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ABSTRACT 

The optimization of nonlinear functions using particle 
swarm methodology is described. Implementations of two 
paradigms are discussed and compared, including a 
recently developed locally oriented paradigm. Benchmark 
testing of both paradigms is described, and applications, 
including neural network training and robot task learning, 
are proposed. Relationships between particle swarm 
optimization and both artificial life and evolutionary 
computation are reviewed. 

1. INTRODUCTION 

A new method for optimization of continuous nonlinear 
functions was recently introduced [6]. This paper reviews 
the particle swarm optimization concept. Discussed next 
are two paradigms that implement the concept, one 
globally oriented (GBEST), and one locally oriented 
(1,131 IST), followed by results obtained from applications 
and tests upon which the paradigms have been shown to 
perform successfully. 

Particle swarm optimization has roots in two main 
component methodologies. Perhaps more obvious are its 
ties to artificial life (A-life) in general, and to bird 
flocking, fish schooling, and swarming theory in 
particular. It is also related, however, to evolutionary 
Computation, and has ties to both genetic algorithms and 
evolution strategies [ 11. 

I’armlc swarm optimization comprises a very simple 
concept, and paradigms are implemented in a few lines of 
computer code. It requires only primitive mathematical 
operators, and is computationally inexpensive in terms of 
both memory requirements and speed. Early testing has 
found the implementation to be effective with several 
kinds of problems [6]. This paper discusses application of 
the algorithm to the training of artificial neural network 
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weights. Particle swarm optimization has also been 
demonstrated to perform well on genetic algorithm test 
functions, and it appears to be a promising approach for 
robot task learning. 

Particle swarm optimization can be used to solve many of 
the same kinds of problems as genetic algorithms (GAS) 
[6]. This optimization technique does not scffer, 
however, from some of GA’s difficulties; interaction in 
the group enhances rather than detracts from progress 
toward the solution. Further, a particle swarm system has 
memory, which the genetic algorithm does not have. 
Change in genetic populations results in destruction of 
previous knowledge of the problem, except when elitism is 
employed, in which case usually one or a small number of 
individuals retain their “identities.” In particle swarm 
optimization, individuals who fly past optima are tugged 
to return toward them; knowledge of good solutions is 
retained by all particles. 

2. THE PARTICLE SWARM OPTIMIZATION 
CONCEPT 

Particle swarm optimization i s  similar to a genetic 
algorithm [2] in that the system is initialized with a 
population of random solutions. It is unlike a genetic 
algorithm, however, in that each potential solution is also 
assigned a randomized velocity, and the potential 
solutions, called particles, are then “flown” through 
hyperspace. 

Each particle keeps track of its coordinates in hyperspace 
which are associated with the best solution (fitness) it has 
achieved so far. (The value of that fitness is also stored.) 
This value is called pbest. Another “best” value is also 
tracked. The “global” version of the particle swarm 
optimizer keeps track of the overall best value, and its 
location, obtained thus far by any particle in the 
population; this is called gbest. 
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The particle swarm optimization concept consists of, at 
each time step, changing the velocity (accelerating) each 
particle toward its pbest and gbest (global version). 
Acceleration is weighted by a random term, with separate 
random numbers being generated for acceleration toward 
pbest and gbest. 

This paper introduces a “local” version of the optimizer in 
which, in addition to pbest, each particle keeps track of 
tlie best solution, called Zbest, attained within a local 
topological neighborhood of particles. Both the global 
and local versions are described in more detail below. 

’flw only variable that must be determined by the user is 
the maximum velocity to which the particles are limited. 
An acceleration constant is also specified, but in the 
expcrience of the authors, is not usually varied among 
applications. 

3.  TRAINING A MULTILAYER PERCEPTRON 

‘The problem of finding a set of weights to minimize 
residuals in a feedfonvard neural network is not a trivial 
one. It is nonlinear and dynamic in that any change of 
one weight requires adjustment of many others. Gradient 
descent techniques, e.g ., backpropagation of error, are 
usually used to find a matrix of weights that meets error 
criteria, though there is not widespread satisfaction with 
llie effectiveness of these methods. 

A number of researchers have attempted to use genetic 
algorithms (GAS) to find sets of weights, but the problem 
IS riot well suiied to crossover. Because a large number of 
poasi ble solutions exist, two chromosomes with high 
L‘ltness evaluations are likely to be very different from one 
another; thus recombination may not result in 
improvement. 

l’his discussion uses a three-layer network designed to 
solve the XOR problem, as a demonstration of the particle 
n w x m  optimization concept. The network has two inputs, 
three Iuddcn processing elements (PES), and one output 
1’1:. The output PE return a 1 if both inputs are the same, 
that  IS, input vector (1,l) or (O,O), and returns 0 if the 
~ n p u ~ s  arc different (LO)  or (0,l). Counting biases to tlie 
hidden and output PES, solution of this problem requires 
estimation of 13 floating-point parameters. Note that, for 
clie current presentation, the number of hidden units is 
arbitrary. A feedforward network with one or two hidden 
1% can solve the XOR problem. Future research can test 
particle swarm optimization on a variety of architectures; 
the present paper necessarily, and arbitrarily, settled on 
onc 

The particle swarm optimization approach is to “fly” a 
population of particles through 13-dimensional 
hyperspace. Each particle is initialized with position and 
velocity vectors of 13 elements. For neural networks, it 
seems reasonable to initialize all positional coordinates 
(corresponding to connection weights) to within a range 
of (-4.0, +4.0), and velocities should not be so high as to 
fly particles out of the usable field. It is also necessary to 
clamp velocities to some maximum to prevent overflow. 
The test examples use a population of 20 particles. (The 
authors have used populations of 10-50 particles for other 
applications.) The XOR data are entered into the net and 
an error term to be minimized, usually squared error per 
output PE, is computed for each of the 20 particles. 

As the system iterates, individual agents are drawn toward 
a global optimum based on the interaction of their 
individual searches and the group’s public search. Error 
threshold and maximum iteration termination criteria 
have been specified: when these are met, or when a key is 
pressed, iterations cease and the best weight vector found 
is written to a file. 

3.1 The GBEST Model 
The standard “GBEST” particle swarm algorithm, which 
is the original form of particle swarm optimization 
developed, is very simple. The steps are: 

1. Initialize an array of particles with random positions 
and velocities on D dimensions, 

2. Evaluate the desired minimization function in D 
variables, 

3. Compare evaluation with particle’s previous best value 
(PBEST[]): If current value < PBEST[] then PBEST[] = 
current value and PBESTx[][d] = current position in D- 
dimensional hyperspace, 

4. Compare evaluation with group’s previous best 
(PBEST[GBEST]): If current value < PBESTCGBEST] 
then GBEST=particle’s array index, 

5.  Change velocity by the following formula: 
W[dI  = W[dI  + 
ACC-CONST*rand()*(PBESTx[] [d] - PresentX[] [d]) 
+ 
ACC-CONST*rand()*(PBESTx[GBEST] [d] - 
PresentX[l[d]), and, 

6. Move to PresentX[][d] + v[][d]: Loop to step 2 and 
repeat until a criterion is met. 
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3.2 The LBEST Version 
Based, among other things, on findings from social 
simulations, it was decided to design a “local” version 
(paradigm) of the particle swarm concept. In this 
paradigm, particles have information only of their own 
and their nearest array neighbors’ bests, rather than that 
of the entire group. Instead of moving toward the 
stochastic average of pbest and gbest (the best evaluation 
in the entire group), particles move toward the points 
defined by pbest and “lbest,” which is the index of the 
pnrticle with the best evaluation in the neiglzborhood. In 
the neighborhood=2 model, for instance, particle(i) 
compares its error value with particle(i-1) and 
particle(i+l). The lbest version was tested with 
neighborhoods consisting of the immediately adjacent 
neighbors (neighborhood=2), and with the three neighbors 
on each side (neighborhood=6). 

Table 1 shows results of performance on the XOR neural- 
net problem with neighborhood=2. Note that no trials 
fixated on local optima- nor have any in hundreds of 
unreported tests. 

Cluster analysis of sets of weights from this version 
showed that blocks of neighbors, consisting of regions 
from 2 to 8 adjacent individuals, had settled into the same 
regions of the solution space. It appears that the 

‘I’able 1. Local version, neighborhoodz2. 

invulnerability of this version to local optima might result 
from the fact that a number of “groups” of particles 
spontaneously separate and explore different regions. It is 
thus a more flexible approach to information processing 
than the GBEST model. 

Nonetheless, though this version rarely if ever becomes 
entrapped in a local optimum, it clearly requires more 
iterations on average to find a criterion error level. Table 
2 represents tests of a LBEST version with 
neighborhood=6, that is, with the three neighbors on each 
side of the agent taken into account (arrays wrapped, so 
the final element was considered to be beside the first 
one). 

This version is prone to local optima, at least when 
VMAX is small, though less so than the GBEST version. 
Otherwise it seems, in most cases, to perform somewhat 
less well than the standard GBEST algorithm. 

In sum, the neighborhood=2 model offered some 
intriguing possibilities, in that is seems immune to local 
optima. It is a highly decentralized model, which could 
be run with any number of particles. Expanding the 
neighborhood speeds up convergence, but introduces the 
frailties of the GBEST model. 

Median iterations required to meet a 
crjterion of squared error per node < 0.02. Population=20 particles. There were no 
t r i a l s  w i t h  iterations > 2060. 

VMAX AC C-C ON ST 
2.0 1.0 0.5 

2 . 0  38.5 
4.0 2 8 . 5  
6.0 29.5 

17 
33 
40.5 

37 - 5  
53.5 
3 9 . 5  

I’able 2. Local version, neighborhoodz6. Median iterations required to meet a 
C I  ilerion of squared error per node < 0 . 0 2 .  Population=20 particles. 

VMAX ACC-CONST 
2 . 0  1.0 0 . 5  

2 . 0  31.5(2) 
4.0 36(1) 
6.0 26.5 

38.5(1) 
26 
29 

27 (1) 
25 
2 0  
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4. FLOCKS, SWARMS AND PARTICLES 

A numbcr of scientists have created computer simulations 
of various interpretations of the movement of organisms 
i n  a bird flock or fish school. Notably, Reynolds [lo] and 
Heppner and Grenander [4] presented simulations of bird 
flocking. 

It became obvious during the development of the particle 
swarm concept that the behavior of the population of 
agents is more like a swarm than a flock. The term swam 
has a basis in the literature. In particular, the authors use 
thc term in  accordance with a paper by Millonas [7], who 
devcloped his models for applications in artificial life, and 
arliculated five basic principles of swarm intelligence. 

First is the proximity principle: the population should be 
ablc LO carry out simple space and time computations. 
Second is the quality principle: the population should be 
able to respond to quality factors in the environment. 
’l’hird is the principle of diverse response: the population 
should not commit its activities along excessively narrow 
clianncls Fourth is the principle of stability: the 
popularion should not change its mode of behavior every 
tinic the environment changes. Fifth is the principle of 
xl:ip[ability. the population must be able to change 
hch;ivior mode when it’s worth the computational price. 
N o t  that principles four and five are the opposite sides of 
Ihc same coin 

I Irc particle swarm optimization concept and paradigm 
prcscnted in this paper seem to adhere to all five 
principles. Basic to the paradigm are n-dimensional space 
calculations c‘arried out over a series of time steps. The 
population is responding to the quality factors pbest and 
ghesr/lDesr The allocation of responses between pbest 
ml ,,4iesr/thest ensures a diversity of response. The 
population changes its state (mode of behavior) only when 
gbe.sr//Desf changes, thus adhering to the principle of 
skibility. The population is adaptive because it does 
change when gbestAbest changes. 

rlie term parricle was selected as a compromise. While it 
could be argued that the population members are mass- 
I C \ \  ;ind volume-less, and thus could be called “points,” it 
I <  lek that velocities and accelerations are more 
,ippropriatcly applied to particles, even if each is defined 
to hwe arbitrarily small mass and volume. Further, 
liccvcs [9] discusses particle systems consisting of clouds 
of primitive parbcles as models of diffuse objects such as 
clouds, fire and smoke. Thus the label the authors have 
cliosen to represent the optlmizatlon concept is particle 
CMJNt.?ll 

5. TESTS AND EARLY APPLICATlONS OF THE 
OPTIMIZER 

The paradigm has been tested using systematic 
benchmark tests as well as observing its performance on 
applications that are known to be difficult. The neural-net 
application described in Section 3, for instance, showed 
that the particle swarm optimizer could train NN weights 
as effectively as the usual error backpropagation method. 
The particle swarm optimizer has also been used to train a 
neural network to classify the Fisher Iris Data Set [3]. 
Again, the optimizer trained the weights as effectively as 
the backpropagation method. Over a series of ten training 
sessions, the particle swarm optimizer paradigm required 
an average of 284 epochs [6]. 

The particle swarm optimizer was compared to a 
benchmark for genetic algorithms in Davis [2]: the 
extremely nonlinear Schaffer f6 function. This function is 
very difficult to optimize, as the highly discontinuous data 
surface features many local optima. The particle swarm 
paradigm found the global optimum each run, and 
appears to approximate the results reported for elementary 
genetic algorithms in Chapter 2 of [2] in terms of the 
number of evaluations required to reach certain 
performance levels [6]. 

GAS have been used to learn complex behaviors 
characterized by sets of sequential decision rules. One 
approach uses Cooperative Coevolutionary Genetic 
Algorithms (CCGAs) to evolve sequential decision rules 
that control simulated robot behaviors [8]. The GA is 
used to evolve populations of rule sets, which are applied 
to problems involving multiple robots in competetive or 
cooperative tasks. Use of particle swarm optimization, 
currently being explored, instead of the GA, may enhance 
population evolution. For example, migration among sub- 
species of robots can be a problem due to GA crossover; 
this problem should not exist with particle swarms. 

6 CONCLUSIONS 

This paper introduces a new form of the particle swarm 
optimizer, examines how changes in the paradigm affect 
the number of iterations required to meet an error 
criterion, and the frequency with which models cycle 
interminably around a nonglobal optimum. Three 
versions were tested: the “GBEST” model, in which every 
agent has information about the group’s best evaluation, 
and two variations of the “LBEST” version, one with a 
neighborhood of six, and one with a neighborhood of two. 
It appears that the original GBEST version performs best 
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in terms of median number of iterations to convergence, 
while the LBEST version with a neighborhood of two is 
most resistant to local minima. 

Particle swarm optimization is an extremely simple 
algorithm that seems to be effective for optimizing a wide 
range of functions. We view it as a mid-level form of A- 
life or biologically derived algorithm, occupying the space 
in nature between evolutionary search, which requires 
eons, and neural processing, which occurs on the order of 
milliseconds. Social optimization occurs in the time 
frame of ordinary experience - in fact, it is ordinary 
expcrience. In addition to its ties with A-life, particle 
swarm optimization has obvious ties with evolutionary 
computation. Conceptually, it seems to lie somewhere 
between genetic algorithms and evolutionary 
programming. It is highly dependent on stochastic 
processes, like evolutionary programming. The 
adjustment toward pbest and gbest by the particle swarm 
oplirnizer is conceptually similar to the crossover 
operation utilized by genetic algorithms. It uses the 
concept of fitness, as do all evolutionary computation 
paradigms. 

rlniquc to the concept of particle swarm optimization is 
flying potential solutions through hyperspace, accelerating 
toward “better” solutions. Other evolutionary 
computation schemes operate directly on potential 
solutions which are represented as locations in 
hypcrspace. Much of the success of particle swarms 
seems to lie in the agents’ tendency to hurtle past their 
target. Holland’s chapter on the “optimum allocation of 
trials” [5] reveals the delicate balance between 
conscrvativc testing of known regions versus risky 
exploration of the unknown. It appears that the current 
version of the paradigm allocates trials nearly optimally. 
The stochastic factors allow thorough search of spaces 
bcrwcen regions that have been found to be relatively 
good, and the momentum effect caused by modifying the 
extant velocities rather than replacing them results in 
ovcrshooling, or exploration of unknown regions of the 
problem domain. 

Much further research remains to be conducted on this 
simple new concept and paradigm. The goals in 
tlcvcloping it have been to keep it simple and robust, and 
wc seem to have succeeded at that. The algorithm is 
written in a very few lines of code, and requires only 
spccification of the problem and a few parameters in order 
to solve it. 
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