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Squeezed states of light
D. F. Walls

Physics Department, University of Waikato, Hamilton, New Zealand

The properties of a unique set of quantum states of the electromagnetic field are reviewed. These‘squeezed states’ have less uncertainty in one quadrature than a coherent state. Proposed schemes for
the generation and detection of squeezed states as well as potential applications are discussed.
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THE electric field for a nearly monochromatic plane wave may
be decomposed into two quadrature components with time
dependence cos wt and sin wt respectively. In a coherent state,
the closest quantum counterpart to a classical field, the fiuctu
ations in the two quadratures are equal and minimize the uncer
tainty product given by Heisenberg’s uncertainty relation. The
quantum fluctuations in a coherent state are equal to the zero-
point fluctuations and are randomly distributed in phase. These
zero-point fluctuations represent the standard quantum limit to
the reduction of noise in a signal. Even an ideal laser operating
in a pure coherent state would still possess quantum noise due
to zero-point fluctuations.
Other minimum uncertainty states are possible which have

less fluctuations in one quadrature phase than a coherent state
at the expense of increased fluctuations in the other quadrature
phase. Such states, which have been called squeezed states5
(other names include two photon coherent states, generalized
coherent states), no longer have their quantum noise randomly
distributed in phase. Such states offer intriguing possibilities. In
the present optical communication systems which use coherent
beams of laser light propagating in optical fibres, the ultimate
limit to the noise is given by the quantum noise or zero-point
fluctuations. If, instead, beams of squeezed light were used to
transmit information in the quadrature phase that had reduced
fluctuations the quantum noise level could be reduced below
the zero-point fluctuations. Optical communication systems
based on light signals with phase sensitive quantum noise have
been proposed by Yuen and Shapiro6’7.
The concept of squeezed states applies to other quantum

mechanical systems. For example, they may have a role in
increasing the sensitivity of a gravitational wave detector. A
standard bar detector for gravitational radiation may be treated
as a harmonic oscillator. The effect of the gravitational radiation
is so weak that the expected displacement of the bar is of the
order of 1O_19 cm. This is the same order of magnitude as the
quantum mechanical uncertainty of the bar’s position in its
ground state. Thus the signal from the gravitational wave detec
tor may be obscured by the zero-point fluctuations of the detec
tor. This is a striking example of the influence of quantum
fluctuations on a macroscopic system. In principle, a way of
beating this problem is clear. Instead of the ground state of the
oscillator with its quantum noise randomly distributed in phase
one prepares the oscillator in a squeezed state. One then
measures the displacement due to the gravitational radiation in
the quadrature with reduced fluctuations. In this way it should
be possible to detect displacements less than the quantum
mechanical uncertainty in the bar’s position. Of course, this
leaves a lot of technical questions unanswered. How does one
prepare the bar in a squeezed state? How does one make a
measurement on the bar’s quadrature phase? These problems
and suggested solutions are discussed elsewhere8’9in treatments
of quantum non-demolition measurements.
The statistical properties of light fields such as coherent or

thermal light may be calculated by techniques similar to classical

probability theory using an expansion of the density operator
in terms of coherent states, the Glauber—Sudarshan P rep-
resentation’°’. Coherent light has poissonian photon counting
statistics. Squeezed states of light on the other hand may have
sub-poissonian photon counting statistics and have no nonsin
gular representation in terms of the Glauber—Sudarshan P distri
bution. The statistical properties of such fields cannot be calcu
lated by techniques analogous to classical probability theory.
Squeezed states are, therefore, an example of a nonclassical
light field. To be precise we shall define a nonclassical light field
as one that has no positive nonsingular Glauber—Sudarshan P
function.
Another example of a nonclassical light field is a number

state. This certainly has no nonsingular Glauber—Sudarshan P
function and clearly has sub-poissonian photon statistics. Such
nonclassical light fields with sub-poissonian photon statistics
which exhibit photon antibunching have been observed experi
mentallyl2135U. A number state, however, has its quantum
fluctuations randomly distributed in phase and hence does not
exhibit squeezing. While a squeezed state may exhibit sub-
poissonian photon statistics and hence photon antibunching it
is not a necessity. Sub-poissonian statistics result if the quad-
rature phase with reduced fluctuations carries the coherent
excitation. Using photon counting techniques direct measure-
ments of the intensity fluctuations of a light field are possible.
To determine the fluctuations in the quadrature phases a phase
sensitive detection scheme is necessary. This can be achieved
by homodyning or heterodyning the signal with a local oscillator
followed by photon counting measurements. To generate a
squeezed state a phase dependent nonlinear optical process is
necessary.

Phase dependent correlation functions
Detection of a light signal with a photon counter yields a
measurement of the light intensity 1(t) or photon number n(t).
Using electronic correlators one may then compute the intensity
or photon number correlations of the light field. For example,
one may measure the normalized second-order correlation
function

(1)

where : : denotes normal ordering of the quantum mechanical
operators. For sufficiently short counting times the variance
V(n) of the photon number distribution is related tog2(O) by

V(n) -(n) =g(2)(O) - 1 (2)(n)
A coherent light field with poissonian statistics hasg2(O) = 1.
Thermal light which has increased intensity fluctuations has
g2(O) = 2. Since g2(O) represents the probability of two
photons arriving simultaneously this is referred to as photon
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Fig. 1 Phase space plot showing the uncertainty in: a, a coherent
state a); b, a squeezed state a, r e’°) (r> 0); c, a number state fn).

bunching. A light field with sub-poissonian statistics will have
g2(O) < 1, an effect known as photon antibunching. Photon
antibunching is a quantum mechanical effect which may not be
derived from a classical description of the field. Such fields do
not have a positive nonsingular representation in terms of the
Glauber—Sudarshan P distribution which expresses the density
operator for a single mode field as10’11

p = P(a)Ia)(aI d2a (3)

where a> is a coherent state. This representation has found
considerable application in optics because the taking of quantum
mechanical averages resemble classical averaging procedures
provided P(a) exists as a positive nonsingular function. For
fields which exhibit photon antibunching, however, the P(a)
are highly singular functions. In this sense we say that such fields
are nonclassical. The quantum theory of light received further
verification when photon antibunching was observed experi
mentally in resonance fluorescence from a two level atom12’13
in agreement with theoretical predictions16(for reviews see
refs 17—19).
Our discussion of the properties of phase dependent correla

tion functions is illustrated with reference to a single mode field.
We may write the electric field as

E(t)=A(a et+atet)

where A is a constant including the spatial wave functions. In
the quantum theory of radiation the amplitudes a and at are
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Fig. 2 Plot of electric field against time showing the uncertainty
for: a, a coherent state a) (a real); b, a squeezed state a, r) with
reduced amplitude fluctuations (a real, r > 0) ; c, a squeezed state
I a, r) with reduced phase fluctuations (a real, r < 0). Reproduced

with permission from Caves21.

quantum mechanical operators which obey boson commutation
relations. We may write

a = X1 + iX2 (5)

where X1 andX2 are hermitian operators obeying the commuta
tion relation

[X1,X2]=

In terms of X1 and X2 one may write E(t) as

E(t) = (X1 cos wt+X2sin wt)

(6)

(7)

Thus X1 and X2 may be identified as the amplitudes of the two
quadrature phases of the field.
From the commutation relation (6) we deduce the following

relation for the uncertainties ={V(X1)}1”2inX1 and X2

zX1zX2 (8)

A family of minimum uncertainty states is defined by taking
the equal sign. One such class of minimum uncertainty states is
the coherent states which have V(X1)= V(X2)= . A broader
class of minimum uncertainty states may have unequal variances

(4) in each quadrature. These are the so called squeezed states. The
condition for squeezing is

142 REVIEWARTICLE
x2

/
a E(t) x2:\

7

a

2

\

b

.-.-

EQ)

x1

V(X)< i=lor2 (9)



NATURE VOL. 306 10 NOVEMBER 1983

a) D(a)IO)

D(cr) = ea ea*

a, ‘) D(a)S(C)IO)

-REVIEWARTICLE-

(11)

Q(X1,X2)

x1

. .i. :C’

I
L

$ . . . . . ...

• •‘ • . •

. . ..

• •

x2

V(Y1)=e_2r
V(Y2)=e2r

(n)1a12+sinh2r

143

P(N)

0.05 -

, 20 40 60 80 100
N

Fig. 3 Photon number distribution for a squeezed state a, r)(a 7, r = ±0.5) compared with a coherent state (r = 0).

It is sometimes convenient especially for multimode fields towrite the condition in terms of the normally ordered variance
:V(X,):<O i=lor2 (10)

Figure 1 shows a phase space plot of the uncertainties in X1
and X2 for a coherent state, a squeezed state and a numberstate is shown. These error ellipses may be rigorously derivedas the contours of the Q function4.
The time dependence of E(t) including the uncertainty iE(t)is shown in Fig. 2 for a a coherent state, b a squeezed statewith reduced amplitude fluctuations, c a squeezed state withreduced phase fluctuations. The corresponding error box forthese states at t 0 is also shown.
For a single mode field the variance in one quadrature maybe calculated using the Glauber—Sudarshan P representation

V(X1)
={1 +

P(a)[(a + a*) ((a) +(a*))]2 d2a}

The condition for squeezing V(X1)< requires that P(a) be anonpositive definite function. In this sense squeezing like photonantibunching is a nonclassical property of the electromagneticfield. Note that to derive equation (1 1) the commutation relation[a, at] = 1 has been used. If a classical field is assumed from theoutset arbitrary squeezing may be obtained in either quadrature.Thus squeezing has a non trivial significance only in the case ofquantized fields. A distinction between classical and quantumfields may be obtained from the normally ordered correlation
function g2(0) which is always 1 for classical fields (seeref. 20).

Properties of squeezed states
We shall now briefly describe the mathematical properties ofsqueezed states. A coherent state a) may be generated by theaction of the displacement operator D(a) on the vacuum

where

Fig. 4 Q function for a squeezed state. Reproduced with per-
mission from Yuen4.

An alternative but equivalent characterization of squeezed stateshas been given by Yuen4. We note that whereas a coherentstate is generated by linear terms in a and at in the exponenta squeezed state requires quadratic terms.
The variances in squeezed state I a, ) are given by

where Y1 + iY2 = (X1 +iX2) e_1O/2 is a rotated complex amplitude so that 2i Y1 and 2Y2 represent the length of the minorand major axes of the error ellipse. The mean photon numberin the squeezed state a, ) is

(15)
(12) Clearly, the variances V(X1)are independent of the field amplitude a. Thus squeezing is a quantum mechanical effect whichmay occur in fields with high intensity. In this sense one may

say it is a macroscopic quantum effect. This is a significantdifference from photon antibunching which is only appreciableA squeezed state a, ) may be generated by first acting with for fields with low intensity. There is no general relation betweenthe squeeze operator S(C) on the vacuum followed by the photon antibunching and squeezing, however, we shall considerdisplacement operator D(a) (ref. 21) the limit where the coherent amplitude greatly exceeds the
(13) squeezing (1a12 >> sinh2 r). In this limit we find

(16)

(14)

where

and
S(C) = exp

: V(X1):=(g2(0)— 1) =i(e2r_1)

C = r
where we have chosen a real so that the amplitude is carriedby X1.
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Fig. 5 Squeezing in the parametric oscillator (—) compared
with an ideal parametric amplifier (— . . . ) as a function of the

pump driving field.

For r > 0 we have a reduction in amplitude fluctuations
(: V(X1):< 0) and photon antibunching (g2(O)< 1) whereas
for r < 0 we have an increase in amplitude fluctuations and
photon bunching. Hence in this limit a squeezed state may show
either photon bunching or antibunching depending on whether
the amplitude fluctuations are increased or reduced. The photon
number distribution4in a squeezed state a, r) is plotted in Fig.
3 for a = 7, r = ±0.5. We can see that the photon statistics are
sub- or super-poissonian depending on whether r > 0 or r <0.
No such simple relation between antibunching and squeezing

exists for all values of a. For example in the opposite limit of
a << 1 , that is, a squeezed vacuum 10, r),

g2(0) = 1
cosh2r

(17)
sinh r

Thus the photons in a squeezed vacuum are always bunched
irrespective of the sign of the squeeze parameter.
An example of a quantum state which exhibits photon anti-

bunching but no squeezing is a number state I n> for which

V(X1)=V(X2)=(1)(2n+1) (18)

The complete absence of phase information in a number state
•is clear from the phase space annulus shown in Fig. 1 c.
As the Glauber—Sudarshan P representation does not exist

for a squeezed state we must consider an alternative representa
tion such as the Wigner function, the Q function, or the general-
ized P function2223.The Q function for a squeezed state is
derived in ref. 4. The distribution Q(X1,X2) plotted in Fig. 4
as a function of the amplitudes of the two quadratures clearly
shows the unequal variances in X1 and X2.

Production of squeezed states
There has been no experimental manifestation of squeezed states
of light. The requirement to produce a squeezed state may be
simply expressed as follows. For a single mode field mix a part
of the field with its phase conjugate to produce a new mode b
such that

b=a+vat (19)

where 2 2 = For mode a in a coherent state the mode b
will be in a squeezed state4. Thus a scheme involving a phase

Fig. 6 Photon statisticsg2(0) and variances tX for the para
metric oscillator as a function of the idler driving field. The pump

driving field is held fixed at the threshold value.

conjugate mirror appears as one of the favourite candidates for
a state squeezer24.The above prescription seems very simple,
however, the phase conjugate mirror involves a nonlinear inter-
action, in this case a four-wave mixing interaction. Squeezed
states may also be generated by a three-wave mixing interaction
as for example in the parametric amplifier2527’51’52.The pro-
totype for these interactions is described by the Hamiltonian,

H=h[X*(e)a2+X(s)at2] (20)

x2(e) = 6X2 (degenerate parametric amplifier)

x3(e) =C2X3 (four-wave mixing)

x is the nonlinear susceptibility of the optical medium and
8 i5 the amplitude of the pump field which has been
treated classically. This approximate form of the Hamiltonian
generates squeezed states with a squeeze parameter given by
r = I2x(r)tI. Several objections to this ideal system can be
raised. Fluctuations resulting from the quantization of the pump
field and the nonlinear medium have been neglected as have
vacuum fluctuations associated with any loss process. The
vacuum fluctuations will tend to equalize the variances in the
two quadratures and hence destroy the squeezing2829.Thus the
characteristic damping time of any loss mechanism should be
long compared with the interaction time. Phase and amplitude
fluctuations in the laser used for the pump may also degrade
the squeezing30.Phase fluctuations may be compensated for by
using part of the pump as the local oscillator in a homodyne
detection scheme.
The magnitude of the squeezing is limited by the small values

of the nonlinear susceptibility and the interaction time. To
increase the interaction time the nonlinear crystal may be placed
inside an optical cavity. There is a parametric oscillator configur
ation where the cavity modes are driven externally by classical
fields. An analysis of the cavity must include the cavity losses
which tend to destroy the squeezing. Thus there will be a
competition between the squeezing produced by the nonlinear
interaction and the degradation of the squeezing by the damping.
This results in a limiting value to the squeezing attainable in
the steady state. An analysis of the degenerate parametric oscil
lator including the quantization of the pump field has been
carried out313. When only the pump mode is driven by an
external field there exists a threshold driving field below which
the semiclassical value of the mean field is zero. The squeezing
in the idler mode as a function of the pump field amplitude is
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shown in Fig. 5. As the pump amplitude is increased from zerosqueezing appears in the idler mode. However, the squeezingapproaches a maximum value corresponding to V(X2) 1/8close to the threshold value of the pump field, then decreasesas the pump power is increased above threshold.
The case where the driving field for the pump mode is heldfixed at the threshold value and the driving field for the idleris increased from zero is shown in Fig. 6. For low values of theidler driving field the squeeze parameter is initially positive andamplitude fluctuations are increased, hence we have photonbunching (g2(O)> 1). As the idler driving field is increased thesqueeze parameter goes to zero and then becomes negative.Thus we have reduced amplitude fluctuations and hence photonantibunching (g2(O) < 1). This is consistent with the generalproperties of squeezed states with a 2 >> sinh2 r discussed above.This system provides a feasible scheme for detecting squeezedstates by making photon correlation measurements directly onthe squeezed field. Facility to change the sign of the squeezeparameter and observe the accompanying change of the photonstatistics from bunching to antibunching would indicate thepresence of a squeezed state.
Other nonlinear intracavity devices have been shown34’35 togive a maximum squeezing factor not greatly exceeding 2. Thecoupling of the cavity modes to the vacuum fluctuations of theextracavity modes apparently acts as a counter to the squeezingproduced by the nonlinear interaction in a steady-state configuration.
One possibility of avoiding the limitation to squeezingimposed by the vacuum fluctuations entering the cavity is tomake one mirror perfectly reflecting. It has been claimedthat since the vacuum fluctuations may no longer enter fromthe second port arbitrary squeezing is in principle attainable(B. Yurke, personal communication).
Another way to avoid the problem of vacuum fluctuations isto revert to the parametric amplifier configuration where thecavity losses no longer have a role. The parametric amplifier isa travelling wave phase matched interaction and the Hamiltonequation (20) which only includes a single mode is not appropriate. A multimode analysis36 of a travelling wave parametricamplifier indicates that a reduction in squeezing over the singlemode case may occur for the non degenerate amplifier. Thisreduction in squeezing is caused by the contribution from non-resonant modes whose axes of squeezing become misalignedwith respect to the resonant mode.
Another possible system for producing squeezed states is atwo-photon laser due to the quadratic nature of the field interaction. A laser, however, is an active system in which the atomsare pumped to the excited state and may consequently decayby spontaneous emission. Calculations using a two-level modelfor the atomic medium reveal that any potential squeezing isdestroyed by the fluctuations resulting from spontaneousemission37’38.
It is clear, therefore, that a phase sensitive nonlinear interac

4 tion in a passive medium is required to produce squeezed states.Predictions of squeezing in a variety of nonlinear optical pro-cesses have now been made, for example the free electronlaser39,second harmonic generation40’41, the single atom-singlefield mode interaction42,and multiphoton absorption43.Theprediction of squeezing in four wave mixing24 has attracted theinterest of experimentalists42.Ananalysis of the effect of atomicfluctuations in four-wave mixing based on a two-level atomicmedium reveals that for the atoms driven near saturation orclose to resonance the spontaneous emission will destroy thesqueezing45.For significant squeezing the driving fields shouldbe of low intensity and sufficiently far from resonance so as notto saturate the atoms.
Another system with somewhat different characteristics issqueezing in resonance fluorescence from a two-level atom46.Resonance fluorescence differs from many of the systems discussed above as it involves many modes of the radiation field.Resonance fluorescence deserves attention as it is the onlysystem in which photon antibunching has been observed12’13.
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We consider a two-level atom driven by a coherent drivingfield. The product of the amplitude of the driving field and thedipole moment of the atom is characterized by the Rabifrequency. We denote the Rabi frequency normalized by thenatural linewidth of the atom by ft The driving field may havea detuning with respect to the atomic transition. We shall use3 to characterize the detuning normalized by the naturallinewidth.
The condition for squeezing in a field may best beexpressed in terms of the normally ordered variances whichdo not include the contribution from the vacuum fluctuations.For squeezing in either quadrature (E1 = +E)/2,E2 (E—E)/2i) of the field we require

:V(E1):<O ilor2 (21)

We calculate the squeezing in the components of the fluorescentfield in the direction along and perpendicular to the mean field.The variance in the component E in the direction of the meanfield is

:V(E):=-62fl2 (22)

where A is a constant.
Thus we find squeezing in this component provided ç2 <1 + 2 No squeezing occurs in the component orthogonal to themean field. The reduced amplitude fluctuations occurring forç2 < i + 62 consistent with the observed fact that the fluorescent light is antibunched. We note that the fluorescent light isalso antibunched in the strong field limit f2> 1 + 32 where thereis no squeezing. In this limit the characteristics of the fluorescentlight resemble a number state.

Detection of squeezed states
Proposals to measure the variances in the quadrature phases ofa light field suggest homodyning or heterodyning the signal witha local oscillator which gives the necessary phase dependencefollowed by a photon counting measurement. Such measure-ments are feasible with existing technology. (For further detailsof such a measurement scheme see refs 6, 7, 20.)
The signal field is homodyned with a local oscillator which isassumed to be in a coherent state. The complex amplitude ofthe local oscillator may be written as r r e’° where 0 is thephase of the local oscillator with respect to the signal field. Inthe limit where the amplitude of the local oscillator greatlyexceeds the amplitude of the signal field the photon statisticsof the combined field are directly related to the normally orderedvariance of the signal field. Assuming a perfect detectorefficiency it may be shown that6’7’2°

V(n)—(n) = 4EI2: V(E1): if 0 0
= 4g2: V(E2): if 0 = /2 (23)

Thus by changing the phase of the local oscillator a measurementof the photon statistics yields the normally ordered variance inE1 (0 = 0) and the normally ordered variance in E2 (0 ir/2).A change of photon statistics from sub- to super-poissonian as0 is varied will indicate the presence of squeezing.
Such measurements impose a stringent requirement on therelative phase stability between the local oscillator and thesignal. Yuen and Chan47 have recently suggested that photonnumber fluctuations in the local oscillator may be eliminatedusing a balanced detector scheme developed in the microwaveregion48.
Another way to detect a squeezed state is by a direct photoncorrelation measurement if one has the facility to vary the signof the squeeze parameter. The presence of a squeezed state is
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indicated by a change of photon statistics from bunching to
antibunching as the squeeze parameter is varied. An example
of such a system is the parametric oscillator with two driving
fields discussed earlier. This method obviates the need for
homodyning the signal with a local oscillator.

Applications of squeezed states
Squeezed states have several potential applications, one, for
example, is in optical communication systems. In a proposed
scenario information would be transmitted in the quadrature of
the field with reduced quantum fluctuations. An enhanced sig
nal-to-noise ratio could then be obtained in the quantum noise
limited regime over information sent using coherent light beams.
The application of squeezed states in optical communications
systems is discussed in refs 6 and 7.
Similar considerations hold in the amplification of signals.

Noise is necessarily added in the amplification process, however,
if a suitable phase sensitive amplifier is used the noise may be
added preferentially to the quadrature not carrying information.
This leaves the amplification of the quadrature carrying the
information essentially noise free.
Interferometric techniques to detect very weak forces such

as gravitational radiation experience limitations on sensitivity
due to quantum noise arising from photon counting and radi
ation pressure fluctuations. These sources of noise may be inter-

. preted as arising from the beating of the input laser with the
vacuum fluctuations entering the unused port of the inter-
ferometer. It turns out that these two different noise sources
arise from fluctuations in the two different quadrature phases
of the vacuum entering the unused input port. It has been
suggested by Caves21 that injecting a squeezed state into the
unused input port will reduce one or other of the two sources
of noise depending on which quadrature is squeezed.
Another intriguing application of squeezed states is in an

optical waveguide tap. Shapiro has shown that a high signal-to-
noise ratio may be obtained using a squeezed state in an optical
waveguide to tap a signal carrying waveguide49.This may be
achieved with very low energy loss from the signal thus offering
the possibility of permitting optical data bus technology to reach
multikilometre path lengths with many user sites but no
repeaters.

Conclusions
The field of quantum optics has been an active field of research
since the early 1960s. However, much which has been discussed

under this heading could more correctly be described as non-
linear optics as no quantization of the electromagnetic field is
necessary. Very few features which are explicitly a result of
quantization of the field have been observed—photon anti-
bunching being one exception. Squeezed states represent a class
of quantum states for which no classical analogue exists, hence
their detection would be of fundamental interest.
The achievements of quantum optics have been based on the

measurement of photon correlation functions of the electromag
netic field. We now seem to be on the verge of an era where a
new class of measurements on the phase dependent correlation
functions of the electromagnetic field will be possible. This will
enable information on the electromagnetic field to be obtained
which was not accessible from photon correlation measure-
ments. Such measurements based on homodyning or heterodyn
ing the field with a local oscillator appear feasible with current
technology. The presence of a squeezed state will be indicated
by the observation of sub-poissonian photon statistics in such a
phase sensitive detection process.
Present efforts are directed towards methods of generating a

squeezed state. While a proof in principle of the existence of
squeezed states seems possible in, for example, resonance
fluorescence from a two-level atom or an intracavity nonlinear
optical interaction the magnitude of the squeezing obtained in
such systems is small. To obtain appreciable squeezing one must
look to either a single pass device with a high nonlinearity and
low losses or possibly to a cavity with a single input/output port
which prevents the vacuum fluctuations entering as in the two
port cavity.
Should a device be found to give a light field with significant

squeezing the potential applications are attractive. These appli
cations lie on the frontier of technology in quantum noise limited
situations. For example, a squeezed light field could be used in
an optical communication system where the information is car-
ned by the quadrature with reduced quantum fluctuations. This
would enable a better signal-to-noise ratio to be attained than
using conventional laser sources which are limited by the quan
turn noise of a coherent state. The general concept of squeezed
states with their phase dependence of quantum noise has impor
tant implications in quantum amplifier theory and ultrasensitive
electronics such as required for the detection of gravitational
radiation. While no experimental observation of squeezed states
has yet been reported this is a goal well worth achieving both
from a fundamental point of view and in consideration of the
applications that will follow.
I thank H. J. Carmichael and G. J. Milburn for valuable

suggestions. This work was supported in part by the United
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