76] proposed a local search operator that perturbs
the solutions in a randomly chosen non-dominated improving
direction of the objectives, as a means of enhancing the rate
of convergence to the Pareto front. Refinement procedure that
directs the search toward and along the (local) Pareto set with
the aim of obtaining a wider spread of solutions in the Pareto
front like the Hill Climber with Sidestep [78] is among some
of the others introduced recently. Other specialized refinement
procedures proposed for mitigating the impact of uncertain
search environments or noisy problems include the trust-region
derivative-free memetic algorithms [79]–[82].

B. Level of Hybridization

In this section, we present the different refinement levels of
hybridization used in MA. Researchers have incorporated re-
finement procedures at different stages of the population-based
search. Most notably, it is possible to classify refinements as
being incorporated before, after, or interleaved as depicted in
Fig. 1.

Refinement incorporated before the population-based
search in the form of initialization has been shown to enhance
the efficiency of simple hybrids. Reference [83] proposed the
opposition-based learning to initialize the foremost population,
and showed that in contrast to random initialization, their
proposed population initialization method helped to accelerate
the search convergence rate. In the same spirit, [84] demon-
strated search improvements with a sequential transformation
method for population initialization in the context of traveling
salesman problem, while [85] with a scheme based on
population dispersion to effect the initialization. On the other
hand, for procedures that are interleaved within the population-
based search operators, refinement is conducted only after one
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Fig. 1. Levels of hybridization.

or more reproduction operators has completed [69]. Note that
the refinement process can be used more than once within the
population-based search [86]. For other hybrids that incorpo-
rate the refinement process as a form of post-processing, [87]
used inductive logic programming for improving the solutions
in capacitated location routing problem and Steiner tree
problem. The use of population-based search to coordinate
interleaving refinement procedures [18] or fine-tuning the
configurations of refinement procedures [88] to suit an
optimization problem in hand have also been considered.
These include the hyperheuristics [18], meta-Lamarckian MA
[31], Indirect EAs [88], where the latter manages a collection
of low-level heuristics as refinement procedures.

As illustrated in Fig. 1, the hybrids can also be deployed in
the form of multi-populations or multi-islands or ensembles
[89]–[93]. These independent hybrid models cooperate
through the exchange of genetic or memetic information
or other means. The improved robustness, diversity, and
efficiency of multi-population hybrids have been reported by
many [91], [92].

C. Modes of Inheritance

In this section, the modes of inheritance used in hybrids are
reviewed. Two modes of inheritance have been studied closely
in hybrids, namely Lamarckian and Baldwinian inheritances.
Lamarckian inheritance [31], [50] characterizes that an indi-
vidual passes on the learned traits acquired in its lifetime to its
offspring directly. On the other hand in Baldwinian inheritance
[94], [95], the learnt traits as acquired are not passed to the
offspring. Instead, learnt traits result in the increased fitness of
individuals, thus giving fitter learnt individuals higher chance
of survival than naive Darwinian evolution.

In the context of computational intelligence, Lamarck-
ian learning forces the genotype to reflect the result of

improvement through placing the refined and improved in-
dividual back into the population to compete for reproduc-
tive opportunities. Baldwinian inheritance, on the other hand,
only reflects the refinement improvement of individuals in
fitness change while leaving the genotype of the population
unaffected. Let x, xopt ∈ XN where X and xopt denote
initial solution vector and improved solution vector upon
undergoing refinement, XN is the solution space of dimen-
sion N with fitness function f (.). Algorithmically, Lamar-
ckian and Baldwinian learning effect the following changes
Lamarckian(x, f (x)) → (xopt, f (xopt)), {xopt ∈ XN} and
Baldwinian(x, f (x)) → (x, f (xopt)), {x ∈ XN}, respectively.
The majority of simple hybrids in memetic computation usu-
ally employ the mode of Lamarckian inheritance [31], [50] in
their design.

While Lamarckian learning is known to be more effective
than Baldwinian learning under static environments [96], it
has the known effect of disrupting schema processing since it
changes the genetic structure of individuals, thus prone to early
premature convergence [97]. Baldwinian, on the other hand,
tends to induce a slower schema disruption than Lamarckian
inheritance, and is known for its hindering effect that tends
to block out any genetic differences [98]. In practice, both
modes of learning have found their places in simple hybrids
where Lamarckian inheritance exhibited excellent advantage
on unimodal landscape and problems with non-changing en-
vironments, while Baldwinian inheritance is deemed as more
appropriate for problems subjected to dynamic and uncertain
environments [44], [99], [100].

On real-world optimization problems subjected to noise or
uncertainties in the design variables and environmental con-
ditions, or time-varying fitness functions [99], such as robust
aerodynamic shape design [44] and dynamic neural network
evolution [100], hybrids that employed Baldwinian inheritance
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have reported notable search performances. Simulation studies
such as [101] have also been made by some researchers to
verify the higher robustness of Baldwinian inheritance than
Lamarckian inheritance under dynamic environment. Further
comparison between the two modes of inheritance was also
reported in [102], whereby Lamarckian and Baldwinian were
served as repair schemes for computational experiments on
multiobjective 0/1 knapsack problems. Results obtained indi-
cated that Baldwinian outperformed Lamarckian repair. Mixes
of Baldwinian and Lamarckian inheritances in hybrids have
also been investigated. One such instance in [103] reported
improved efficiency in the search involving sorting network
problem, whereby solutions were inherited using both learning
modes.

D. Types of Domain Knowledge Incorporated

In this section, we examine the incorporation of domain-
specific knowledge in simple hybrids. It is well established that
the performance of hybrids correlates positively to the incor-
poration of domain knowledge, an outcome that is consistent
with the “no free lunch” theorem [104]. A fundamental feature
of hybrids is that the algorithms are typically designed to
leverage or exploit any a priori knowledge on the inherent
structure of the real-world problem. This problem-specific
knowledge has been established to significantly enhance the
performance of hybrids in solving the problem that they
are designed for. The types of domain-specific knowledge
that have been incorporated into hybrids to enhance search
are in the form of specialized solution representations [105]
and preprocessing schemes [106], as well as problem-specific
search operators [107], etc.

Domain-specific solution representation permits flexible yet
effective specialized operators to be exploited in the search
[108]. The genetic vehicle representation [105] was designed
in the same spirit for solving capacitated vehicle routing
problems. It is worth noting that domain representation
can also help narrow the search to a substantially smaller
space compared to the original, where superior solutions are
more likely to exist. Other successful specialized solution
representations include the parallel job representation [109],
the Artificial Chromosome with probability matrix [110], etc.

Domain-specific problem representation has also been used
as a form of preprocessing in hybrids. In some algorithmic
designs, domain-specific knowledge incorporated as part of the
preprocessing steps has been used to make the search more
focused, thus enhancing the overall search convergence rate.
For instance, the pre-processing approach in [111] makes use
of the a priori knowledge on redundant edges and nodes to
reduce the problem size of the original generalized traveling
salesman problem. Similarly, domain knowledge incorporated
into fuzzy rule generation and prescreening prior to rule selec-
tion when dealing with high-dimensional pattern classification
problems has led to significant improvements in the efficiency
of fuzzy rule selection using MOMA [112]. Other successful
incorporations of domain knowledge for preprocessing include
the block-cut tree techniques proposed in [113].

Taking advantage of the enriched representation, [114]
describes a crafted crossover that exploits the specialized

representation for effective exchange of partial routes between
individuals, in vehicle routing problems. Specialized operators
such as position based mutator [115] have been proposed
for solving job-shop scheduling problems more effectively.
In many occasions, domain-specific information is also incor-
porated within the refinement process. Some of the notable
schemes in single-objective, multiobjective optimization as
well as uncertain, dynamic environments, include Concorde
[116] which is designed for solving traveling salesman prob-
lem using the Branch and Cut method, the specially designed
refinement operators [107] for accelerating the convergence
rate to Pareto front, and the random multi-start variable
neighborhood local search [117].

Besides leveraging on domain knowledge in the design of
specialized operators, the knowledge can be harnessed in other
ways, such as within the fitness evaluation process. When han-
dling problems with computationally expensive objective and
constraints functions [45], [80]–[82], in particular, surrogate-
based memetic algorithms or hybrids have been widely used
[45], [81], [118]–[120] to enhance the computational tractabil-
ity of the algorithm. In the refinement stage of such hybrids,
approximation of the problem landscape is effected on the fly
within a trust-region local refinement framework that manages
the interplay between the original computationally intensive
objective and constraint functions with computationally cheap
surrogate models [120]–[123]. With the zero-order and first-
order consistency conditions imposed at the initial guess,
global convergence of the trust-region local search framework
that embeds surrogate models can be guaranteed [124]. Hence,
surrogate-based memetic algorithm possesses the benefit of
lower susceptibility in converging to false global optimum
over other surrogate based evolutionary counterparts [125],
since the use of surrogates is confined within the trust-region
local search. Taking the spirit of optinformatics [126], a
machine learning approach [127] to making geometrical and
structural predictions on the feasibility of candidate solutions
was introduced to effect the decision of performing further
refinements on the individuals in the context of non-linear
programming with active constraints.

III. Adaptive Hybrids

In recent decades, the general practice of hybridization in
MAs has evolved into the emerging field of hybridization with
adaptation. Adaptation of parameters and operators represents
one of the most important and promising areas of research
in memetic computation [17], as practitioners often encounter
problems for which they have only limited insight into the
structure of the problem, making it difficult to design specific
MA without adaptation. These self-configuring algorithms are
capable of acclimatizing to suit a given problem in hand, by
methodically utilizing acquired information about the match-
ing of problems to procedures, and reconfiguring itself to
adapt to the problem as the search progresses. In contrast to
simple hybrids in which domain knowledge is only captured
and incorporated once by human expert during the design of
MAs, adaptive algorithms handle the population diversity of
the search and the various design issues by adaptable strategies
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and parameters for problem-solving [17], [128]. In this section,
we present the population diversity management and adapta-
tion strategies for adaptive hybrids in memetic computation.

A. Diversity Management

An important goal of adaptation in the design of search
algorithms is the preservation of diversity in the solutions
being explored. In single objective optimization, the problem
of premature convergence, whereby the population converges
around a suboptimal solution can be particularly problematic
for hybrids. Premature convergence poses as a bigger chal-
lenge to hybrids in the contexts of multiobjective optimization
and problems with uncertain and dynamic environments. In
the former, a poorly spread Pareto front may result, while
hybrids are more prone to failure in adapting to the changing
environment once it has converged to some basin of attraction.

Population diversity refers to the extent of variation in the
population based on the individuals’ structure or performance
[129]. Various measures of diversity have been used in MA,
such as the extent of variations in fitness values [130], aging
of solutions as defined in [131], etc. Based on these diversity
measures, various techniques have been incorporated [48],
[75], [132].

With fitness-based diversity, adaptive hybrids attempt to
maintain the population diversity by managing good fitness
spread among individual solutions in the population. In the co-
ordination of multiple refinement procedures, [40] monitored
how close the average fitness is compared to the population
elite. Others, on the other hand, chose to effect the search
adaptation according to the sparseness of individuals [75],
[132] or the super-fit individual [73] in the population. To
prevent loss in diversity, additional populations using com-
pletely different fitness criteria have also been considered [91].
When dealing with problems with uncertainties, population
diversity is enhanced by locating and tracking multiple moving
peaks via hierarchical clustering [133] and variable relocation
evolutionary process [134] which makes already converged
individuals evolve more rapidly to new environmental con-
ditions. Other fitness-based diversity schemes proposed for
single and multiobjective contexts include fitness sharing [48],
clustering [135], adaptive grid [62], etc.

With distance-based diversity, adaptive hybrids attempt to
maintain the population diversity by managing the distance
spread among individual solutions in the population while the
search progresses. Some relevant works in this discipline in-
clude adaptation based on population entropy [136], diversity-
adaptive parallel memetic algorithm for solving large scale
combinatorial optimization problems [93], the many popu-
lation management strategies proposed for handling multi-
dimensional knapsack problems and weighted tardiness single-
machine scheduling problems [137].

B. Design Adaptation Issues

Several core design adaptation issues of simple hybrids
have been considered to date. In particular, it is now well-
established [60] that potential algorithmic improvements can
be achieved by adapting several key designs, including the

frequency of refinement, selection of individual subset to
undergo refinement, intensity of refinement, and choice of
procedures to conduct refinement. In this section, we present
an overview of recent works directly on these issues.

1) Frequency of Refinement and Individual Subset Selec-
tion: The frequency or probability of refinement defines the
proportion of a population that should undergo the refinement
process [138]. The aim is thus to balance the amount of
computational budget allocated for population-based search
versus refinement [139]. The adaptive selection of individual
subset to undergo refinement helps enhance overall search
productivity [60], [140], [141].

Reference [27] investigated the impact of frequency of
refinement in both single and multiobjective context for per-
mutation flowshop scheduling, where only the elite individuals
of the population undergo refinements. A fitness uniform
selection scheme to adapt both the frequency of refinement and
individual subset selection based on population diversity was
also considered for cellular hybrids [140]. In particular, the
trick lies in reducing the likelihood of applying the refinement
procedure on individuals falling in previously refined basins
of attraction.

2) Intensity of Refinement: Refinement intensity of an indi-
vidual defines the amount of computational budget allocated to
the refinement process. Study conducted to examine the effect
of this design issue had confirmed its significant impact on
search performances [142].

Reference [143] proposed an adaptive refinement procedure,
whereby fitness statistics obtained from the population of
individuals are used to adaptively adjust the degree of refine-
ment intensity. Reference [144] adapted by building refinement
chains beginning with a fixed intensity, and subsequently
using these stored chains to define the degree of refinement
intensity for new individuals. It is worth noting that an
extended version of the local search chain memetic algorithm
for high dimensional problems [145], i.e., 1000 dimensions,
was demonstrated to top the chart in the recent competition at
WCCI 2010. Reference [146] also proposed a crossover-based
adaptive local search that adapts the refinement intensity of
the individual learning process based on some hill-climbing
heuristic.

3) Refinement Procedures or Memes: In this subsection,
we review the adaptive selection of refinement procedures or
memes in memetic algorithm. The choice of memes affecting
the performance of hybrids significantly was demonstrated
by several researchers on a variety of problems of diverse
properties [17].

Several adaptation schemes have been put forward to adapt
the choice of memes in hybrids. Hyper-heuristic [18] fuses
a collection of memes in the form of low-level heuristics so
that the actual meme applied on each individual may differ.
It is a form of a heuristic to choose memes. Adaptive choice
of memes at each decision point was also proposed in multi-
meme algorithms [164] and meta-Lamarckian learning [96],
while the co-evolution of memes and genes in adaptive MA
was considered in [19]. Reference [147] introduced a unified
framework for evolutionary algorithm design that extends
beyond the selection of memes to perform refinement. In
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particular, the probabilistic memetic framework described in
[147] estimates the theoretical upper bound on computational
budget for refinement as a means to control and adapt the
multiple design issues of the hybrid simultaneously at runtime,
from how many and what individuals that would undergo
lifetime learning to which appropriate meme(s) to employ
in learning. To alleviate the potentially high intensity and
computational budget incurred in the refinement when solving
problems with computationally expensive cost functions and
uncertain environment, adaptive hill climbing [53] and trust-
region based local searches [44], [45], [127] have also been
introduced. Some of the refinement adaptation mechanisms
proposed for handling MOO problems concentrated on the
adaptive coordination of local refinement methods based on
cross-dominance [20] and resource productivity criteria [21].

C. Theoretical Analysis of MA

Despite the broad research activities on the issues of MA
design, there is the lack of sufficient rigorous theoretical study
to date, since it is typically hard for theory to keep track with
the state-of-the-art algorithms that has become increasingly
elaborate and complex. Nonetheless, there are recent signs of
increasing research in the design and development of formal
analytical study on MA. Polynomial local search complexity
theory [148], fitness landscape analysis [149], [150], frequent
pattern mining [151], connectivity structure analysis [152], lo-
cal optima network [153], linkage graph [154], fixed-parameter
algorithmics [155] and phenotypic plasticity [156]–[158] are
among some of those that have been introduced to facilitate
our understandings of memetic algorithms, thus rendering the
design of novel adaptive hybrid methodologies possible.

The polynomial local search (PLS) complexity theory was
considered in [159] to analyze the worst case complexity of
hybrids as a combination of population-based and refinement
procedures, particularly in the discrete domain such as the
Traveling Salesman Problem. The PLS completeness on a
family of hybrids or memetic algorithms can be derived to
gain insights on the expected worst case behavior of the solver
on the problem of interest.

Fitness landscape analysis [149], [150], on the other hand,
denotes one of the most popular tools for gaining insights
into the problem fitness landscape with respect to the solver
used. Local optima network [153] and connectivity structure
analysis [152] represent some recent theoretical analysis tools
introduced to derive knowledge or more precisely the inherent
properties of the search space, thus offering insights into the
problem difficulty with respect to hybridization.

In the same spirit, frequent schema mining [151], frequent
subtree mining [160], and linkage graph discovery [154] were
introduced for extracting latent solution patterns or recurring
problem structure from online optimization data encountered
along the search, thus enhancing the understanding on search
dynamics and structural properties of the problem, thus im-
proving search performances. Fixed-parameter algorithmics
with kernelization techniques have also been proposed [155]
for analyzing the given problem and divide the problem
structure into smaller independent problem kernels that can
be subsequently conquered and solved more efficiently.

On the theoretical forefront pertaining to mode of inheri-
tance, [161] verified that the saddle-crossing ability of Bald-
winian learning can help alleviate the issue of getting stuck in
local optima, on simple multi-peaked and dynamic landscape.
The higher short-term adaptability, phenotypic plasticity, and
other benefits of the Baldwin effect have also been studied in
[156]–[158].

IV. Toward Memetic Automaton

To date, memes in simple and adaptive hybrids (as discussed
in Sections II and III) have been established as more of a
complimentary role in the “learning” phase of the evolutionary
cycle. Hence, the true nature and potential merits of memes
may not have been fully exploited in the context of evolution-
ary computation.

From the formalism of simple hybrids to adaptive hybrids,
it is evident that algorithms seek to achieve greater level
of adaptivity to address the ever increasing complexity and
dynamic nature of problem-solving. The aim of memetic
computation should therefore culminate into a meme-centric
framework that seamlessly integrates memes into units of
domain information useful for problem-solving.

Taking meme as focal point of interest in the context
of computational intelligence, we define memetic automaton
as an adaptive entity that is self-contained, uses memes as
building blocks of information that facilitates problem-solving.
From a software perspective, a memetic automaton is a soft-
ware agent capable of autonomic behavior during problem-
solving [162], [163]. In general, the term “agent” refers to soft-
ware entity that can interact with the surroundings and adapt
to a complex dynamic environment. Hence, intelligent agents
are able to acquire increasing level of capability through their
interactions by updating its meme pool [52]. This acquired in-
telligence helps the agent adapts to its changing surroundings.

Two important aspects of memes with regards to memetic
automaton are representation and evolution. Memes can rep-
resent the agent’s ideas and knowledge captured as memory
items and abstractions [164]. The expression of such memes
may be in the form of recurring real-world patterns or struc-
tures of a domain that infect other agents’ perceptions, beliefs,
minds, etc. Memetic evolution is also central to the behav-
ioral aspects of memetic automaton. Dawkins in [24] coined
Universal Darwinism to draw the analogy on participation of
genes in genetic evolution to memes participating in a cultural
evolutionary process [24]. The memetic evolutionary process
is then primarily driven by imitation [22], which takes place
when memes are transmitted. Individuals who face repeated
tasks of having to make choices, imitate others who obtained
high payoffs in the previous rounds [165]. With regards to
imitation, memetic selection concerns with whom one imitates
[165], while memetic transmission and variation relates to how
one imitates and what is imitated or assimilated [166]. Fig. 2
gives a depiction of the imitation process among multiple
agents [51], [167], [168].

In this section, we direct our attention on the memetic
representation and mechanisms pertaining to memetic automa-
ton. In particular, we give a detailed account on memetic
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Fig. 2. Imitation process between memetic automata by means of Universal Darwinism.

representations and imitation as the principal driving force
behind memetic evolution, by focusing on the various rep-
resentations of memes in computational intelligence as well
as all three fundamental mechanisms of Universal Darwinism,
namely selection, propagation and variation.

A. Memetic Representation

An important step in memetic computation is to identify
a suitable memetic representation of the memotype (i.e., the
actual information content of a meme [22], [169]) for the prob-
lem being solved. To date, several recent efforts have looked
into memetic representations for problem-solving, and can be
delineated into the categories of symbolism, connectionism or
others [23], [164].

1) Symbolic Memetic Representation: To date, a plethora
of symbolic memes represented using schemata [49], [170],
[171], tree, graph [172], logic [58], [173], etc. have been
established. In schema meme, declarative knowledge has
been represented in symbol structures, while procedural
knowledge represented as elementary information processes
called behavioral rules [174]. The agent-based memetic
algorithm described in [49], [170], and [171] involves
autonomous agents that perform evaluations with schema
memes that reside in the agent’s mind universe [171] to
solve hard computational problems [174]. These formalized
memes are materialized as private memory and socially-
shared memory of the agents within a society [171], [175].
Other schemata-based memetic representations including the
simplified definite-clause grammar in iterated learning model
[167] and string-based memetic encodings in [176] and [177]

for the evolution of linguistic behavior among agents and for
meme-gene coevolutionary studies investigated on the NKCS
fitness landscapes1 [176], have also been established.

Memes, on the other hand, have also transpired in the
form of decision rules encoded as tree or graph structures,
with nodes composing of symbolic operators and operands.
In [172], agents imitate the observed success of other agents
by acquiring memes in the form of well-developed GP-based
subtrees from other viable agents, thus enhancing their own
capability in solving computationally expensive problems. In
[178], tree-encoded memes representing tasks and solutions
are communicated to facilitate collaborations among agents
to solve the insect locomotion problem, within a distributed
environment. With respect to computational agent stock mar-
kets [179], graph-encoded memes was used as the fundamental
building blocks of agents in individual and social learning.

First-order logic memes that formalize the agent’s belief
or pieces of knowledge for effective problem solving have
also been considered. The extended well founded semantics
[58], [173] represents a key ingredient for building rational
epistemic agents capable of managing and revising their goals
and belief, as well as knowledge production in a dynamically
configurable society of agents. Further extension to fuzzy
memes that takes into account the uncertain property of
human thinking have also been described in [180] to better

1NKCS landscapes are coupled fitness landscapes in which a move by
one species deforms the fitness of other linked species coexisting in an
environment with N denoting the number of genes in each species, K the
number of genes that affect the fitness contribution of each gene, C the number
of connections between species, and S the number of species
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model and simulate the complexity involving the evolution of
the mind in agents and the relationships among agents within
a social network.

2) Connectionist Memetic Representation: In this category,
meme generally takes the form of “information encoded
in neural structure” or “constellation of activated neuronal
synapses in memory” [181] in agent. In [57] and [168],
neural memes materialize as recurring patterns captured within
artificial neural networks (ANN) that define the behaviors and
guiding criteria of agents, to facilitate cultural transmission of
successful collective and learnt behavior that constitute toward
computationally preferred task-solving approach. Within the
connectionist paradigm, various types of ANN architectures
and learning methodologies have been used in the representa-
tion of memes. Self-organizing map was used for the mining
of internal rhythmic memes in [182], while multilayer percep-
trons for classification of compositional meme patterns and
promoting behavior that mimics high quality expert agent’s
strategy [57], [182], [183]. The Widrow–Hoff ANN [168] was
also investigated to equip descendent agents with capabilities
to learn from their parents in a supervised manner.

3) Other Forms of Memetic Representations: Alternative
forms of memetic representations include the Bayesian models
[59], [184], Hidden Markov models [185], state-transition
system models [51], [183], etc. These memetic representa-
tions take on various computational forms, based on differing
assumptions and considerations about the agent environment.

Among memetic representations that operate with incom-
plete or uncertain information, Bayesian models such as [59]
and [184] facilitate rapid learning of human behaviors in
agents through a probabilistic framework for acquiring new
memes via imitation-learning with Bayesian inference. This
enables agents to master challenging tasks such as autonomous
navigation. Dynamic Bayesian networks such as the hidden
Markov models [185] are capable of representing linguis-
tic memes from the perception of experiences encoded in
continuous-valued signals. Such networks endowed agents
with the capabilities of acquiring memes for decision making
from other agents. Some other memetic representations include
the locally weighted regression [186] and the self-model
proposed in [187] for facilitating the imitation of memes in
the form of complex biped locomotion movement from human
experts, thus enabling agents to diagnose and recover from
unanticipated situations faster, by drawing on the developed
memes previously learned by successful agents.

B. Memetic Selection

Here, we describe the meme selection mechanism. Selection
for the purpose of imitation is ultimately an agent’s expression
of its exploitative trait, i.e., selecting a meme to imitate at
each decision point t. Consider a population of agents A(t) =
{a1, a2, . . . , ap} and a meme pool M(t) = {m1, m2, . . . , mq}.
The memes expression matrix of the system at a decision point
t can be written as

E (t) = [eij]q×p (1)

eij =

{
1, if aj expresses mi

0, otherwise.
(2)

M(t) refers to the common meme pool [51], [175] as
illustrated in Fig. 2. The meme pool of an agent ai is likewise
written as Mi(t) [175], [183]. The goal of selection of an
agent ai is to choose a meme m ∈ M(t) such that agent ai

through expressing m improves its chances of success in future
actions [51]. To determine which meme an agent selects at
a given decision point, evaluation and behavioral rules are
typically defined. In what follows, we review some of the
current meme selection schemes with respect to evaluation
rule and behavioral rule.

1) Evaluation Rule: The evaluation rule assigns a qualita-
tive or quantitative figure of merit to the memes. Qualitative
estimation of payoff for memes has been realized based on
nominal or ordinal scale. With nominal scale, a label is
assigned to each meme, as used in the coordination strategy
of multiple memes [40], [130], [188]. In contrast, the ordinal
scale ranks the memes in order of payoff [189]. In quantitative
evaluation, the payoff of a meme, mi, can be quantified based
on statistical measures. Two common payoff measures used
are maximum fmax (mi) (e.g., [190]) and average f (mi) (e.g.,
[179], [191]), defined as follows:

fmax (mi) = max
{
f

(
aj

) × eij | for j = 1, 2, ..., p
}

f (mi) =

∑p
j=1 f

(
aj

) × eij∑p
j=1 eij

where f
(
aj

)
is the payoff associated with agent aj .

The memes can be further quantified in absolute or relative
scales. Instances of absolute scale can be found in [175] and
[179] in which the combined behavior-evaluation cost and the
mean absolute percentage error are used, respectively, for
defining meme fitness. In contrast to absolute scale, relative
scale compares memes based on their relative statistical per-
formance, such as the roulette wheel meme selection operation
[190] based on the relative payoff of the memes.

2) Behavioral Rule: The behavioral rule specifies how
an agent selects a meme from M(t) based on its payoff.
Existing behavioral rules can be differentiated into “imitate
the elite” and “proportional imitation.” The “imitate the elite”
rule specifies that an agent will imitate the elite meme from
the meme pool, according to average or maximum payoff. In
implicit imitation [192] or teacher-based supervised evolu-
tionary learning [57], beginner agents learn by imitating the
memes from expert agents of the same environment, based
on the payoff criterion. On the other hand, the “proportional
imitation” rule specifies the degree that one agent imitates an-
other, is positively correlated to their difference in payoffs. In
[190], an agent imitates by selecting a meme probabilistically
from its neighboring agents, through a localized roullete wheel
selection operation based on relative payoff. Other variants
of the “proportional imitation” rule include the rule-exchange
mechanism proposed in [175] whereby a number of rule-
based memes with low strength values are replaced by rule-
based memes with high strength values between two arbitrary
agents. In relation to the aforementioned rules, behavioral
noise and inertia are some concepts designed to handle the
uncertainty during meme selection. A noisy behavioral rule
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Fig. 3. Imitation via memetic transmission.

may correctly imitate the selected meme most of the times,
but makes mistakes (e.g., imitate another meme instead of
the selected meme) occasionally. On the other hand, for a
behavioral rule with inertia, the agent is driven to imitate
the selected meme although occasionally switching back to
its original meme [193].

C. Memetic Propagation

In this section, we outline the imitation process with respect
to memetic propagation. Fig. 3 illustrates the imitation process
in which agent ai imitates the meme expressed by agent aj

[194]. In the imitation process as illustrated, agent aj first
expresses its memes, which is observed by agent ai in the
subsequent transmission stage. Agent ai then infers the memes
from its observation based on its knowledge, belief, etc.,
by means of memetic assimilation. There is also a retention
stage which occurs as new memes are continuously learnt and
evolved by agent ai. Memetic variation may occur during any
of the four stages, which will be detailed later in Section IV-
D. Reference [194] gives a detailed account on how memes
are assimilated, retained, expressed, and transmitted in the
imitation process from a sociological viewpoint.

1) Meme Transmission: A number of meme transmission
mechanisms have been proposed to date. Depending on how
an agent acquires a meme, the modes of transmission are clas-
sified into vertical and horizontal transmissions, as illustrated
in Fig. 4.

In the vertical transmission, for instance, an agent acquires
the innate behaviors from its parents, through genetic inheri-
tance. Reference [168] showed a form of vertical transmission,
whereby a descendent agent inherits the behavior and guiding
criteria of its parents by assimilating their network structures.
Other examples of vertical transmission in multiagent environ-
ments include [195] whereby each agent inherits the innate
linguistic behaviors of their parents’ peers during language
evolution.

In the horizontal transmission, behaviors are transmitted via
memes among peers of the same population. In the so-called
agent-based memetic algorithms [49], [170] and autonomy-
oriented Computing [171], [174], agents follow a horizontal
transmission exchanging memes that takes the form of behav-
ioral rules with neighboring peer agents modeled in a lattice-
like cellular structure [49], [170] or a linked graph [171], dur-
ing its lifetime. The rule-exchange and collective-knowledge-
reuse schemes of the organizational-learning-oriented classifier

Fig. 4. Mode of transmission: vertical transmission of innate behaviors
between parents in generation G(t) and their child in G(t + 1) and horizontal
transmission of memes among agents in G(t + 1).

system proposed in [175], and the advice exchange framework
for peer agents facing problems containing similar structure in
[183] represent some others in a horizontal transmission mode.

2) Meme Expression and Assimilation: In memetic ex-
pression and assimilation, the focus is placed on the socio-
types (which is the social expression of a meme [169], as
analogous to the phenotype of a gene) instead of memotypes
of the agents. The agent assimilates memes by observing
the behaviors expressed by other agents. In [168], an agent
assimilates the memes of other agents by inferring them
from the perceived state-action-evaluation behavior expressed
using the Widrow–Hoff neural network learning algorithm.
Similar expression and assimilation stages exist in the iterated
learning model in [167] whereby each agent indirectly acquires
linguistic memes from another by learning from a set of
meaning-signal pairs generated from the linguistic memes of
another agent.

3) Meme Retention: During the process of imitation,
memes are constantly injected either into the meme pool of
an agent [167] or the common meme pool [51], which is
usually of finite size. This results in a competition among the
existing memes and the injected memes during the retention
stage. At this stage, the longer a meme survives in an agent’s
meme pool or the common meme pool, the more it will spread
through the population of agents. Various strategies in memetic
computation incorporate schemes for avoiding unnecessary
loss of memes of particular usefulness. In [175], memes having
a higher strength value than a pre-defined threshold are not
replaced when new memes are introduced into the meme pool
of an agent. Other approaches include the use of automatically
defined function for protecting discovered rules in tree-based
memetic representation [172], and the reuse of learned policy
for the automatic development of the learning structure [50].

D. Memetic Variation

Here, we discuss the issues pertaining to memetic varia-
tion taking place in the imitation and evolutionary process.
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Memetic variation process refers to the self-generation and
reconfiguration of memes. The process takes place during the
various stages of meme propagation. In particular, variation
is active during the transmission and retention stages [167],
[168].

In the transmission stage, memetic variation occurs when
there is no faithful copying of memes between agents [57],
[168], [182] or as a result of recombination or mutation of
memes [172], [175], [190]. Variation in [168] takes place due
to the inherent biases that arise when an agent attempts to
updates its memes by training its meme-inhabited networks
based on the incomplete or imperfect training samples it
observes from its parents. On the other hand, variation can
be a result of memetic recombination such as in [172], where
the memetic crossover is used to restructure memes that are
embodied as tree-based memory. Another manifestation of
memetic variations includes the memetic mutation designed
for evolution of unplanned coordination among independent
agents [190].

In the retention stage, variation happens when the integrity
of existing memes is affected as a result of lifetime learning
[51] or each agent’s individual cognition toward novel or
curious situations [167], [196]. In [51], each agent reconfigures
a selected meme from the meme pool to meet its design goals
through reinforcement learning, subsequently transferring the
refined meme back to the meme pool shared with other agents.
On the other hand, the invention algorithm proposed in [167]
pushes agents to invent new linguistic memes for spontaneous
evolution of linguistic structure. Other variation mechanisms
include the intelligent adaptive curiosity mechanism proposed
in [196] for propeling an agent toward innovation that maxi-
mizes its learning progress and the rule-generation mechanism
proposed in [175] which creates new rule-based memes when
an agent fails to find stored knowledge matching the current
environmental state.

V. Discussion on Potential Future Work

Memetic algorithms, hybrids and their adaptive variants
have to date enjoyed excellent success across a wide realm
of real world problem domains that stretches from business,
economics and finance, to design in science and engineering.
In the process, many dedicated hybrids have been crafted
to solve domain-specific problems better, with many more
operational hybrids expected to be introduced for solving
freshly identified problems in decades to come. To date, the
use of meme as a form of individual learning or refinement
procedure has been to enhance the search efficiency and
solution precision of traditional EA. In some cases, it is worth
noting the use of memetic algorithm or hybrid is inevitable.

In the last decade, the progress made in adaptive hybrids for
handling multi-criteria, multiobjective, uncertain and dynamic
problems, and constrained optimization tends to lag those of
single-objective search. On the whole, it is nice to note that
some progress to enhance our understanding on the search
behavior of hybrids and the design of hybrids that come with
theoretical rigors has emerged in recent years, although the
effort expended remains insignificant relatively to the number

of complex algorithms that have emerged. Furthermore, it is
worth highlighting that to date, the manifestations of memetic
computation within the community of evolutionary computa-
tion and meta-heuristics have been confined within the arena of
memetic algorithms, hybrids and adaptive hybrids, i.e., a mind-
set that could limit the scope of what a meme-centric approach
is capable of. The conceptualization of memetic automaton in
memetic computation thus serves to unleash the significant
number of potentially rich meme-inspired design, operational
models, and algorithm frameworks that could form the corner-
stones of memetic computation as tools for problem-solving.

To capture the essence of existing and potential research
in this field, memetic computation is portrayed in the present
survey as being a paradigm that uses the notion of meme(s) as
units of information encoded in computational representations
for addressing the ever increasing complexity and dynamic
nature of problem-solving. In general, it is worth stressing
here that a major drawback of existing optimization and
computational intelligence approaches in the literature is the
apparent lacking of automated knowledge transfers and reuse
across problems. Particularly, most search methods tend to
start from scratch, with the assumption of zero usable infor-
mation, i.e., independent of how similar the current problem
instance of interest is to those encountered in the pasts. Like
genes that serve as building blocks in genetics, memes are
naturally building blocks of meaningful information, in the
form of recurring real-world patterns that can be captured
automatically—for instance, by means of frequent schema
mining [151], frequent subtree mining [160], linkage graph
discovery [154], or others. This provides a storage of building
blocks or memes to common problems or sub-problems (of a
complex problem that can be solved individually and indepen-
dently in the spirit of divide and conquer), and supports reuse
across problems. The capacity to draw on memes from past
instances of problem-solving sessions thus allows the search
to be more intelligent, leading to solutions that can be attained
more efficiently on unseen problems of increasing complexity
and dynamic in nature. These atomized units of memes, meta-
memes [169], [197], or memeplex [22], [198] in computing
can then be expressed in hierarchical nested relationships or
conceptual entities for higher-order learning [56], thus forming
societies of the mind for more effective problem solving.

In intelligent agent frameworks, moreover, memes encoded
in computational representations, would form the underlying
building blocks (knowledge, belief, emotion, etc.) of the mind-
universe of an agent, thus competing and cooperating through
an evolutionary process, undergoing memetic transmission,
selection, replication, and variation. It is also worth noting
that the memetic expression and assimilation stages discussed
in Section IV-C have remained under-explored to date. The
transmission stage in most current research has placed the
focus on memotypes [51], [178], while ignoring sociotypes.
In what follows, we note some similarities and differences of
memetic computing to existing research pertaining to cultural
algorithm [199] in the field of evolutionary computation, and
transfer learning of machine learning [200].

Cultural algorithms, in particular, share commonalities to
memetic computation in that both use the notion of domain-
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specific cultural knowledge to bias the search during problem-
solving. While the former predefines an appropriate belief
space representation, memetic computation on the other hand
encodes high-level knowledge representation that undergoes
memetic transmission, selection, replication, and/or variation.
Further, memetic computing embraces sociotype transmission
as a realization of meme imitation (i.e., an agent’s observation
of behaviors exhibited by other agents) which mirrors human
behavior better and accommodates heterogeneity of agent
computational representations and architectures, as opposed
to the typical memotype transmission (i.e., direct copying as
a form of transmission of structured knowledge among agents
sharing a similar architecture).

As discussed, memes on its own is perceived as a form of
structured knowledge, for example, in the form of recurrent
patterns. In machine learning, transfer learning has served as
a useful mechanism to promote reuse of structured knowledge
or pattern that is obtained from past experiences, with the
aim of improving an agent’s performance on future related
tasks. In the context of machine learning, in particular, transfer
learning addresses the problem of insufficient training data
labels, domains of disparate feature space, and different data
distributions by promoting the notion of positive knowledge
transfer across domains [201], etc. Thus, it is worth highlight-
ing that transfer learning serves as a learning paradigm that
could come in handy such as in the discovery, mining, and
capturing of memes during the evolution. However, in contrast
to the typical notion of transfer learning in machine learning
and multiagent reinforcement learning, memetic computing
involves the additional dimension of cultural evolution through
the basic principles of memetic transmission, selection, repli-
cation, imitation, or variation, in the context of problem-
solving.

VI. Concluding Remarks

Memetic computation is a broad generic framework that
uses memes as units of information encoded in computational
representations, and memetic algorithms as a whole is merely
one aspect of the realization of memetic computation. In this
survey, we outlined several aspects of memetic computation
consistent with research that has been carried out in the
past. We expounded on hybridization as being a foundational
cornerstone for the application of memetic computation in
problem-solving. This is especially relevant as the research
community embarked on endeavors that resulted in many
more techniques that surfaced onto the radar of optimization
science in recent years. Nevertheless, debates or skepticism
on the relevance or necessity of this onslaught of optimization
techniques will be inevitable. As such, more productive re-
search will be achieved by adopting a conciliatory acceptance
of recent techniques that have been invented in recent years
or for that matter, those that will be invented in time to
come. We showed in this survey article that memes has the
capacity to embrace many of the techniques known and in the
context of problem-solving, memetic computation will be a
useful platform to capitalize on the richness of optimization
tools known to practitioners. This necessitates the availabil-

ity of a flexible framework that conveniently accommodates
mechanisms that engage the principle of universal Darwinism.
From this perspective, multiagent computing is deemed as a
framework that seamlessly espouses the notion of meme-gene
coevolution. It is suggestive of the fact that an agent will serve
as a powerful embodiment of mechanisms associated with
meme-gene coevolution. This in our mind will be a strong
supportive pillar of future memetic computation research.
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