
2SimulatedAnnealing

This chapter is dedicated to simulated annealing (SA)metaheuristic for optimization.
SA is a probabilistic single-solution-based search method inspired by the annealing
process in metallurgy. Annealing is a physical process where a solid is slowly cooled
until its structure is eventually frozen at a minimum energy configuration. Various
SA variants are also introduced.

2.1 Introduction

Annealing is referred to as tempering certain alloys of metal, glass, or crystal by
heating above its melting point, holding its temperature, and then cooling it very
slowly until it solidifies into a perfect crystalline structure. This physical/chemical
process produces high-quality materials. The simulation of this process is known
as simulated annealing (SA) [4,10]. The defect-free crystal state corresponds to the
global minimum energy configuration. There is an analogy of SA with an optimiza-
tion procedure. The physical material states correspond to problem solutions, the
energy of a state to cost of a solution, and the temperature to a control parameter.

The Metropolis algorithm is a simple method for simulating the evolution to the
thermal equilibrium of a solid for a given temperature [14]. SA [10] is a variant of
the Metropolis algorithm, where the temperature is changing from high to low. SA
is basically composed of two stochastic processes: one process for the generation of
solutions and the other for the acceptance of solutions. The generation temperature is
responsible for the correlation between generated probing solutions and the original
solution.

SA is a descent algorithm modified by random ascent moves in order to escape
local minima which are not global minima. The annealing algorithm simulates a
nonstationary finite state Markov chain whose state space is the domain of the cost
function to be minimized. Importance sampling is the main principle that underlies
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SA. It has been used in statistical physics to choose sample states of a particle
system model to efficiently estimate some physical quantities. Importance sampling
probabilistically favors states with lower energies.

SA is a general-purpose, serial algorithm for finding a global minimum for a
continuous function. It is also a popular Monte Carlo algorithm for any optimization
problem including COPs. The solutions by this technique are close to the global
minimum within a polynomial upper bound for the computational time and are
independent of the initial conditions. Some parallel algorithms for SA have been
proposed aiming to improve the accuracy of the solutions by applying parallelism [5].

2.2 Basic Simulated Annealing

According to statistical thermodynamics, Pα , the probability of a physical system
being in stateαwith energy Eα at temperature T satisfies theBoltzmann distribution1

Pα = 1
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T
, (2.1)

where kB is the Boltzmann’s constant, T is the absolute temperature, and Z is the
partition function, defined by
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∑
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the summation being taken over all states β with energy Eβ at temperature T . At
high T , the Boltzmann distribution exhibits uniform preference for all the states,
regardless of the energy. When T approaches zero, only the states with minimum
energy have nonzero probability of occurrence.

In SA, the constant kB is omitted. At high T , the system ignores small changes in
the energy and approaches thermal equilibrium rapidly, that is, it performs a coarse
search of the space of global states and finds a good minimum. As T is lowered, the
system responds to small changes in the energy, and performs a fine search in the
neighborhood of the already determined minimum and finds a better minimum. At
T = 0, any change in the system states does not lead to an increase in the energy,
and thus, the system must reach equilibrium if T = 0.

When performing SA, theoretically a global minimum is guaranteed to be reached
with high probability. The artificial thermal noise is gradually decreased in time. T is
a control parameter called computational temperature, which controls themagnitude
of the perturbations of the energy function E(x). The probability of a state change is
determined by the Boltzmann distribution of the energy difference of the two states:

P = e− ΔE
T . (2.3)

1Also known as the Boltzmann–Gibbs distribution.
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The probability of uphill moves in the energy function (ΔE > 0) is large at high T ,
and is low at low T . SA allows uphill moves in a controlled fashion: It attempts to
improve on greedy local search by occasionally taking a risk and accepting a worse
solution. SA can be performed as Algorithm 2.1 [10].

Algorithm 2.1 (SA).

1. Initialize the system configuration.
Randomize x(0).

2. Initialize T with a large value.
3. Repeat:

a. Repeat:
i. Apply random perturbations to the state x = x + Δx.
ii. Evaluate ΔE(x) = E(x + Δx) − E(x):

if ΔE(x) < 0, keep the new state;

otherwise, accept the new state with probability P = e− ΔE
T .

until the number of accepted transitions is below a threshold level.
b. Set T = T − ΔT .

until T is small enough.

The basic SA procedure is known as Boltzmann annealing. The cooling schedule
for T is critical to the efficiency of SA. If T is reduced too rapidly, a premature
convergence to a localminimummay occur. In contrast, if it is too slow, the algorithm
is very slow to converge. Based on a Markov-chain analysis on the SA process,
Geman and Geman [6] have proved that a simple necessary and sufficient condition
on the cooling schedule for the algorithm state to converge in probability to the set
of globally minimum cost states is that T must be decreased according to

T (t) ≥ T0
ln(1 + t)

, t = 1, 2, . . . (2.4)

to ensure convergence to the global minimum with probability one, where T0 is a
sufficiently large initial temperature.

Given a sufficiently large number of iterations at each temperature, SA is proved
to converge almost surely to the global optimum [8]. In [8], T0 is proved to be
greater than or equal to the depth of the deepest local minimum which is not a global
minimum state. In order to guarantee Boltzmann annealing to converge to the global
minimum with probability one, T (t) needs to decrease logarithmically with time.
This is practically too slow. In practice, one usually applies, in Step 3b, a fast schedule
T (t) = αT (t − 1) with 0.85 ≤ α ≤ 0.96, to achieve a suboptimal solution.
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However, due to its Monte Carlo nature, SA would require for some problems
evenmore iterations than complete enumeration in order to guarantee convergence to
an exact solution. For example, for an n-city TSP, SA using the logarithmic cooling

schedule needs a computational complexity of O
(
nn

2n−1
)
, which is far more than

O((n − 1)!) for complete enumeration and O
(
n22n

)
for dynamic programming [1].

Thus, one has to apply heuristic fast cooling schedules to improve the convergence
speed.

Example 2.1: We want to minimize the Easom function of two variables:

min
x

f (x) = − cos x1 cos x2 exp
(−(x1 − π)2 − (x2 − π)2

)
, x ∈ [−100, 100]2.

The Easom function is plotted in Figure2.1. The global minimum value is −1 at
x = (π, π)T . This problem is hard since it has wide search space and the function
rapidly decays to values very close to zero, and the function has numerous local
minima with function value close to zero. This function is similar to a needle-in-a-
hay function. The global optimum is restricted in a very small region.

MATLAB Global Optimization Toolbox provides a SA solver
simulannealbnd, which assumes the objective function will take one input x.

We implement simulannealbnd with the default settings: initial temperature
of 100 for each dimension, temperature function as temperatureexp with a
factor of 0.95. The SA solver always fails to find the global optimum after ten runs,
when intial point x0 is randomly selected within the range [−100, 100]2. Even if we
set x0 = [3, 3], which is very close to the global optimum, the algorithm still cannot
find the global minimum.

Figure 2.1 The Easom function when x ∈ [−10, 10]2.
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Figure 2.2 The evolution of a random run of simple GA: the minimum and average objectives.

After restricting the search space to [−10, 10]2, and selecting a random intial
point x0 ∈ [−0.5, 0.5]2, we have the results of a random run as f (x) = −0.9997 at
(3.1347, 3.1542) with 1597 function evaluations. The evolution of the
simulannealbnd solver is given in Figure2.2.

These results are very close to the global minimum.

2.3 Variants of Simulated Annealing

Standard SA is a stochastic search method, and the convergence to the global opti-
mum is too slow for a reliable cooling schedule. Many methods, such as Cauchy
annealing [18], simulated reannealing [9], generalized SA [19], and SA with known
global value [13] have been proposed to accelerate SA search. There are also global
optimization methods that make use of the idea of annealing [15,17].

Cauchy annealing [18] replaces the Boltzmann distribution with the Cauchy dis-
tribution, also known as the Cauchy–Lorentz distribution. The infinite variance pro-
vides a better ability to escape from local minima and allows for the use of faster
schedules, such as T decreasing according to T (t) = T0

t .
In simulated reannealing [9], T decreases exponentially with t :

T = T0e
− c1 t

J , (2.5)
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where the constant c1 > 0, and J is the dimension of the input space. The intro-
duction of reannealing also permits adaptation to changing insensitivities in the
multidimensional parameter space.

Generalized SA [19] generalizes both Cauchy annealing [18] and Boltzmann
annealing [10] within a unified framework inspired by the generalized thermostatis-
tics. Opposition-based SA [20] improves SA in accuracy and convergence rate using
opposite neighbors.

An SA algorithm under the simplifying assumption of known global value [13]
is the same as Algorithm 2.1 except that at each iteration a uniform random point is
generated over a sphere whose radius depends on the difference between the current
function value E (x(t)) and the optimal value E∗, and T is also decided by this
difference. The algorithm has guaranteed convergence and an upper bound for the
expected first hitting time, namely, the expected number of iterations before reaching
the global optimum value within a given accuracy [13].

The idea of annealing is a general optimization principle, which can be extended
using fuzzy logic. In the fuzzy annealing scheme [15], fuzzification is performed by
adding an entropy term. The fuzziness at the beginning of the entire procedure is
used to prevent the optimization process getting stuck at an inferior local optimum.
Fuzziness is reduced step by step. The fuzzy annealing scheme results in an increase
in the computation speed by a factor of one hundred or more compared to SA [15].

Since SA works by simulating from a sequence of distributions scaled with dif-
ferent temperatures, it can be regarded as Markov chain Monte Carlo (MCMC) with
a varying temperature. The stochastic approximation Monte Carlo (SAMC) algo-
rithm [12] has a remarkable feature of its self-adjusting mechanism. If a proposal
is rejected, the weight of the subregion that the current sample belongs to will be
adjusted to a larger value, and thus the proposal of jumping out from the current
subregion will be less likely rejected in the next iteration. Annealing SAMC [11] is
a space annealing version of SAMC. Under mild conditions, it can converge weakly
at a rate of �(1/

√
t) toward a neighboring set (in the space of energy) of the global

minimizers.
Reversible jump MCMC [7] is a framework for the construction of reversible

Markov chain samplers that jump between parameter subspaces of differing dimen-
sionality. The measure of interest occurs as the stationary measure of the chain. This
iterative algorithm does not depend on the initial state. At each step, a transition
from the current state to a new state is accepted with a probability. This acceptance
ratio is computed so that the detailed balance condition is satisfied, under which
the algorithm converges to the measure of interest. The proposition kernel can be
decomposed into several kernels, each corresponding to a reversible move. In order
for the underlying sampler to ensure the jump between different dimensions, the
various moves used are the birth move, death move, split move, merge move, and
perturb move, each with a probability of 0.2 [2]. SA with reversible-jump MCMC
method [2] has proved convergence.

SAmakes a random search on the energy surface. Deterministic annealing [16,17]
is a deterministic method that replaces stochastic simulations by the use of expecta-
tion. It is amethodwhere randomness is incorporated into the energy or cost function,
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which is then deterministically optimized at a sequence of decreasing temperature.
The iterative procedure of deterministic annealing is monotone nonincreasing in the
cost function. Deterministic annealing is able to escape local minima and reach a
global solution quickly. The approach is derived within a probabilistic framework
from basic information-theoretic principles (e.g., maximum entropy and random
coding). The application-specific cost is minimized subject to a constraint on the
randomness (Shannon entropy) of the solution, which is gradually lowered [17]. The
annealing process is equivalent to computation of Shannon’s rate-distortion function,
and the annealing temperature is inversely proportional to the slope of the curve.

Parallel SA algorithms take advantage of parallel processing. In [3], a fixed set of
samplers operates each at a different temperature. Each sampler performs the gener-
ate, evaluate, and decide cycle at a different temperature. A solution that costs less is
propagated from the higher temperature sampler to the neighboring sampler operat-
ing at a lower temperature. Therefore, the best solution at a given time is propagated
to all the samplers operating at a lower temperature. Coupled SA [21] is charac-
terized by a set of parallel SA processes coupled by their acceptance probabilities.
Coupling is performed by a term in the acceptance probability function, which is a
function of the energies of the current states of all SA processes. The addition of the
coupling and the variance control leads to considerable improvements with respect
to the uncoupled case.

Problems

2.1 Implement SA to minimize the 5-dimensional Ackley function. The parameters
are inverse cooling β = 0.01, initial temperature 100, iteration number 1000.
Keep track of the best-so-far solution x∗

k as a function of the iteration number k
for 10 runs. Plot the average value of x∗

k for the 10 runs.
2.2 Implement the simulannealbnd solver of MATLAB Global Optimization

Toolbox for solving a benchmark function. Test the influence of different para-
meter settings.

2.3 Run the accompanying MATLAB code of SA to find the global minimum of
six-hump-camelback function in the Appendix. Investigate how the parameters
influence the performance.

References

1. Aarts E, Korst J. Simulated annealing and Boltzmann machines. Chichester: Wiley; 1989.
2. Andrieu A, de Freitas JFG, Doucet A. Robust full Bayesian learning for radial basis networks.

Neural Comput. 2001;13:2359–407.
3. Azencott R. Simulated annealing: parallelization techniques. New York: Wiley; 1992.
4. CernyV. Thermodynamical approach to the traveling salesman problem: an efficient simulation

algorithm. J Optim Theory Appl. 1985;45:41–51.



36 2 Simulated Annealing

5. Czech ZJ. Three parallel algorithms for simulated annealing. In: Proceedings of the 4th inter-
national conference on parallel processing and applied mathematics, Naczow, Poland. London:
Springer; 2001. p. 210–217.

6. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. IEEE Trans Pattern Anal Mach Intell. 1984;6:721–41.

7. Green PJ. Reversible jumpMarkov chainMonte Carlo computation and Bayesian model deter-
mination. Biometrika. 1995;82:711–32.

8. Hajek B. Cooling schedules for optimal annealing. Math Oper Res. 1988;13(2):311–29.
9. Ingber L. Very fast simulated re-annealing. Math Comput Model. 1989;12(8):967–73.

10. Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated annealing. Science.
1983;220:671–80.

11. Liang F. Annealing stochastic approximation Monte Carlo algorithm for neural network train-
ing. Mach Learn. 2007;68:201–33.

12. Liang F, Liu C, Carroll RJ. Stochastic approximation in Monte Carlo computation. J Am Stat
Assoc. 2007;102:305–20.

13. Locatelli M. Convergence and first hitting time of simulated annealing algorithms for contin-
uous global optimization. Math Methods Oper Res. 2001;54:171–99.

14. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E. Equations of state calculations
by fast computing machines. J Chem Phys. 1953;21(6):1087–92.

15. Richardt J, Karl F, Muller C. Connections between fuzzy theory, simulated annealing, and
convex duality. Fuzzy Sets Syst. 1998;96:307–34.

16. Rose K, Gurewitz E, Fox GC. A deterministic annealing approach to clustering. Pattern Recog-
nit Lett. 1990;11(9):589–94.

17. Rose K. Deterministic annealing for clustering, compression, classification, regression, and
related optimization problems. Proc IEEE. 1998;86(11):2210–39.

18. Szu HH, Hartley RL. Nonconvex optimization by fast simulated annealing. Proc IEEE.
1987;75:1538–40.

19. Tsallis C, Stariolo DA. Generalized simulated annealing. Phys A. 1996;233:395–406.
20. Ventresca M, Tizhoosh HR. Simulated annealing with opposite neighbors. In: Proceedings

of the IEEE symposium on foundations of computational intelligence (SIS 2007), Honolulu,
Hawaii, 2007. p. 186–192.

21. Xavier-de-Souza S, Suykens JAK, Vandewalle J, Bolle D. Coupled simulated annealing. IEEE
Trans Syst Man Cybern Part B. 2010;40(2):320–35.



http://www.springer.com/978-3-319-41191-0


	2 Simulated Annealing
	2.1 Introduction
	2.2 Basic Simulated Annealing
	2.3 Variants of Simulated Annealing


