
A New Optimizer Using Particle Swarm Theory

Russell Eberhart
Purdue School of Engineering and Technology

Indianapolis, IN 46202-5 160
eberhart@ engr.iupui.edu

James Kennedy
Bureau of Labor Statistics
Washington, DC 20212

kennedyj @pol.ocsp.bls.gov

ABSTRACT

The optimization of nonlinear functions using particle
swarm methodology is described. Implementations of two
paradigms are discussed and compared, including a
recently developed locally oriented paradigm. Benchmark
testing of both paradigms is described, and applications,
including neural network training and robot task learning,
are proposed. Relationships between particle swarm
optimization and both artificial life and evolutionary
computation are reviewed.

1. INTRODUCTION

A new method for optimization of continuous nonlinear
functions was recently introduced [6]. This paper reviews
the particle swarm optimization concept. Discussed next
are two paradigms that implement the concept, one
globally oriented (GBEST), and one locally oriented
(1,131 IST), followed by results obtained from applications
and tests upon which the paradigms have been shown to
perform successfully.

Particle swarm optimization has roots in two main
component methodologies. Perhaps more obvious are its
ties to artificial life (A-life) in general, and to bird
flocking, fish schooling, and swarming theory in
particular. It is also related, however, to evolutionary
Computation, and has ties to both genetic algorithms and
evolution strategies [11.

I’armlc swarm optimization comprises a very simple
concept, and paradigms are implemented in a few lines of
computer code. It requires only primitive mathematical
operators, and is computationally inexpensive in terms of
both memory requirements and speed. Early testing has
found the implementation to be effective with several
kinds of problems [6]. This paper discusses application of
the algorithm to the training of artificial neural network

Sixth International Symposium on
Micro Machine and Human Science
0-7803-2676-8/95 $4.00 01995 IEEE. 39

weights. Particle swarm optimization has also been
demonstrated to perform well on genetic algorithm test
functions, and it appears to be a promising approach for
robot task learning.

Particle swarm optimization can be used to solve many of
the same kinds of problems as genetic algorithms (GAS)
[6]. This optimization technique does not scffer,
however, from some of GA’s difficulties; interaction in
the group enhances rather than detracts from progress
toward the solution. Further, a particle swarm system has
memory, which the genetic algorithm does not have.
Change in genetic populations results in destruction of
previous knowledge of the problem, except when elitism is
employed, in which case usually one or a small number of
individuals retain their “identities.” In particle swarm
optimization, individuals who fly past optima are tugged
to return toward them; knowledge of good solutions is
retained by all particles.

2. THE PARTICLE SWARM OPTIMIZATION
CONCEPT

Particle swarm optimization i s similar to a genetic
algorithm [2] in that the system is initialized with a
population of random solutions. It is unlike a genetic
algorithm, however, in that each potential solution is also
assigned a randomized velocity, and the potential
solutions, called particles, are then “flown” through
hyperspace.

Each particle keeps track of its coordinates in hyperspace
which are associated with the best solution (fitness) it has
achieved so far. (The value of that fitness is also stored.)
This value is called pbest. Another “best” value is also
tracked. The “global” version of the particle swarm
optimizer keeps track of the overall best value, and its
location, obtained thus far by any particle in the
population; this is called gbest.

http://engr.iupui.edu
mailto:pol.ocsp.bls.gov

The particle swarm optimization concept consists of, at
each time step, changing the velocity (accelerating) each
particle toward its pbest and gbest (global version).
Acceleration is weighted by a random term, with separate
random numbers being generated for acceleration toward
pbest and gbest.

This paper introduces a “local” version of the optimizer in
which, in addition to pbest, each particle keeps track of
tlie best solution, called Zbest, attained within a local
topological neighborhood of particles. Both the global
and local versions are described in more detail below.

’flw only variable that must be determined by the user is
the maximum velocity to which the particles are limited.
An acceleration constant is also specified, but in the
expcrience of the authors, is not usually varied among
applications.

3. TRAINING A MULTILAYER PERCEPTRON

‘The problem of finding a set of weights to minimize
residuals in a feedfonvard neural network is not a trivial
one. It is nonlinear and dynamic in that any change of
one weight requires adjustment of many others. Gradient
descent techniques, e.g ., backpropagation of error, are
usually used to find a matrix of weights that meets error
criteria, though there is not widespread satisfaction with
llie effectiveness of these methods.

A number of researchers have attempted to use genetic
algorithms (GAS) to find sets of weights, but the problem
IS riot well suiied to crossover. Because a large number of
poasi ble solutions exist, two chromosomes with high
L‘ltness evaluations are likely to be very different from one
another; thus recombination may not result in
improvement.

l’his discussion uses a three-layer network designed to
solve the XOR problem, as a demonstration of the particle
n w x m optimization concept. The network has two inputs,
three Iuddcn processing elements (PES), and one output
1’1:. The output PE return a 1 if both inputs are the same,
that IS, input vector (1,l) or (O,O), and returns 0 if the
~ n p u ~ s arc different (LO) or (0,l). Counting biases to tlie
hidden and output PES, solution of this problem requires
estimation of 13 floating-point parameters. Note that, for
clie current presentation, the number of hidden units is
arbitrary. A feedforward network with one or two hidden
1% can solve the XOR problem. Future research can test
particle swarm optimization on a variety of architectures;
the present paper necessarily, and arbitrarily, settled on
onc

The particle swarm optimization approach is to “fly” a
population of particles through 13-dimensional
hyperspace. Each particle is initialized with position and
velocity vectors of 13 elements. For neural networks, it
seems reasonable to initialize all positional coordinates
(corresponding to connection weights) to within a range
of (-4.0, +4.0), and velocities should not be so high as to
fly particles out of the usable field. It is also necessary to
clamp velocities to some maximum to prevent overflow.
The test examples use a population of 20 particles. (The
authors have used populations of 10-50 particles for other
applications.) The XOR data are entered into the net and
an error term to be minimized, usually squared error per
output PE, is computed for each of the 20 particles.

As the system iterates, individual agents are drawn toward
a global optimum based on the interaction of their
individual searches and the group’s public search. Error
threshold and maximum iteration termination criteria
have been specified: when these are met, or when a key is
pressed, iterations cease and the best weight vector found
is written to a file.

3.1 The GBEST Model
The standard “GBEST” particle swarm algorithm, which
is the original form of particle swarm optimization
developed, is very simple. The steps are:

1. Initialize an array of particles with random positions
and velocities on D dimensions,

2. Evaluate the desired minimization function in D
variables,

3. Compare evaluation with particle’s previous best value
(PBEST[]): If current value < PBEST[] then PBEST[] =
current value and PBESTx[][d] = current position in D-
dimensional hyperspace,

4. Compare evaluation with group’s previous best
(PBEST[GBEST]): If current value < PBESTCGBEST]
then GBEST=particle’s array index,

5. Change velocity by the following formula:
W[dI = W[dI +
ACC-CONST*rand()*(PBESTx[] [d] - PresentX[] [d])
+
ACC-CONST*rand()*(PBESTx[GBEST] [d] -
PresentX[l[d]), and,

6. Move to PresentX[][d] + v[][d]: Loop to step 2 and
repeat until a criterion is met.

40

3.2 The LBEST Version
Based, among other things, on findings from social
simulations, it was decided to design a “local” version
(paradigm) of the particle swarm concept. In this
paradigm, particles have information only of their own
and their nearest array neighbors’ bests, rather than that
of the entire group. Instead of moving toward the
stochastic average of pbest and gbest (the best evaluation
in the entire group), particles move toward the points
defined by pbest and “lbest,” which is the index of the
pnrticle with the best evaluation in the neiglzborhood. In
the neighborhood=2 model, for instance, particle(i)
compares its error value with particle(i-1) and
particle(i+l). The lbest version was tested with
neighborhoods consisting of the immediately adjacent
neighbors (neighborhood=2), and with the three neighbors
on each side (neighborhood=6).

Table 1 shows results of performance on the XOR neural-
net problem with neighborhood=2. Note that no trials
fixated on local optima- nor have any in hundreds of
unreported tests.

Cluster analysis of sets of weights from this version
showed that blocks of neighbors, consisting of regions
from 2 to 8 adjacent individuals, had settled into the same
regions of the solution space. It appears that the

‘I’able 1. Local version, neighborhoodz2.

invulnerability of this version to local optima might result
from the fact that a number of “groups” of particles
spontaneously separate and explore different regions. It is
thus a more flexible approach to information processing
than the GBEST model.

Nonetheless, though this version rarely if ever becomes
entrapped in a local optimum, it clearly requires more
iterations on average to find a criterion error level. Table
2 represents tests of a LBEST version with
neighborhood=6, that is, with the three neighbors on each
side of the agent taken into account (arrays wrapped, so
the final element was considered to be beside the first
one).

This version is prone to local optima, at least when
VMAX is small, though less so than the GBEST version.
Otherwise it seems, in most cases, to perform somewhat
less well than the standard GBEST algorithm.

In sum, the neighborhood=2 model offered some
intriguing possibilities, in that is seems immune to local
optima. It is a highly decentralized model, which could
be run with any number of particles. Expanding the
neighborhood speeds up convergence, but introduces the
frailties of the GBEST model.

Median iterations required to meet a
crjterion of squared error per node < 0.02. Population=20 particles. There were no
t r i a l s w i t h iterations > 2060.

VMAX AC C-C ON ST
2.0 1.0 0.5

2 . 0 38.5
4.0 2 8 . 5
6.0 29.5

17
33
40.5

37 - 5
53.5
3 9 . 5

I’able 2. Local version, neighborhoodz6. Median iterations required to meet a
C I ilerion of squared error per node < 0 . 0 2 . Population=20 particles.

VMAX ACC-CONST
2 . 0 1.0 0 . 5

2 . 0 31.5(2)
4.0 36(1)
6.0 26.5

38.5(1)
26
29

27 (1)
25
2 0

41

4. FLOCKS, SWARMS AND PARTICLES

A numbcr of scientists have created computer simulations
of various interpretations of the movement of organisms
i n a bird flock or fish school. Notably, Reynolds [lo] and
Heppner and Grenander [4] presented simulations of bird
flocking.

It became obvious during the development of the particle
swarm concept that the behavior of the population of
agents is more like a swarm than a flock. The term swam
has a basis in the literature. In particular, the authors use
thc term in accordance with a paper by Millonas [7], who
devcloped his models for applications in artificial life, and
arliculated five basic principles of swarm intelligence.

First is the proximity principle: the population should be
ablc LO carry out simple space and time computations.
Second is the quality principle: the population should be
able to respond to quality factors in the environment.
’l’hird is the principle of diverse response: the population
should not commit its activities along excessively narrow
clianncls Fourth is the principle of stability: the
popularion should not change its mode of behavior every
tinic the environment changes. Fifth is the principle of
xl:ip[ability. the population must be able to change
hch;ivior mode when it’s worth the computational price.
N o t that principles four and five are the opposite sides of
Ihc same coin

I Irc particle swarm optimization concept and paradigm
prcscnted in this paper seem to adhere to all five
principles. Basic to the paradigm are n-dimensional space
calculations c‘arried out over a series of time steps. The
population is responding to the quality factors pbest and
ghesr/lDesr The allocation of responses between pbest
ml ,,4iesr/thest ensures a diversity of response. The
population changes its state (mode of behavior) only when
gbe.sr//Desf changes, thus adhering to the principle of
skibility. The population is adaptive because it does
change when gbestAbest changes.

rlie term parricle was selected as a compromise. While it
could be argued that the population members are mass-
I C \ \ ;ind volume-less, and thus could be called “points,” it
I < lek that velocities and accelerations are more
,ippropriatcly applied to particles, even if each is defined
to hwe arbitrarily small mass and volume. Further,
liccvcs [9] discusses particle systems consisting of clouds
of primitive parbcles as models of diffuse objects such as
clouds, fire and smoke. Thus the label the authors have
cliosen to represent the optlmizatlon concept is particle
CMJNt.?ll

5. TESTS AND EARLY APPLICATlONS OF THE
OPTIMIZER

The paradigm has been tested using systematic
benchmark tests as well as observing its performance on
applications that are known to be difficult. The neural-net
application described in Section 3, for instance, showed
that the particle swarm optimizer could train NN weights
as effectively as the usual error backpropagation method.
The particle swarm optimizer has also been used to train a
neural network to classify the Fisher Iris Data Set [3].
Again, the optimizer trained the weights as effectively as
the backpropagation method. Over a series of ten training
sessions, the particle swarm optimizer paradigm required
an average of 284 epochs [6].

The particle swarm optimizer was compared to a
benchmark for genetic algorithms in Davis [2]: the
extremely nonlinear Schaffer f6 function. This function is
very difficult to optimize, as the highly discontinuous data
surface features many local optima. The particle swarm
paradigm found the global optimum each run, and
appears to approximate the results reported for elementary
genetic algorithms in Chapter 2 of [2] in terms of the
number of evaluations required to reach certain
performance levels [6].

GAS have been used to learn complex behaviors
characterized by sets of sequential decision rules. One
approach uses Cooperative Coevolutionary Genetic
Algorithms (CCGAs) to evolve sequential decision rules
that control simulated robot behaviors [8]. The GA is
used to evolve populations of rule sets, which are applied
to problems involving multiple robots in competetive or
cooperative tasks. Use of particle swarm optimization,
currently being explored, instead of the GA, may enhance
population evolution. For example, migration among sub-
species of robots can be a problem due to GA crossover;
this problem should not exist with particle swarms.

6 CONCLUSIONS

This paper introduces a new form of the particle swarm
optimizer, examines how changes in the paradigm affect
the number of iterations required to meet an error
criterion, and the frequency with which models cycle
interminably around a nonglobal optimum. Three
versions were tested: the “GBEST” model, in which every
agent has information about the group’s best evaluation,
and two variations of the “LBEST” version, one with a
neighborhood of six, and one with a neighborhood of two.
It appears that the original GBEST version performs best

42

in terms of median number of iterations to convergence,
while the LBEST version with a neighborhood of two is
most resistant to local minima.

Particle swarm optimization is an extremely simple
algorithm that seems to be effective for optimizing a wide
range of functions. We view it as a mid-level form of A-
life or biologically derived algorithm, occupying the space
in nature between evolutionary search, which requires
eons, and neural processing, which occurs on the order of
milliseconds. Social optimization occurs in the time
frame of ordinary experience - in fact, it is ordinary
expcrience. In addition to its ties with A-life, particle
swarm optimization has obvious ties with evolutionary
computation. Conceptually, it seems to lie somewhere
between genetic algorithms and evolutionary
programming. It is highly dependent on stochastic
processes, like evolutionary programming. The
adjustment toward pbest and gbest by the particle swarm
oplirnizer is conceptually similar to the crossover
operation utilized by genetic algorithms. It uses the
concept of fitness, as do all evolutionary computation
paradigms.

rlniquc to the concept of particle swarm optimization is
flying potential solutions through hyperspace, accelerating
toward “better” solutions. Other evolutionary
computation schemes operate directly on potential
solutions which are represented as locations in
hypcrspace. Much of the success of particle swarms
seems to lie in the agents’ tendency to hurtle past their
target. Holland’s chapter on the “optimum allocation of
trials” [5] reveals the delicate balance between
conscrvativc testing of known regions versus risky
exploration of the unknown. It appears that the current
version of the paradigm allocates trials nearly optimally.
The stochastic factors allow thorough search of spaces
bcrwcen regions that have been found to be relatively
good, and the momentum effect caused by modifying the
extant velocities rather than replacing them results in
ovcrshooling, or exploration of unknown regions of the
problem domain.

Much further research remains to be conducted on this
simple new concept and paradigm. The goals in
tlcvcloping it have been to keep it simple and robust, and
wc seem to have succeeded at that. The algorithm is
written in a very few lines of code, and requires only
spccification of the problem and a few parameters in order
to solve it.

ACKNOWLEDGMENT

Portions of this paper are adapted from a chapter on
particle swarm optimization in a book entitled
Computational Intelligence PC Tools, to be published in
early 1996 by Academic Press Professional (APP). The
permission of APP to include this material is gratefully
acknowledged.

REFERENCES

[11 T. Baeck, “Generalized convergence models for
tournament and (mu,lambda)-selection.” Proc. of the
Sixth International Con$ on Genetic Algorithms, pp. 2-7,
Morgan Kaufmann Publishers, San Francisco, CA, 1995.

[2] L. Davis, Ed., Handbook of Genetic Algorithms.
Van Nostrand Reinhold, New York, NY, 1991.

[3] R. A. Fisher, “The use of multiple measurements in
taxonomic problems.” Annals of Eugenics, 7: 179-188,
1936.

[4] F. Heppner and U. Grenander, “A stochastic
nonlinear model for coordinated bird flocks.” In S.
Krasner, Ed., The Ubiquity of Chaos, AAAS
Publications, Washington, DC, 1990.

[SI J. H. Holland, Adaptation in Natural and Artificial
Systems, MIT Press, Cambridge, MA., 1992.

[6] J. Kennedy and R. Eberhart, “Particle swarm
optimization.” Proc. IEEE International Conf. on Neural
Networks (Perth, Australia), IEEE Service Center,
Piscataway, NJ, 1995 (in press).

[7] M. Millonas, “Swarms, phase transitions, and
collective intelligence.” In C. G. Langton, Ed., Artificial
Lue I l l , Addison Wesley, Reading, MA, 1994.

[8] M. Potter, K. De Jong, and J. Grefenstette, “A
coevolutionary approach to learning sequential decision
rules.” Proc. of the Sixth International Con& on Genetic
Algorithms, pp. 366-372, Morgan Kaufmann Publishers,
San Francisco, CA, 1995.

[9] W. T. Reeves, “Particle systems - a technique for
modeling a class of fuzzy objects.” ACM Transactions on
Graphics, 2(2):91-108, 1983.

[lo] C. W. Reynolds, “Flocks, herds and schools: a
distributed behavioral model.” Computer Graphics,
2 1 (4):25-34, 1987.

43

