6.1 Genetic Algorithms

0 date tn al®

a f €, most of the GA studies 3

eW books (Da.\ns, 1991: Goldberg, 1989; Holland,
290
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o 1ewiCZ 1992) and through a num )

5 M;ghproceedi“gs (.Belew and Booker, lg%fl;OfF::;:ernational
fere®®® o 1085, 1_987, Rawlins, 1991; Schaffer, 1989es&[ 1993,
Ap exten® 1" 11132)5 G}(\}f lated papers is referenced else%tl?ey,

d},erg, et. alz al (;rithms S Ifundarpent&ny different t}?re

(Gol_ o Optimlzatlo_n 1% T s we have discussed in Chapt -

c]af’s‘c 5. We begin the 1scuss,1on.of GAs by first Outl‘m}) ers 2

(hr0uE priﬂCiples of .GAS and then highlighting the differen b

kmg't the tradmon:}l search methods. Thereafter Wecei?l Gile

havep:;er mulation t0 illustrate the working of GAs. BlOw &

61l working principles

the working principles of GAs, we first consider an

JJustrate AP
nconstfamed optimization problen.l. Later, we shall discuss how
uAs can be used to solve a constrained optimization problem. Let

o consider the following maximization problem:

Maximize f(a:), wSL) <z; < xEU), 1=1,2,...,N.
Although a maximization problem is considered here, a minimization
roblem can also be handled using GAs. The working of GAs is
completed by performing the following tasks:

Coding

In order to use GAs to solve the above problem, variables z;’s are
frst coded in some string structures. It is important to mention
here that the coding of the variables is not absolutely necessary.
There exist some studies where GAs are directly used on the variables
themselves, but here we shall ignore the exceptions and discuss the
working principle of a simple genetic algorithm. Binary-coded strings

having 1’s and O’s are mostly ased. The length of the string is usually
determined according to the desired solution accuracy. For example,
two-variable function

if fqur bits are used to code each variable in 2
optimization problem, the strings (0000 0000) and (1111 1111)

would represent the points
U UNT
@0,y @)

Iespectively, because the substrings (0000) and (1111) h?"ﬁt ttl)l'i
Minimum and the maximum decoded values. Any other €ig (in:
string can be found to represent a point :n the search space according
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d: 33('U) — xSL) decoded value (s-)
s = :EEL) + lz!.‘ 1 e

g Tyl

T (61)

: variable z; is coded in a S“bstrin |

In the above eq:llact;(:;;h til:.llle of a binary Substrlng 8i is ¢ &lcilst of
. The ae

length £

: : Ateq
. . ¢ (0,1) and the stnyg S is T€Presen
as oo 2'sis whser)e. Si«“oer (exa,mple’ a four-bit string (0111) Eisas
(31,131-2...323; 3a1 ‘o ((1)20 + (.1)21 + (1)22 + (0)23) or 7 la
decoded .Valtuemgntion here that with f01.1r bits to f:ode eac Val‘iabl
worthwhile (l) 24 or 16 distinct substrings Possible, bec&USe . 5
there are on B;n take a value either.O or 1. The accuracy :Ch
bit-pOSl?IOI;ll (;vith a four-bit coding is only afpp_romma,tely 1/1 Gthm
be Obmnlf space. But as the string length IS increaseq it tl?f
the search aicuracy increases exponentially to 1 /32th of 1, Se’arcﬁ
g;:?:.lau is not necessary to code all va,na,bles 0 equa g, tring |
length. The length of a substring Tepresenting 3 Variable depey &
on the desired accuracy in th.at var}able. Gener'a.hzm ths Concepy |
we may say that with an £;-bit coding for 5 va.rtlja.ble, the Obtainablé
accuracy in that variable is approximately (:cf ) ;CEL) o
the coding of the variables has been done, the correspongy
Z = (21,23,...,z5)T can be found using Bq

. € Point
uation (6.1).
the function value at the point 2 can

EIea.fter,
poin L also be calculateq by
substituting z in the given objective function f(z).

Fitness function

Nce

ness function is ap equivalent
m chogep such t

hat the Optimum point remaiss
. n L
followmg fitness wber of Such tl‘.&nsformations are possible. The

functiq 1s often used:

F(z)

izat; Object i = f(z)
ization Problems, {1 picCtVe function or F(g) = f(

=1/(1+ f(a)). (67
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tion does not alt
_ ransformatius = €r the locay;
This tr orts 3 minimization problem ¢ N &tlpn of the min:
onv funct N equiva), Umum
put The fitness function valye ent mayime

m. of a strine i 1 2XiMizatigy
Pfqgg’s fitness- HRg is know Y

stt bo operation of GAs b_e'gins with a

resenting design or decision variab]
rep
evalﬂa‘te ; tOrs— Tt
three main oper‘ix Ers TFPT'Q uction, ¢
opulation of points. Th ,
ate & 0€W D N € New populatiny. -
Z{(Zluated and tested for t-er¥nma,t'10n. If the tell')mli)llll;,?itézn is fu.l'th(?r
Lot mets the population is iteratively operateq by the a'(l:)ntenon is
,perators and_ eva-),lua:ced. This procedure ig e ?lvet.{hree
teﬂninau'cion criterion is met. One cycle of thege Operation ntil the
subsequent evaluation procedure is known ag s and the

. a generation i )
terminology- The operators are described next 9 tion in GA’s

GA operators

Reproduction is usually the first operator applied on a population
Reproduction selects good strings in a population and forms a.matiné
pool. That is why the reproduction operator is sometimes known
as the selection operator. There exist a number of reproduction
operators in GA literature, but the essential idea in all of them is
that the above-average strings are picked from the current population
and their multiple copies are inserted in the mating pool in a
probabilistic manner. The commonly-used reproduction operator is
the proportionate reproduction operator where a string is selected
for the mating pool with a probability proportional to its fitness.
Thus, the i-th string in the population is selected with a probability
proportional to ;. Since the population size is usually kept fixed in
asimple GA, the sum of the probability of each string being :v,glected
for the mating pool must be one. Therefore, the probability for
selecting the i-th string is

Fi

‘ i tion
. . implement this selec
Where 7 is the population size. One way to tl’s Ic)ir cumference marked

Scheme is to imagine a roulette-wheel Wit.h i, fitness. The roulette-
O each string proportionate to the strings he string

. :nstance of t
Vhee] ime select.lllg pi cumference of the

b 18 spun n times, each tim S
“Bosen by the roulette-wheel pointer-
“heel is ‘marked according to a strit
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make Fi/F copies of the .t} Bty

s 4
c‘llateg 2:“-

. ted to ey
mechanis™ lxs %};pee;verage fitness of the population ig cal
mating poo!- "
7—'- = Z f,/n

=1

Jette-wheel for five individuals },.; '
Figure 6.1 shows 2 rm:;he third individual has a highe:vfl‘::ﬁedl
8

) ffe
ce T
fitness values. Sin v e,

] a'llle

T 0
2 5.0
3 . 40.0 1
4 10.0
5 20.0

Figure 6.1 A roulette-wheel marked for five ip
to their fitness values. The third individual hag
of selection than any other.

div-iduals accorgj
a higher probability

values from p.
i-1t0 P, T :
values from zerg 1, Py 'Thus etlilimt ol epresents the cumuaie
b

h e . "3 .
es between () t, L. In order tq c}(i:)ltr)[;:lztlvte'pIObabﬂlty ey
8

Ta ;
tontg}? (calcl.llated Trom the number jp the cumulative proba.b'l]jty
Valuee 234ng po). is RIS values) for the string is copie

Will repregent Way, the string with a higher fitnes

a ] ; =
8T range in the cumulative probabilt}

Scanned by CamScanner



Nontraditional Optimization Algoriy,
Tit ms

. 295
j therefore has a higher probapjp, o\

s 3% ol On the other l}and, a string wit ®iNg Copieq int
:”l g2 nts 2 Sﬂ};?h]_lfr e Cum_lllaf:ivg pmll,laz. pmaller fiip,
40 7P Jller probability Ol being copied intg t},q m t-y Values apq
o s0% o working of this roulette-whee] sim ﬂatioa 1111

1ft of simulation of GAs. n
5 0% roduction; good strings in a population age
ot , latger number t(l)lf copies and

5igne tant to note that no new stripgg ;

1 luct;gn phase. In the crossover 0per§,tofb,r engrgfg' o e
@pr° "1 o exchanging mformatlo_n AMONg strings of 4}, Ings are
gt ony crossover operators exist in the GA ]iteraturee Ix;mtmg
po°0" er operators; two strings are picked from the matiy most
0550 - 1d some portions of the strings are exchanged betgw Pool at
r?»l}d A single’POHEt CrOSsOVer operator is performeq by razfin the
™ a crossing site along the string and by omly

H : exchangi 3
the Tight side of the crossing site as shown: ging all bits
on

are probabilig;
& mating pog] ig for:nailg

00000 00[111
=

11|1111 11j000

The two strings participating in .t'he Crossover operation are known

a5 parent Strings and the resulting strings are known as children

strings. 1t is intuitive from thjs- construction that good substrings

from parent strings can be combined to form a better child string, if
an appropriate site is chosen. Since the knowledge of an appropriate

site is usually not known beforehand, a random site is often chosen.
With a random site, the children strings produced may or may not
have a combination of good substrings from parent strings, depending
on whether or not the crossing site falls in the appropriate place. But
we do not worry about this too much, because if good strings are
created by crossover, there will be more copies of them in the nex(t1
mating pool generated by the reproduction operator. 'But if igoo

strings are not created by crossover, they will not survive 'Eboo ongé
because reproduction will select against those strings in subsequen
generations.

It is clear from this discussion that the effect of crossowfatrt ﬁ:;a,gyogg
detrimental or beneficial. Thus, in order to preserve some o

. i ings in
strings that are already present in the mating pool, not all string

robability
the mating pool are used in crossover. When a Crossover p

i i used
o pe is used, only 100p, per cent strings I the population are

ulation -
0 the crossover operation and 100(1 — pc) per cent of the pop
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;’oﬁnt lin the neighbourhood of the current P

. Cre
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local search around the current solution The m
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0110 1011
0011 1101
0001 0110
0111 1100
Notice that all four strings have a 0 in the left-mogt
the true optimum solution re i
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reproduction nor Crossover o

Perator
Create 1 in that

. : ‘ coNe able ¢,
Position. The inclusjop of mutatjon Introdyce
probability (Npm) of turning 0 into 1.
These three o Imple anqd Straigh forwarq
10n operator selects good strings angd the crog over op Tator
recombineg good substrings fro ether tq
Create a better Substring, The mutat
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ethods.

Om number ig smaller than p, the
Outcome is falge.
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gRCISE 6-11

£X .
Objective is to minimize the function

The
— (32
f(z1,72) = (21 + 23 = 11)? 4 (o, +a2 7y

. terva.l 0 S r1,T2 S 6 Reca]l th t
p the 10 ; X at the true solut; _
roblem i8 (3,2)7 having a function value S5 s ion to this

gtepl In order to solve this problem usi ' :
we choose 'binary coding to represent vari;%%egeﬁm;ﬁgflthms’
the calculations here, 10-bits are chosen for each variable t121. t{n
making the total string length equal to 20. With 10 bits. we ’ca,ner:t !
solution accuracy of (6—0)/(21°-1) or 0.006 in the inter;ia.l (0 6)g WaL
choose roulette-wheel selection, a single-point crossover. and s b'te
wise mutation operator. The crossover and mutation I;mbabi]it'l :
are assigned to be 0.8 and 0.05, respectively. We decide to h;s:
90 points in the population. The random population created using
Knuth’s (1981) random number generator® with a random seed equal
to 0.760 is shown in Table 6.1. We set ¢, = 30 and initialize the

generation counter £ = 0.

Step 2 The next step is to evaluate each string in the
population. We calculate the fitness of the first string. The first
substring (1100100000) decodes to a value equal to (2°4+28+2%) or
800. Thus, the corresponding parameter value is equal to 0 + (6 —
0) x 800/1023 or 4.692. The second substring (1110010000) decodes
to a value equal to (29428 +27+2%) or 912. Thus, the corresponding

parameter value is equal to 0 + (6 — 0) x 912/1023 or 5.349. Thus,
the first string corresponds to the point 2(1) = (4.692,5.349)7. These
d in the objective function expression

! values can now be substitute
' to obtain the function value. It is found that the function value

at this point is equal to f(z(V)) = 959.680. We now calculate the
fitness function value at this point using the transformation rule:
F(z™W) = 1.0/(1.0 + 959.680) = 0.001. This value is used in the
reproduction operation. Similarly, other strings in the population
are evaluated and fitness values are calculated. Table 6.1.shovys the
objective function value and the fitness value for all 20 strings In the

initial population.

Step 3 Since.t = 0 < tmax = 30, we proceed to Step 4.

number generator appears in

3A FORTRAN code implementing the random
the GA code presented at the end of this chapter.
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At this step, W€ select good strings in the population to

Step mating pool. In order to use the roulette-wheel selection
re, We first calculate the average fitness of the population.
egginé the fitness values of all strings and dividing the sum
opulation size, we obtain F = 0.008. The next step is to
by thete sho expected count of each string as F(z)/F. The values
coan:lc glated and shown in column A of Table 6.1. In other words,
el compute the probability of each string being copied in the
we call pool by dividing these numbers with the population size
B). Once these probabilities are calculated, the cumulative
pability can also be computed. These distributions are also shown
Procolumn C of Table 6.1. In order to form the mating pool, we
‘seate random numbers between zero and one (given in column D)
il identify the particular string w'luch is specified by each of these
random numbers. For example, if tl.le random number 0.472 is
created, the tenth string gets a copy i the mating pool, because
that string occupies the interval (0.401, 0.549), as shown in column C.
Column E refers to the selected string. Similarly, other strings are
selected according to the random numbers shown in column D. After
this selection procedure is repeated n times (n is the population
size), the pumber of selected copies for each string is counted. This
pumber is shown in column F. The complete mating pool is also
chown in the table. Columns A and F reveal that the theoretical
expected count and the true count of each string more or less agree
with each other. Figure 6.5 shows the initial random population
and the mating pool after reproduction. The points marked with an

- enclosed box are the points in the mating pool. The action of the
reproduction operator is clear from this plot. The inferior points have
been probabilistically eliminated from further consideration. Notice
that not all selected points are better than all rejected points. For
example, the 14th individual (with a fitness value 0.002) is selected
but the 16th individual (with a function value 0.005) is not selected.

~ Although the above roulette-wheel selection is easier to
fmplement, it is noisy. A more stable version of this selection operator
18 §ometimes used. After the expected count for each individual
string is calculated, the strings are first assigned copies exactly equal
to the mantissa of the expected count. Thereafter, the regular
roulette-wheel selection is implemented using the decimal part of the
expected count as the probability of selection. This selection method
is less noisy and is known as the stochastic remainder selection.

Step 5 At this step, the strings in the mating pool are used in
. le crossover operation. In a single-point crossover, two strings are
elected at random and crossed at a random site. Since the mating
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Figure 6.5 The initial population (marked with empty circle§) and
thlfll:lating pool (marked with boxes) on a contour plot. of the objectiye
function. The best point in the populat‘:lc?n. has a funcFlon. value 39.849
and the average function value of the initial population is 360.54¢.

pool contains strings at random, we pick p-a.irs ot: strings from the top
of the list. Thus, strings 3 and 10 participate in the first Crossover
operation. When two strings are chosen for crossover, first a coin
is flipped with a probability p, = 0.8 to check whether a crossover
is desired or not. If the outcome of the coin-flipping is true, the
Crossing over is performed, otherwise the strings are directly .placed
in an intermediate population for subsequent genetic operation. It

turns out that the outcome of the first coin—ﬂippin—g is true, meaning
that a Crossover is re

number betweep (0,£-1) or (

0,19). It turns out that the obtained
fandom number g 11.

Thus, we cross the strings at the site 11
and Create two new strings.  After crossover, the children S“’ﬁgs
asrsleplnta?d In the intermedijate Population. Then, strings 14 altlime
. ccoien- fiait Tandom) are used in the crossover operation. Thlsver R
the site g PPIng comes {0 again and we perform the crosso nto
® 3 found 4¢ Tandom. The new children strings are put

the § i ver
a-ﬂdlfl}(ff:nmegé?te Populatiop . Figure 6.6 shows how points Cro::eothe
Points jp - LOIES. The Points marked with a small box ircle

: ci
are childrene Tating poo) and the points marked with a .Smaﬁat ot
POInts createq after crossover operation. Notice !
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Crossover Operation

Figure 6.6 The population after the crossover operation. Two

points are crossed over to form two new points. Of ten pairs of strings,
seven pairs are crossed.

| 0110 pairs of points in the mating pool cross with each other. With
| the flipping of a coin with a probability p. = 0.8, it turns out that
| fourth, seventh, and tenth crossovers come out to be false. Thus,

in these cases, the strings are copied directly into the intermediate
' | population. The complete population at the end of the crossover
operation is shown in Table 6.2. It is interesting to note that with
| p. = 0.8, the expected number of crossover in a population of size

90 is 0.8 X 20/2 or 8. In this exercise problem, we performed seven
crossovers and in three cases we simply copied the strings to the
| intermediate population. Figure 6.6 shows that some good points
and some not-so-good points are created after crossover. In some
cases, points far away from the parent points are created and in
some cases points close to the parent points are created.

~ Step 6 The next step is to perform mutation on strings in the
intermediate population. For bit-wise mutation, we flip a coin with
a probability p,, = 0.05 for every bit. If the outcome is true, we alter
| the bit to 1 or 0 depending on the bit value. With a probability of
_f 0.05, a population size 20, and a string length 20, we can expect to
| alter a total of about 0.05 x 20 x 20 or 20 bits in the population.
Table 6.2 shows the mutated bits in bold characters in the table. As
‘Ounted from the table, we have actually altered 16 bits. Figure 6.7
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s the offect of mutation on the intermediate population. In

sh0 '
Mutation Operation

8 [ e e e

o After'cro'ssoGer
) B'——" O After Mutation |

6.7 The population after mutation operation. Some points
get mutated and remain unaltered. The best point in the
has a function value 18.886 and the average function value
lation is 140.210, an improvement of over 60 per cent.

Figure
do not
population

of the popu

some cases, the mutation operator changes a point locally and in
some other it can bring a large change. The points marked with a
small circle are points in the intermediate population. The points
marked with a small box constitute the new population (obtained
after reproduction, CrossoVer, and mutation). It is interesting to
note that if only one bit is mutated in a string, the point is moved
along a particular variable only. Like the crossover operator, the
mutation operator has created some points better and some points

worse than the original points. This flexibility enables GA operators

to explore the search space properly before converging to a region
me extra computation, this

prematurely. Although this requires sO
flexibility is essential to solve global optimization problems.

pulation becomes the new population.

We now evaluate each string as before by first identifying the
substrings for each variable and mapping the decoded values of the
substrings in the chosen intervals. This completes one iteration of
genetic algorithms. We increment the generation counter to t =1
and proceed to Step 3 for the next iteration. The new population

Step 7 The resulting po
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. tion of GAS 18 shown in Figure 6.7 (marked With e
after one 1terf? ure shows that in one iteration, some good Doints
boxes). The 7§ also shows the fitness values anq ave

2 Objact:
been four’s ,]s}t)l;'lihz new population members. bjective
ue _

function val

age fitness of the new populat.lon 15 .C:.ﬂ.cuhted
0 015, B akable improvement from o lation, el qulZiBE
(r.eca.l,l that the average i t.he lmt(ll Plfpu a ;{Jn was 0.008). The
best point in this population is found to ] v tRess equal tg () gp"
which is also better than that in the initial population .(0_024). This
process continues until the maximum allowable generatio j T X

‘ . fyon > . €ac
or some other termination criterion is met. The Populatio &fterh;d
generation is shown in Figure 6.8. At this generation, the best POini
0
1 1500'0
. 1777 8500
M | T 7 5000
NN | T s000
\\ N 150.0
-\ \ ‘\- — = 5.0
v Y 1T 300

\ v -/ 10.0
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tions, the tota]
At the en

function
: including the evaluation of t}e init;
uations. e 837 (inclu . ial
gg]_]ua,tions re%;n.l‘ei :’r‘zi mentioning here that no effort is magde 4,
tion). 1t 18
popula

btain the above solutjoy It

ameters t0 O - It is

optimally set the G.ﬁlp: rpmper choice of GA parameters, 5 bettey

anticipated that V{: o obtained. Nevertheless, for a COMparahq

result magfhaggoneevaluations’ GAs have found a Populatiop neay
number of 1ul

the true optimum.

6.1.5 Other GA operators

' number of variations to GA operators. In mogt
There exist a nts are developed to suit particular applicatiopg
cases, th{a vartlﬁere are some variants which are developed ip order
E)ezilrlggsee:z}ne fundamental change in the working of GAs.

€re we

discuss two such variants for reproduction and crossover Operators,
sC

It has been discussed earlier that the roulette-whee] selection

operator has inherent noise in selecting good individual‘s. Alth_ough
this noise can be somewhat reduceq by using sl.:ochastlc rema,m(.ier
selection, there are two othe}' dlfﬁcultles. with these_ se.le?tmn
operators. If a population contains an exceptionally good l.ndl\_lldua.l
early on in the simulation?, the expected number of copies in the
mating pool (F;/F) may be so large that the individual occupies
most of the mating pool. This red

uces the diversity in the mating
pool and causes GAs to prematurel

Yy converge to a wrong solution.
On the other hand, the whole population usually contains equally
good points later in the simulation This may cause each individual
to have a copy in the thereby making a directionless
be eliminated by transforming

() to a scaled fitness function §(z) at

every generation.

The transformatijon could be a simple linear
transformatiopn
S(z) = a}.(m) + b
The Parameters q apq b sh
Individual ip tp

' should be defineq to allocate the best
; € populatiop
mating poo] gy

a" Te . . the
: d to allocat Predefined number of copies In
the Mmating pool

(Goldhs e an average individual one copy
Performed 4¢ every it '8, 1989), olnce this tra.nsfom.lat.lon 18
by USing this g J teration, both difficulties can be eliminated
above difficy] i tng Procedure,  Apgther way to overcome the

Y 18 to uge g different selection algorithm altogether:

4 .
Thls ma .
Y happen i co :
. . nstrm . i ion
Mmay PTIIna.n]y cont a.].n in feasiblen::i:titlnuza,tlon problems where the pOPula.tlo
eXxc

ept a few feasible points.
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it popular in recent GA applications.

. In e
binary tournament selection with s = most GA applications, a

: ] : 2 is used.

In trying to solve problems with m i i
point CroSsover operat01: described earlier ﬁiy?;;a;rlﬁi,idihed o
search. Moreover, tl}e single-point crossover operator has ome biae
of exchange for the right-most bits. They have a higher ro‘tsyoﬁlilej ot
getting exchanged than the left-most bits in the stringp Th:s :); .
variables are coded left to right with the first variable bein ,lt tf]n
eft-most position and the tenth variable at the right-most go:it' ;
the effective search on the tenth variable is more compared topthe ;'3':;
variable. In order to overcome this difficulty, a multipoint crossover
is often used. The operation of a two-point crossover operator is
shown below:

1 0|0 0|0 O 0|1 1|00
=

111 1j1 1 1001 1

Two random sites are chosen along the string length and bits inside
the cross-sites are swapped between the parents. An extreme of the
above crossover operator is to have a uniform crossover operator
where a bit at any location is chosen from either parent with a
probability 0.5. In the following, we show the working of a uniform
crossover operator, where the first and the fourth bit positions have
been exchanged.

00000 10040
=
11111 01101

among all of the above

This imum search power . s
operator has the maxi over has the minimum

crossover operators. Simultaneously, this cross

. 5 m

5First the population is shuffled. Thereafter, the first 3 c?nes a.;zlpn':llf;gn fr:he

the top of the shuffled list and the best is chosen for thedr]?:t)magr: piciced and the

next s individuals (numbered (s+1) to 2s in the shuffi 1 all population
best is chosen for the mating pool- This process

is continued unt
members are considered once. The whole popt

lation is shuffled again and 1;11;
i i te mating poo
same procedure is repeated. This is continued until the complete
fOtmed.
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