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1. Introduction

This lecture note contains a sketch of the lectures. The illustrations and
more examples are presented during the lectures. Lectures are mainly fol-
lowing Evans: PDEs.

A partial differential equation (PDE), is an equation of an unknown func-
tion of two or more variables, and its partial derivatives.

Example 1.1. A simple PDE:

u : Ω→ R, Ω ⊂ Rn, n ≥ 2.

For example, n = 2, (x, y) ∈ R2

ux1x1(x1, x2) + ux2x2(x1, x2) = 0.

A boundary value problem: Quite often we are given boundary values g,
for example

n = 2, (x, y) ∈ Ω = (0, 1)× (0, 1) ⊂ R2,{
ux1x1 + ux2x2 = 0 in Ω

u = g on ∂Ω.

and we should solve u, or at least know some properties of u.

Depending what we are modeling by a PDE, the unknown u may describe
for example a physical quantity for the heat, electric potential. Partial dif-
ferential equations have a great variety of applications to mechanics, elec-
trostatics, quantum mechanics and many other fields of physics as well as
to finance. In addition, PDEs have a rich mathematical theory.

Example 1.2. We consider next an initial value problem{
ut + b ·Du = 0 in Rn × (0,∞)

u = g on Rn × {t = 0},

where

u : Rn × (0,∞)→ R (unknown, to be searched)

g : Rn → R (given),

b = (b1, . . . , bn) (given),

Du = (ux1 , . . . , uxn) the gradient.

This is called a transport equation. Roughly, the reason for the name of
the equation is as follows. Consider a conveyor belt that is for simplicity
modelled in 1D, and infinity long. Then denote the mass density (kg/m) at
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x at time t by u(x, t). The speed of the belt is b and thus the mass exiting
at x+ h in a short time s is approximately

−sbu(x+ h, t)

and similarly the mass entering sbu(x, t). Then it
holds that change of mass on [x, x+ h] over time [t, t+ s] =
mass entering at x over time [t, t+ s]−mass exiting at x+ h over time [t, t+ s].∫ x+h

x
u(y, t+ s) dy −

∫ x+h

x
u(y, t) dy ≈ u(x, t)bs− u(x+ h, t)bs,

⇒ 1

h

∫ x+h

x

1

s
(u(y, t+ s)− u(y, t)) dy ≈ u(x, t)− u(x+ h, t)

h
b.

Since 1
h

∫ x+h
x is just the integral average by passing to a limit with s, h, we

get

ut(x, t) = −ux(x, t)b.

What we naturally need to solve for mass density at given location x and
time t is the initial mass density g(x). We can guess that the solution is

u(x, t) = g(x− bt).

Even for g /∈ C1 the conveyor belt example makes sense, so already such a
simple example suggests a need for the ’weak solutions’ that are dealt in the
later courses (PDE2 and Viscosity theory).

1.1. Notations (review). Basic notation

Rn, n− dimensional Euclidean space

R = R1

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), standard basis vectors

Ω, U ⊂ Rn, open set, bounded unless otherwise stated

|x| =
√
x2

1 + . . .+ x2
n for x ∈ Rn,

∂Ω boundary of a set Ω,

B(x, r), a ball of radius r centered at x

|B(x, r)| = α(n)rn = volume of a ball

|∂B(x, r)| = ωnr
n−1 = area of a sphere∫

B(0,ε)
. . . dy =

1

|B(0, ε)|

∫
B(0,ε)

. . . dy mean value integral over a ball∫
∂B(0,ε)

. . . dy =
1

|∂B(0, ε)|

∫
∂B(0,ε)

. . . dy mean value integral over a sphere

Ω b U, Ω ⊂ U and Ω is compact
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Functions and derivatives

f : Ω→ R, a function

spt f = {x ∈ Ω : f(x) 6= 0} = the support of f

∂u

∂xi
(x) = lim

h→0

u(x+ hej)− u(x)

h
, u’s partial derivative to the direction xj

uxj = Dju =
∂u

∂xi
, shorthands for partial derivatives ,

uxixj = Diju =
∂2u

∂xi∂xj
, higher order derivatives

Du = (
∂u

∂x1
, . . . ,

∂u

∂xn
), gradient

∂u

∂ν
= Du · ν, outward normal derivative, ν outward unit normal vector

Multi-indexes and spaces

α = (α1, . . . , αn) ∈ Nnmulti-index

|α| = α1 + . . .+ αn

Dαu =
∂α1

∂xα1
1

. . .
∂αn

∂xαnn
.

Dku(x) = {Dαu(x) : |α| = k}, whenever k ∈ N
D2u(x) = {D11u(x), D12u(x), . . . , D1nu(x), D21u(x), D22u(x),

. . . , D2nu(x), . . . Dnnu(x)}

=

D11u(x) . . . D1nu(x)
...

. . .
...

Dn1u(x) . . . Dnnu(x)

 , Hessian matrix

D1u(x) = Du(x)

C(Ω) = {f : f continuous in Ω}
C(Ω) = {f : f uniformly continuous on bounded subsets of Ω}
C0(Ω) = {f ∈ C(Ω) : spt f is compact subset of Ω}

Ck(Ω) = {f ∈ C(Ω) : f is k times continuously differentiable}

Ck(Ω) = {u ∈ Ck(Ω) : Dαu is uniformly cont on all bdd subsets of Ω for all |α| ≤ k}

Ck0 (Ω) = Ck(Ω) ∩ C0(Ω)

C∞(Ω) = ∩∞k=1C
k(Ω) = smooth functions

C∞0 (Ω) = C∞(Ω) ∩ C0(Ω) = compactly supported smooth functions

||f ||L∞(Ω) = sup
Ω
|f | for f ∈ C(Ω).
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Remark 1.3. Recall that

u ∈ Ck(Ω) ⇐⇒ Dαu ∈ C(Ω)

for multi-index α = (α1, . . . , αn) ∈ Nn and |α| := α1 + . . .+ αn ≤ k, where

Dαu :=
∂α1

∂xα1
1

. . .
∂αn

∂xαnn
.

Example 1.4. (1)

f : R→ R, f(x) =

{
x2, x ≥ 0

−x2, x < 0

f ∈ C1(Ω) \ C2(Ω)

(2)

ϕ : Rn → R, ϕ(x) =

{
e1/(|x|2−1), |x| < 1

0, |x| ≥ 1.

ϕ ∈ C∞0 (Ω), sptϕ ⊂ B(0, 1)

1.2. General form of a PDE and classifications.

Definition 1.5 (General form). Given a real valued function F , the expres-
sion of the form

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0,

is kth-order PDE i.e. k is the order of the highest order derivative. The
unknown is a function

u : Ω→ R.

Example 1.6. Most of the examples on this course are of second order. Let
n = 2 and consider

D2u(x) =

(
D11u(x) D12u(x)
D21u(x) D22u(x)

)
F : R22 × R2 × R× R2 → R,
F (M,p, u, x) = m11 +m22,

M =

(
m11 m12

m21 m22

)
.

Then

F (D2u(x), D1u(x), u(x), x) = D11u(x) +D22u(x)

= ux1x1(x1, x2) + ux2x2(x1, x2) = 0

i.e. the Laplace equation.

Definition 1.7 (Classifications). If PDE can be written in the forms below,
then it is
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(1) linear, if ∑
|α|≤k

aα(x)Dαu(x) = f(x).

(2) semilinear, if∑
|a|=k

aα(x)Dαu(x) + a0(Dk−1u, . . . ,Du, u, x) = 0

(3) Quasilinear, if∑
|a|=k

aα(Dk−1u, . . . ,Du, u, x)Dαu(x) + a0(Dk−1u, . . . ,Du, u, x) = 0

(4) Fully nonlinear, if PDE depends nonlinearly on the highest order
derivatives.

Remark 1.8. In the second order case we get

(1) linear, if

Lu(x) := −
n∑

i,j=1

aij(x)Diju(x) +
n∑
i=1

bi(x)Diu(x) + c(x)u(x) = f(x)

for given coefficients aij, bi and c.
(2) Quasilinear, if

n∑
i,j=1

aij(Du, u, x)Diju(x) + a0(Du, u, x) = 0

Remark 1.9. There are further classifications. If the highest order term
can be written in the form

div(A(Dk−1u, . . . , u, x)),

then the equation is in divergence form. If not, then it is in non-divergence
form

Remark 1.10. (1) In the linear case the LHS of PDE can be seen as a
linear operator in the function space:

L(au+ bv) = aL(u) + bL(v)

where a, b ∈ R and u, v are functions (=linearity, L like linear), and
PDE reads as

Lu = f.

Observe that the operator is linear, but naturally if there is a righ
hand side i.e. ∆u = f,∆v = f then

∆(u+ v) = ∆u+ ∆v = 2f

so u+ v does not solve the same equation.
(2) Quasilinear equation is linear in highest order derivatives.
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Example 1.11. (1) Laplacian i.e. ∆u is linear:

∆(au+ bv) =

n∑
i

(au+ bv)xixi = a
∑

uxixi + b
∑

vxixi = a∆u+ b∆v.

(2) ∆u+ |Du|2 = 0 is semilinear.

Example 1.12. Observe that

Lu = −
n∑

i,j=1

Di(aij(x)Dju(x)) = −
n∑
i=1

Di(
n∑
j=1

aij(x)Dju(x))

= −div(A(x)Du).

where A is a matrix with the entries aij i.e. linear second order equation in
divergence form reads as

Lu(x) = −
n∑

i,j=1

Di(aij(x)Dju(x)) +
n∑
i=1

bi(x)Diu(x) + c(x)u(x) = f(x).

Remark 1.13. There are further classifications. In particular:

• Elliptic=”Laplace equation like”
• Parabolic=”Heat equation like, time dependent”
• Hyperbolic=”Wave equation like, time dependent”

One could give more precise statements, but we do not pursue this direction.

Remark 1.14. There are several boundary value problems. The most com-
mon on this course is: Dirichlet boundary value problem, the value of the
solution is given at the boundary

u = g on ∂Ω

Cf. the derivation of the minimal surface equation.

We also encounter the Neumann problem, where the outward normal de-
rivative is given:

∂u

∂ν
= g on ∂Ω

where ∂u
∂ν = Du·ν, outward normal derivative, ν outward unit normal vector.

Remark 1.15. • There are several kind of solutions. On this course
we consider classical solutions. It means that solution is smooth
enough so that the derivatives in the equation make sense. For ex-
ample, u ∈ C2(Ω) such that ∆u = 0 is a classical solution to the
Laplacian.
• Weak (distributional) solutions are considered in the course PDE2.

Divergence form equations.
• Viscosity solution are considered in the course Viscosity theory (PDE

3). Control and game theory applications, probability and finance.
• Strong solutions...
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Remark 1.16 (A well-posed problem). A PDE problem is well-posed if it
has

(1) existence
(2) uniqueness
(3) stability: the solution depends continuously on data. In many cases

in physics, data comes from measurements and it is crucial that
small variations in the measurements only cause small change in the
solution.

1.3. Examples.

Example 1.17. (1) Laplace equation

∆u =

n∑
i=1

uxixi = 0

(2) Poisson equation

−∆u(x) = f(x)

(3) Nonlinear Poisson equation (f not linear)

−∆u = f(u)

(4) Heat equation

ut −∆u = 0

(5) Wave equation

utt −∆u = 0

(6) Linear transport equation

ut +
n∑
i=1

biuxi = 0

(7) Eikonal equation

|Du|2 = 1

(8) Eigenvalue equation or Helmholz equation

−∆u = λu

(9) p-Laplace equation

div(|Du|p−2Du) = 0, p > 1

(10) Infinity Laplace equation

∆∞u =
n∑

i,j=1

uxixjuxiuxj = 0
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(11) Monge-Ampère equation

det(D2u) = f

(12) Hamilton-Jacobi equation

ut +H(Du, x) = 0

(13) Parabolic p-Laplace/ p-parabolic equation

ut = div(|Du|p−2Du)

(14) Porous medium equation

ut = ∆(um)

(15) Minimal surface equation

div

(
Du

(1 + |Du|2)
1
2

)
= 0

(16) Navier-Stokes equation (system, n=3) (1 million $ prize){
(ui)t + u ·Dui − ν∆ui = − ∂p

∂xi
i = 1, 2, 3,

div u = 0,u = (u1, u2, u2)

Systems (= many equations) are often, like in this case, more in-
volved.

Next we will derive an equation for the soap film (minimal surface equa-
tion). Recall the following counterparts of the integration by parts from the
earlier courses. As a reminder, ∂Ω ∈ C1 roughly means that the boundary
can be locally presented as a C1 function. This suffices to guarantee that
the normal vector below is well defined.

Theorem 1.18 (Gauss-Green theorem). Let ∂Ω ∈ C1 and u ∈ C1(Ω). It
holds that ∫

Ω
uxi dx =

∫
∂Ω
uνi dS, i = 1, 2, . . . , n,

where ν = (ν1, . . . , νn) is the unit normal vector.

In older versions, it is assumed above that u ∈ C1(Ω) ∩ C(Ω) where
integral on the right can be interpreted by taking approximations of the
domain from inside.

Example 1.19. In 1D the previous theorem is just the familiar fundamental
theorem of calculus ∫ b

a
u′ dx = u(b)− u(b).

From the previous theorem, we obtain (ex).
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Theorem 1.20 (div-thm). Let ϕ ∈ C∞0 (Ω) and F : Rn → Rn, Fi ∈ C1(Ω).
It holds that ∫

Ω
F ·Dϕdx = −

∫
Ω

divFϕdx, i = 1, 2, . . . , n,

Example 1.21. In 1D this is just the familiar integration by parts with the
zero boundary values ∫ b

a
Fϕ′ dx = 0− 0−

∫ b

a
F ′ϕdx.

Example 1.22 (Minimal surface equation). Suppose you dip a wire frame
into a soap solution, forming a soap film. The soap film tends to minimize
the area i.e. it forms a minimal surface with boundary values fixed at the
wire. Ω ⊂ R2

u : Ω→ R,unknown, the height of the soap film.

Area of 3D-surface z = u(x) is

A(u) =

∫
Ω

√
1 + |Du|2 dx

where

|Du|2 =

2∑
i=1

( ∂u
∂xi

)2
.

Since

d

dε
|D(u+ εϕ)|2 =

d

dε

n∑
i

(
∂u

∂xi
+ ε

∂ϕ

∂xi
)2

=
n∑
i=1

2(
∂u

∂xi
+ ε

∂ϕ

∂xi
)
∂ϕ

∂xi
= 2(Du+ εDϕ) ·Dϕ

we get

d

dε
A(u+ εϕ) =

d

dε

∫
Ω

√
1 + |D(u+ εϕ)|2 dx

=

∫
Ω

1

2
(1 + |D(u+ εϕ)|2)−

1
2 2(Du+ εDϕ) ·Dϕdx.

As the soap film minimizes the area, the solution u should satisfy for some
perturbation ϕ

0 =
d

dε
A(u+ εϕ)

∣∣∣
ε=0

=

∫
Ω

(1 + |Du|2)−
1
2Du ·Dϕdx

div-thm
= −

∫
Ω

div
( Du√

1 + |Du|2

)
ϕdx.
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Since this holds for all ϕ ∈ C∞0 (Ω), we have

div
( Du√

1 + |Du|2

)
= 0.

Example 1.23 (Hamilton-Jacobi equation and optimal control). Basic setup
of an optimal control problem with (x, t) as a starting point We use the fol-
lowing terminology and notation

(x, t) ∈ Rn × [0, T ], starting point

α : [t, T ]→ A, control (we do not specify A in this sketch)

A, the set of controls

a trajectory x(·)is given by{
x′(s) = f(x(s), α(s)), s ∈ [t, T ]

x(t) = x
dynamics given by f

f : Rn ×A→ Rn,
r : Rn ×A→ R, running payoff,

g : Rn → R, terminal payoff.

The value for this control problem is given by

u(x, t) = sup
α∈A

Px,t(α) := sup
α∈A

∫ T

t
r(x(s), α(s)) ds+ g(x(T )),

We could prove that for each h > 0 small enough so that t + h ≤ T , we
have

u(x, t) = sup
α∈A
{
∫ t+h

t
r(x(s), α(s)) ds+ u(x(t+ h), t+ h)},

where x(·) is the trajectory with the control α. This is called a dynamic
programming principle. It is also easy to believe by heuristic consideration:
Idea is that we can think that we play optimally from time t + h and thus

obtain u(x(t+ h), t+ h). Getting there pays
∫ t+h
t r(x(s), α(s)) ds.

Next we connect the value function to the PDE. The PDE then can provide
(existence, uniqueness, solvers available...) us the way to access the value
function and the optimal control.

The heuristics is that the PDE is an infinitesimal version of DPP. For-
mally supposing u is a smooth value we can start from the DPP

0 = sup
α∈A
{
∫ t+h

t
r(x(s), α(s)) ds+ u(x(t+ h), t+ h)− u(x, t)},

and assume that we are only using controls such that limh→0+ α(t+ h) = a.
Then taking limit, changing order of lim and sup and dividing by h, we
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formally obtain

0 = sup
a∈A
{r(x, a) +

d

dt
(u(x(t), t))}

= sup
a∈A
{r(x, a) +Du(x(t), t) · x′(t) + ut(x(t), t))}

= sup
a∈A
{r(x, a) +Du(x, t) · f(x, a)}+ ut(x, t))

=: H(x,Du(x, t)) + ut(x, t).

PDEs are useful with optimal control problems!
6.9.2017

2. First order linear equations

We will solve some simple equations.

2.1. An equation with constant coefficients.

(1) ODE {
du
dx = 0

u(0) = 1

u : R→ R.

Then u(x) = c and since u(0) = 1 the solution is u(x) = 1.
(2) PDE:

∂u(x, y)

∂x
= 0

u : R2 → R.

Then the solution is constant along y = c (characteristic curve)
u(x, y) = f(y). . Thus if we are given for example the initial condi-
tion u(0, y) = y2 we get the whole solution

u(x, y) = y2.

(3) Consider

aux + buy = 0

a, b are constant, not both 0

u :R2 → R.

a) Geometric method: 0 = aux + buy = Du · (a, b). This means
that u is constant along the lines to the direction of (a, b). An
equation for such a line is bx−ay = c (characteristic line). Thus
the solution only depends on bx− ay i.e.

u(x, y) = f(bx− ay), differentiable f : R→ R.
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Let us check

ux(x, y) = bf ′(bx− ay),

uy(x, y) = −af ′(bx− ay),

⇒ aux(x, y) + buy(x, y) = abf ′(bx− ay)− baf ′(bx− ay) = 0.

Example: {
4ux − 3uy = 0

u(0, y) = y3

Then from the general solution and the initial condition

u(x, y) = f(−3x− 4y)

y3 = u(0, y) = f(−4y)
t = −4y⇒ f(t) = (−t/4)3 = −t3/64,

u(x, y) = f(−3x− 4y) = −(−3x− 4y)3/64 = (3x+ 4y)3/64.

b) Method of characteristics: try to find a characteristic curve start-
ing at some point (x0, y0)

{(x(s), y(s)) : x(0) = x0, y(0) = y0}

such that

z(s) := u(x(s), y(s))

is easy to solve along that curve of course using PDE:

d

ds
z(s) =

d

ds
u(x(s), y(s)) = ux(x(s), y(s))

dx(s)

ds
+ uy(x(s), y(s))

dy(s)

ds
= aux(x(s), y(s)) + buy(x(s), y(s)) = 0,

i.e. z(s) = u(x(s), y(s)) = c = u(x0, y0). It is enough to know
the initial values along a curve.
Above we chose{

dx(s)
ds = a, x(0) = x0,

dy(s)
ds = b, y(0) = y0,

in order to use the PDE, i.e.{
x(s) = as+ x0

y(s) = bs+ y0,

and further

bx0 − ay0 = bx− abs− ay + abs = bx− ay.

This gives us the equation of the characteristic curve on which u
is a constant i.e. all the solutions are of the form

u(x, y) = f(bx− ay).
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2.2. Nonconstant coefficients. We consider the equations of the type,
which read in 2D as

a(x, y)ux + b(x, y)uy = 0.

Example 2.1. Consider

yux − xuy = 0

Again we use method of characteristics:

{(x(s), y(s)) : x(0) = x0, y(0) = y0}
z(s) := u(x(s), y(s))

d

ds
z(s) =

d

ds
u(x(s), y(s)) = ux(x(s), y(s))

dx(s)

ds
+ uy(x(s), y(s))

dy(s)

ds
= y(s)ux(x(s), y(s))− x(s)uy(x(s), y(s)) = 0,

i.e. z(s) = u(x(s), y(s)) = c = u(x0, y0). Above we chose{
dx(s)
ds = y(s), x(0) = x0,

dy(s)
ds = −x(s), y(0) = y0,

(2.1)

As solved in the course ’differential equations’, by elimination differenting
the first equation we get

x′′ = y′ = −x

and the characteristic equation becomes

r2 = −1, r = ±i

and x(s) = c1 cos(s)+c2 sin(s) and thus by the first equation y(s) = −c1 sin(s)+
c2 cos(s). In particular it holds that

x2(s) + y2(s) = c2
1(sin2(s) + cos2(s)) + c2

2(sin2(s) + cos2(s)) = c2
1 + c2

2.

Thus the solution is of the form

u(x, y) = f(x2 + y2).

In the course ’differential equations’ we have also learned to solve (2.1)
directly in the phase plane

dy

dx
= −x/y

so that y dy = −x dx i.e. x2 + y2 = c.

We could have solved this also by the geometric method :

(y,−x) ·Du = 0

so that gradient is parallel to (x, y) and the level sets are of the form x2+y2 =
c.
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3. Transport equation

3.1. Homogenous. We consider{
ut + b ·Du = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}.

where

u : Rn × (0,∞)→ R (unknown, to be searched)

g : Rn → R (given),

b = (b1, . . . , bn) (given),

Du = (ux1 , . . . , uxn) the gradient.

We already gave a rough derivation of this at the very beginning.

Let us try to solve this z(s) = u(x(s), t(s)) and

d

ds
z(s) = Du · d

ds
x(s) + ut

d

ds
t(s)

= Du · b+ ut1 = 0

i.e. {
d
dsx(s) = b, x(0) = x0
d
ds t(s) = 1, t(0) = 0,

giving {
x(s) = bs+ x0,

t(s) = s.

Thus u is constant along the lines x = bt+ x0 i.e. and since at t = 0 on this
line u gets the value u(x0, 0) = g(x0) we have

u(x, t) = g(x− bt).

Again after solving the characteristics it is enough to know the value at one
point.

Remark 3.1. In order, u to be a classical solution we require g ∈ C1.
However, even if the original mass distribution is rough, still g(x−bt) seems
to make sense as a solution. This suggests the need to have later a concept
of a weak solution.

3.2. Inhomogenous. We consider{
ut + b ·Du = f(x, t) in Rn × (0,∞)

u = g on Rn × {t = 0}.
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where

f : Rn × R→ R,

and the rest of the quantities are the same as above.

Example 3.2. We continue the previous example but now we in addition
drop material to the conveyor belt the amount f(x, t) measured in kg/(ms).
Thus∫ x+h

x
u(y, t+ s) dy −

∫ x+h

x
u(y, t) dy ≈ u(x, t)bs− u(x+ h, t)bs+ s

∫ x+h

x
f(y, t) dy,

⇒ 1

h

∫ x+h

x

1

s
(u(y, t+ s)− u(y, t)) dy ≈ u(x, t)− u(x+ h, t)

h
b+

1

h

∫ x+h

x
f(y, t) dy.

We get

ut + bux = f

and f represents a source (or a sink depending on the sign).

Let us solve this z(s) = u(x(s), t(s)) and

d

ds
z(s) = Du · d

ds
x(s) + ut

d

ds
t(s)

= Du · b+ ut1 = f(x(s), t(s))

i.e. similarly as above {
d
dsx(s) = b, x(0) = x0
d
ds t(s) = 1, t(0) = 0,

giving {
x(s) = bs+ x0,

t(s) = s.

Thus

u(x(h), t(h))− u(x(0), t(0)) = z(h)− z(0) =

∫ h

0

d

ds
z(s) ds

=

∫ h

0
f(x(s), t(s)) ds,

i.e.

u(bt+ x0, t) = g(x0) +

∫ t

0
f(bs+ x0, s) ds

x = bt+ x0⇒ u(x, t) = g(x− bt) +

∫ t

0
f(bs+ x− bt, s) ds

= g(x− bt) +

∫ t

0
f(b(s− t) + x, s) ds.



18 PDE

Example 3.3. Suppose that there is a decay of mass for some weird reason
comparable to the amount of mass and time by factor c, no source. Then∫ x+h

x
u(y, t+ s) dy −

∫ x+h

x
u(y, t) dy ≈ u(x, t)bs− u(x+ h, t)bs− sc

∫ x+h

x
u(y, t) dy,

⇒ 1

h

∫ x+h

x

1

s
(u(y, t+ s)− u(y, t)) dy ≈ u(x, t)− u(x+ h, t)

h
b− 1

h

∫ x+h

x
cu(y, t) dy.

This gives an equation

ut + bux + cu = 0.

4. Laplace equation

We consider the Laplace equation

∆u =

n∑
i=1

uxixi = 0.

and also the Poisson equation

−∆u =
n∑
i=1

uxixi = f,

for u ∈ C2(Ω). These are prime examples of a so called elliptic equation.

Definition 4.1. Solutions u ∈ C2(Ω) to the Laplace equation ∆u = 0 are
called harmonic.

Usually we consider an open set Ω ⊂ Rn and given boundary values
g : ∂Ω→ R, g ∈ C(∂Ω) and look for the solution u ∈ C2(Ω)∩C(Ω) to what
is called a Dirichlet problem{

∆u = 0 in Ω

u = g on ∂Ω.

Example 4.2 (Equilibrium of diffusion). This models the equilibrium of
diffusion. Consider U ⊂ Ω a smooth subset and consider the net flux through
the boundary ∂U :

0
equilibrium

=

∫
∂U
F · ν dS div-thm

=

∫
U

div(F ) dx,

where ν is the exterior unit normal vector. If this holds for every U ⊂ Ω, it
is reasonable to assert that

div(F ) = 0.

In the case diffusion, think for example heat transfer, it is reasonable to
assert that flux depends on the difference: heat flows from hot to cold, and
faster the greater the difference. Thus we set

F = −aDu
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and get

0 = div(−aDu) = −a∆u.

Laplace equation can be used to describe for example temperature, chem-
ical concentration or electrostatic potential.

Next, suppose that there is a heat source/sink f : Ω → R, then the net
flux equals

∫
U f dx∫

U
f dx =

∫
∂U
F · ν dS div-thm

=

∫
U

div(F ) dx,

and with F = −Du we get the Poisson equation

−∆u = f.

The boundary values u = g in ∂Ω model a situation where temperatures
, voltages or chemical concentrations are given/known at the boundary, and
we try to find them inside.

Example 4.3. Let Ω = (0, 1) and{
∆u(x) = u′′(x) = 0 in Ω

u(0) = 0, u(1) = 2.

Then u(x) = ax+ b and from

u(0) = b = 0, u(1) = a1 = 2,

so that the solution is u(x) = 2x.

Without the boundary values we, of course, couldn’t have found the unique
solution. This is natural also from the point of view of physical applications
above. .

Poisson equation: Ω = (0, 1) and{
−∆u = −u′′(x) = 1 in Ω

u(0) = 0, u(1) = 0.

Then u′ = −x+ a and u′′ = −1
2x

2 + ax+ b, and

u(0) = b = 0, u(1) = −1

2
+ a = 0

i.e. u(x) = −1
2x

2 + 1
2x.



20 PDE

4.1. Fundamental solution. We try to find a radial solution, so set

u(x) = v(r) = v(r(x)),

r = r(x) = (
n∑
j=1

x2
j )

1/2,

rxi(x) =
1

2
(
n∑
j=1

x2
j )
−1/22xi =

xi
r
,

rxixi(x) =
1r − xirxi

r2
=
r − x2

i /r

r2
=

1

r
− x2

i

r3
.

Then by the chain rule

uxi(x) = v′(r)rxi = v′(r)
xi
r
,

uxixi(x) = v′′(r)
x2
i

r2
+ v′(r)rxixi = v′′(r)

x2
i

r2
+ v′(r)

(1

r
− x2

i

r3

)
.

Thus

0 = ∆u =
n∑
i=1

uxixi =
n∑
i=1

{
v′′(r)

x2
i

r2
+ v′(r)

(1

r
− x2

i

r3

)}
∑
x2i = r2

= v′′(r) + v′(r)
(n
r
− r2

r3

)
= v′′(r) + v′(r)

n− 1

r
.

Setting w(r) = v′(r), we have

w′(r) + w(r)
n− 1

r
= 0.

Then solving we get

−
∫ R

1

w′

w
dr =

∫ R

1

n− 1

r
dr,

⇒ log(|w(R)|)− log(|w(1)|) = −(n− 1)(log(R)− log(1)) = log(R−(n−1)),

⇒
∣∣v′(R)

∣∣ = |w(R)| = elog(R−(n−1))+log(|w(1)|) = ar1−n,

where log denotes the natural logarithm. From this for R > 0

v(R) =

{
bR2−n + c if n ≥ 3,

b log(R) + c if n = 2.

Definition 4.4 (Fundamental solution).

Φ(x) =

{
cn

1
|x|n−2 if n ≥ 3,

c2 log(|x|) if n = 2,

where we fix the constant cn ≥ 0 ≥ c2 later in (4.3).
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4.2. Poisson equation.

Remark 4.5. Observe that when x 6= 0

x 7→ Φ(x),

x 7→ Φ(x− y),

x 7→ Φ(x− y)f(y)

x 7→ Φ(x− y1)f(y1) + Φ(x− y2)f(y2)

are harmonic, but still

x 7→
∫
Rn

Φ(x− y)f(y) dy

is not, even if one might be temped to calculate

∆x

∫
Rn

Φ(x− y)f(y) dy
?
=

∫
Rn

∆xΦ(x− y)f(y) dy = 0.

This is one of the cases when the change of the integral and the differential

operator i.e.
?
= is NOT ok, as we will soon see.

Theorem 4.6. Let f ∈ C2
0 (Rn). Let u be the convolution i.e.

u(x) := (Φ ∗ f)(x) :=

∫
Rn

Φ(x− y)f(y) dy.

Then

(1) u ∈ C2(Rn),
(2) −∆u = f in Rn.

Proof. (1) Observe∫
Rn

Φ(x− y)f(y) dy
chg vrbls

=

∫
Rn

Φ(y)f(x− y) dy.

Let ei = (0, . . . , 1︸︷︷︸
i

, 0, . . . , 0), h > 0. First we want to show that

∂u

∂xi
(x) = lim

h→0

u(x+ hei)− u(x)

h

= lim
h→0

∫
Rn

Φ(y)
f(x+ hei − y)− f(x− y)

h
dy

?
=

∫
Rn

Φ(y)
∂f(x− y)

∂xi
dy.
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where the last step requires justification. Since f ∈ C2
0 (Rn) for ε > 0∣∣∣∣f(x+ hei − y)− f(x− y)

h
− ∂f(x− y)

∂xi

∣∣∣∣
=

∣∣∣∣1h
∫ h

0

d

dr
f(x+ rei − y) dr − ∂f(x− y)

∂xi

∣∣∣∣
≤ 1

h

∫ h

0

∣∣∣∣∂f(x+ rei − y)

∂xi
− ∂f(x− y)

∂xi

∣∣∣∣ dr
fxi unif. cont.

≤ 1

h

∫ h

0
ε dr = ε

for small enough h > 0. Thus∣∣∣∣∫
Rn

Φ(y)
(f(x+ hei − y)− f(x− y)

h
− ∂f(x− y)

∂xi

)
dy

∣∣∣∣
spt f(x−·)⊂B(x,R)

≤ ε

∫
B(x,R)

Φ(y) dy = cε,

Above uniform continuity of fxi follows since fxi is continuous and compactly

supported. We have shown
?
=.

We can also show that ∂u
∂xi

(x) ∈ C(Rn). Moreover, similarly we could
show

∂u

∂xi∂xj
(x) =

∫
Rn

Φ(y)
∂f(x− y)

∂xi∂xj
dy

and ∂u
∂xi∂xj

∈ C(Rn).

(2) What we just proved gives us

∆u =

∫
B(0,ε)

Φ(y)∆f(x− y) dy +

∫
Rn\B(0,ε)

Φ(y)∆f(x− y) dy

=: Iε + Jε.

Then since when n ≥ 3∫
B(0,ε)

1

|x|n−2 dy =

∫ ε

0

∫
∂B(0,r)

r2−n dS dr

|∂B(0,r)|=crn−1

= c

∫ ε

0
rn−1r2−n dr

= c

∫ ε

0
r dr = c

1

2
ε2
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and if n = 2 ∫
B(0,ε)

− log(|x|) dy = −
∫ ε

0

∫
∂B(0,r)

log(r) dS dr

|∂B(0,r)|=cr=2πr
= −c

∫ ε

0
r log(r) dr

int by parts
= c(−1

2
ε2 log(ε) +

∫ ε

0

1

2
r2 1

r
dr)

= c(−1

2
ε2 log(ε) +

1

4
ε2) ≤ cε2 |log(ε)| .

Thus

|Iε| =

∣∣∣∣∣
∫
B(0,ε)

Φ(y)∆f(x− y) dy

∣∣∣∣∣
≤ max

y∈Rn
|∆f(x− y)|

∫
B(0,ε)

Φ(y) dy

≤ C

{
ε2 |log(ε)| n = 2

ε2 n ≥ 3

ε→0→ 0.

For Jε choosing R > 0 large enough so that spt f ⊂ B(0, R) , we can
integrate by parts (or use Gauss-Green theorem to be precise)

Jε =

∫
B(0,R)\B(0,ε)

Φ(y)∆f(x− y) dy

= −
∫
B(0,R)\B(0,ε)

DΦ(y) ·Df(x− y) dy +

∫
∂B(0,ε)

Φ(y)Df(x− y) · ν dS(y)

= Kε + Lε,

where ν = ν(y) = −y/ |y| is the exterior unit normal. 13.9.2017

Then

|Lε| =

∣∣∣∣∣
∫
∂B(0,ε)

Φ(y) ·Df(x− y) · ν dS(y)

∣∣∣∣∣
= εn−1 max

y∈∂B(0,ε))
|Φ(y)| max

y∈∂B(0,ε))
|Df(x− y)|

≤ Cεn−1

{
ε2−n n = 3

|log(ε)| n = 2.

→ 0,

as ε→ 0.
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Then we integrate in Kε by parts

Kε = −
∫
B(0,R)\B(0,ε)

DΦ(y) ·Df(x− y) dy

=

∫
B(0,R)\B(0,ε)

divDΦ(y)︸ ︷︷ ︸
∆Φ=0

f(x− y) dy −
∫
∂B(0,ε)

DΦ(y) · νf(x− y) dS(y)

= −
∫
∂B(0,ε)

DΦ(y) · νf(x− y) dS(y)

= −
∫
∂B(0,ε)

{
cn(2− n) |y|1−n y

|y| n ≥ 3

c2
1
|y|

y
|y| n = 2

· (− y

|y|
)f(x− y) dS(y)

=

∫
∂B(0,ε)

{
cn(2− n) |y|1−n n ≥ 3

c2
1
|y| n = 2

f(x− y) dS(y) (4.2)

choose cn= − 1

|∂B(0, ε)|

∫
∂B(0,ε)

f(x− y) dS(y)
aver.→ −f(x)

as ε → 0. Observe that above ν = − y
|y| is the exterior normal to B(0, R) \

B(0, ε) on ∂B(0, ε). Above we fixed cn so that

|∂B(0, ε)|−1 = −

{
cn(2− n) |y|−(n−1) , n ≥ 3

c2 |y|−1 , n = 2.

and since |∂B(0, ε)| = ωnε
n−1 = nαεn−1, |y| = 1 above, we get

cn =
1

(n− 2)nα(n)
, n ≥ 3

c2 = − 1

2α(2)
= − 1

2π
, n = 2. (4.3)

so that

.

What we showed was

∆u = Iε + Jε = Iε +Kε + Lε → 0− f + 0,

as ε→ 0. �

Remark 4.7. Formally,

−∆u(x) =

∫
Rn
−∆xΦ(x− y)f(y) dy =

∫
Rn
δxf(y) dy = f(x)

where δx is Dirac measure with unit mass at x (more about it in the course
’Measure and integration’). This motivates the notation

−∆Φ = δ0 in Rn.

The above proof also motivates introduction of the following important
tool.
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4.3. Convolution, mollifiers, and approximations. Below we denote

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}

which is an open set by continuity of dist(x, ∂Ω).

Definition 4.8 (Standard mollifier). Let

η : Rn → R, η(x) =

{
Ce1/(|x|2−1) |x| < 1

0 |x| ≥ 1

where C is chosen so that ∫
Rn
η dx = 1.

Then we set for ε > 0

ηε(x) :=
1

εn
η(
x

ε
)

which is called a standard mollifier.

Remark 4.9. Observe that

ηε ∈ C∞0 (Rn), spt ηε ⊂ B(0, ε)

and ∫
Rn
ηε(x) dx =

1

εn

∫
Rn
η(
x

ε
) dx

y=x/ε,εn dy= dx
=

∫
Rn
η(y) dy = 1.

Definition 4.10 (Standard mollification). Let

f : Ω→ [−∞,∞], f ∈ C(Ω).

Then we define the standard mollification for f by

fε : Ωε → R, fε := ηε ∗ f,

where ηε ∗ f(x) =
∫

Ω ηε(x− y)f(y) dy denotes the convolution for x ∈ Ωε.

Definition 4.11.

uj → u locally uniformly in Ω

if

uj → u uniformly in K for every K b Ω .

Theorem 4.12. The standard mollification has the following properties for
f ∈ C(Ω)

(1)
Dαfε = f ∗Dαηε in Ωε

and
fε ∈ C∞(Ωε).
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(2) If f ∈ C(Ω), then

fε → f, locally uniformly Ω.

(3) If for Ω′ b Ω′′ b Ω

max
Ω′
|fε| ≤ max

Ω′′
|f |

for small enough ε > 0

The formula Dαfε = f ∗ Dαηε follows using similar techiques as in the
previous proof. Then since ηε ∈ C∞0 by a direct calculation fε ∈ C∞0 too.
The detailed proof is given in the course ’PDE2’.

4.4. Mean value property. A Harmonic function has a remarkable prop-
erty called mean value formula: it says that value at one point(!) determines
the averages over a ball. It also heuristically connects harmonic functions
to the stochastic process called Brownian motion and thus to stock prices,
option pricing etc. It is also a key to many interesting mathematical prop-
erties.

Remember that
∫
A = 1

|A|
∫
A denotes the integral average.

Theorem 4.13 (mean value property=mvp). Let u ∈ C2(Ω). Then the
following are equivalent

(1) u is harmonic
(2)

u(x) =

∫
∂B(x,r)

u(y) dS(y) =

∫
B(x,r)

u(y) dy,

as long as B(x, r) b Ω.

Proof. ’(1)⇒(2)’:

Idea: Set

φ(r) =

∫
∂B(x,r)

u(y) dS(y) =
1

|∂B(x, r)|

∫
∂B(x,r)

u(y) dS(y).

and show that φ′(r) = 0.

To this end, let z ∈ B(0, 1) and perform the change of variables y = rz+x
so that dS(y) = rn−1 dS(z) so that

φ(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

u(y) dS(y) =
|∂B(0, 1)|
|∂B(x, r)|

rn−1︸ ︷︷ ︸
=1

∫
∂B(0,1)

u(rz + x) dS(z)

=

∫
∂B(0,1)

u(rz + x) dS(z).
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Since u ∈ C2 ⊂ C1 we have in the similar way as earlier , and changing
variables back

φ′(r) =

∫
∂B(0,1)

Dyu(rz + x) · z dS(z)

chg vrbls
=

|∂B(x, r)|
|∂B(0, 1)|

∫
∂B(x,r)

Dyu(y) · y − x
r

r1−n dS(y)

=

∫
∂B(x,r)

Dyu(y) · y − x
r

dS(y)

div thm
=

|B(x, r)|
|∂B(x, r)|

∫
B(x,r)

divDu(y)︸ ︷︷ ︸
∆u=0

dy = 0,

since (y − x)/r is the exterior unit normal.

Since φ′(r) = 0, φ(r) has a constant value, and the value has to be

lim
r→0

∫
∂B(x,r)

u(y) dS(y) = u(x).

Moreover,∫
B(x,r)

u(y) dy =
1

|B(x, r)|

∫
B(x,r)

u(y) dy

=
1

|B(x, r)|

∫ r

0

∫
∂B(x,s)

u dS ds

=
1

|B(x, r)|

∫ r

0
|∂B(x, s)|

∫
∂B(x,s)

u dS ds

=
1

|B(x, r)|

∫ r

0
|∂B(x, s)|u(x) ds

=
|B(x, r)|
|B(x, r)|

u(x) = u(x).

’(1)⇐(2)’:

Assume thriving for a contradiction that u is not harmonic even if the
mean value theorem holds i.e. that there is x so that ∆u(x) > 0 and by
continuity even in a small ball around x. Then using the above calculation

φ′(r) =
|B(x, r)|
|∂B(x, r)|

∫
B(x,r)

∆u(y) dy > 0

so that the mean value cannot be constant, a contradiction. �

Example 4.14. Let Ω = (0, 1) and ∆u = u′′ = 0. Then u(y) = ay + b and

1

2r

∫ x+r

x−r
u(y) dy =

1

2r

∫ x+r

x−r
(ay + b) dy =

1

2r

a

2
((x+ r)2 − (x− r)2) + b

=
a

2r
(2xr) + b = ax+ b.
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4.5. Properties of harmonic functions.

Example 4.15. Let Ω = (0, 1) and ∆u = u′′(x) = 0. Then u = ax+ b. In
particular, u obtains its largest (and smallest) values at the boundary. This
also holds in higher dimensions as seen in the next theorem.

Theorem 4.16 (Max principles). Let Ω be a bounded open set and u ∈
C2(Ω) ∩ C(Ω) a harmonic in Ω. Then

(1) (weak max principle) maxΩ u = max∂Ω u.
(2) (strong max principle) if Ω is connected and there is x0 ∈ Ω

u(x0) = max
Ω

u

it follows that

u is constant in Ω.

Proof. (2): Suppose that the assumption in (2) hold. Then for r > 0 such
that B(x0, r) b Ω we have

M := u(x0)
mvp
=

∫
B(x0,r)

u dy

by the mean value property. Since M is max, the average on the right can
only be equal if

u ≡M in B(x0, r).

Thus
u ≡M in Ω.

(1): Suppose for contradiction that maxΩ u > max∂Ω u. Then there is a
max point inside the domain and by the strong max principle this is a
contradiction.

Second proof: For the later use we also give a proof that does not use the
strong max principle. Assume without loss of generality that Ω = B(0, 1)

and maxΩ u > max∂Ω u + 2ε for some ε > 0. Then v(x) = u(x) + ε |x|2 /2
also attains max at some z0 ∈ Ω. At the max point z0 it holds that

∆v(z0) ≤ 0

but on the other hand ∆v = ∆u+ εn = 0 + εn > 0, a contradiction. �

Remark 4.17. Also −u is harmonic, and thus we obtain a minimum prin-
ciple.

Remark 4.18. Obviously the mean value principle or maximum principle
does not hold for the Poisson equation. Recall that for{

−∆u = −u′′(x) = 1 in Ω = (0, 1)

u(0) = 0, u(1) = 0.

we have u(x) = −1
2x

2 + 1
2x.



PDE 29

Theorem 4.19 (Uniqueness to Dirichlet problem). Let Ω be a bounded open
set. Let g ∈ C(∂Ω) and f ∈ C(Ω). Then the problem{

∆u = f in Ω

u = g on ∂Ω.

has at most one solution u ∈ C2(Ω) ∩ C(Ω).

Proof. Let u and v be two solutions. Then w = u− v solves

∆w = ∆(u− v) = f − f = 0

with the boundary values w = 0. By the weak max principle

w = u− v ≤ 0.

By setting, w = v − u we also get

v − u ≤ 0.

�

Mean value property has also other perhaps surprising consequences.

Theorem 4.20 (Smoothness). If u ∈ C(Ω) and satisfies the mean value
property

u(x) =

∫
∂B(x,r)

u dS

for every B(x0, r) b Ω. Then

u ∈ C∞(Ω).

In particular, harmonic functions are smooth.

Proof. Fix ε > 0. Let uε = ηε ∗u mollification by convolution as in Theorem
4.12 and Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}. Theorem 4.12 says that uε ∈
C∞(Ωε) so that idea is to show that u = uε when mvp holds. To this end,
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let x ∈ Ωε

uε(x) = ηε ∗ u

=

∫
Rn
ηε(x− y)u(y) dy

=
1

εn

∫
B(x,ε)

η(
x− y
ε

)u(y) dy

η radial
=

1

εn

∫ ε

0
η(
re1

ε
)

∫
∂B(x,r)

u dS(y) dr

mvp
=

u(x)

εn

∫ ε

0
η(
re1

ε
) |∂B(x, r)| dr

=
u(x)

εn

∫ ε

0
η(
re1

ε
)ωnr

n−1 dr

chg vrbls
=

u(x)

εn

∫
B(0,ε)

η(
y

ε
) dy

= u(x)

∫
B(0,ε)

ηε dy = u(x).

�

By mvp to harmonic function it holds

|u(x)| ≤
∫
B
|u| dy.

Also for the derivatives we have the integral estimates.

Theorem 4.21 (Derivative estimates). Let u be harmonic in Ω. Then

|uxi(x0)| ≤ c1

rn+1

∫
B(x0,r)

|u| dy

∣∣uxixj (x0)
∣∣ ≤ c2

rn+2

∫
B(x0,r)

|u| dy

where ci = c(n, i) for B(x0, r) b Ω.

Proof. Idea is to differentiate under the integral:

|uxi |
*
=

∣∣∣∣∣
∫
B(x0,r/2)

uxi dy

∣∣∣∣∣
Gauss-Green

=
|∂B(x0, r/2)|
|B(x0, r/2)|

∣∣∣∣∣
∫
∂B(x0,r/2)

uνi dS

∣∣∣∣∣
≤ c

r
max

∂B(x0,r/2)
|u| .
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Let x ∈ ∂B(x0, r/2) and observe that B(x, r/2) ⊂ B(x0, r) so that

|u(x)| =

∣∣∣∣∣ 1

|B(x, r/2)|

∫
B(x,r/2)

u dy

∣∣∣∣∣
≤

∣∣∣∣∣ |B(x0, r)|
|B(x, r/2)|

∫
B(x0,r)

u dy

∣∣∣∣∣
≤ c

∫
B(x0,r)

|u| dy.

Combining the last two estimates yields the result if we can justify ∗: Since
u ∈ C1 it follows that

u(y + hei)− u(y)

h
→ uxi(y)

uniformly in B(x0, r) so that for ε > 0∫
B(x0,r/2)

∣∣∣∣uxi(y)− u(y + hei)− u(y)

h

∣∣∣∣ dy ≤ ε,
for h small enough, which enables us to obtain

*
=.

Then the second derivatives similarly as above:∣∣uxixj ∣∣ =

∣∣∣∣∣
∫
B(x0,r/2)

uxixj dx

∣∣∣∣∣
Gauss-Green

=
|∂B(x0, r/2)|
|B(x0, r/2)|

∣∣∣∣∣
∫
∂B(x0,r/2)

uxiνj dS

∣∣∣∣∣
first step

=
c

r
max

∂B(x0,r/2)
|uxi | ≤

cc1

rn+2

∫
B(x0,r)

|u| dy.

�
20.9.2017

Example 4.22. Let Ω = (0, 1), and u harmonic i.e. u′′ = 0, then u(x) =
ax+ b, and let for simplicity a, b ≥ 0, and observe

|uxi | = a,

1

r2

∫ x+r

x−r
|u| dy =

1

r2
(
1

2
a((x+ r)2 − (x− r)2) + b2r)

=
4axr

2r2
+

2b

r
≥ 2ax

r

r < x
≥ 2a

assuming (x− r, x+ r) ⊂ Ω.

Observe that the result is independent of the domain. Also observe that
by u(x) = ax + b immediately tells that it is natural to have dependence of
the size of u on the right hand side.
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Next we utilize the observation that the estimate is independent of the
domain.

Corollary 4.23 (Liouville theorem). If u is bounded and harmonic in Rn.
Then u is constant.

Proof. Since there is a constant M ≥ 0 such that |u| ≤ M , by the previous
theorem

|uxi(x)| ≤ c

rn+1

∫
B(x,r)

|u| dy ≤ c

r

∫
B(x,r)

M dy =
c1M

r
→ 0,

as r → ∞, we see that uxi(x) = 0 at every point for any i = 1, . . . , n , so
that

u(x+ sy)− u(x) =

∫ s

0

d

dt
u(x+ yt) dt =

∫ s

0
Du(x+ yt) · y dt = 0.

�

Corollary 4.24 (Uniqueness in Rn). Let f ∈ C2
0 (Rn) and n ≥ 3. Then

every bounded solution u ∈ C2(Rn) to

−∆u = f,

is of the form

u(x) = (Φ ∗ f)(x) + c =

∫
Rn

Φ(x− y)f(y) dy + c,

where c is a constant.

Proof. Let v(x) =
∫
Rn Φ(x − y)f(y) dy. We have shown that v ∈ C2(Rn),

−∆v = f . Let spt f ⊂ B(0, r). There is M such that |v| ≤ M in B(0, 2r).
Let x /∈ B(0, 2r). Then

|v(x)| ≤

∣∣∣∣∣∣∣
∫
Rn

Φ( x− y︸ ︷︷ ︸
|·|>r, if y∈spt f

)f(y) dy

∣∣∣∣∣∣∣ ≤ cr2−n
∫
Rn
|f | dy ≤ cr2−n,

i.e. v is a bounded solution. Let u be another bounded solution. Then

∆(u− v) = 0

and Liouville’s theorem implies that u− v = c. �

Remark 4.25. Previous thm false wihout boundedness.

Theorem 4.26. Let u be harmonic in Ω. Then u is real analytic in Ω.

Sketch of a proof. Aim: We have shown that u ∈ C∞(Ω), and we want to
show that u can even be presented by a convergent power series around a
point.
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Set

RN (x) := u(x)−
N−1∑
k=0

∑
|α|=k

Dαu(x0)(x− x0)α

α!

where (x − x0)α = (x − x0)α1
1 . . . (x − x0)αnn and α! = α1! . . . αn!. By the

Taylor theorem that

RN (x) =
∑
|α|=N

Dαu(x0 + t(x− x0))(x− x0)α

α!

for some t ∈ [0, 1]. One could establish higher derivative estimates and
with sharp coefficient similarly as in Theorem 4.21, and plugging in such an
estimate, we see that

|RN (x)| → 0

at the vicinity of x0. �

Theorem 4.27 (Harnack’s inequality). Let u ≥ 0 be harmonic in Ω and
B(x0, 4r) ⊂ Ω. Then for c = 3n it holds that

sup
B(x0,r)

u ≤ c inf
B(x0,r)

u.

Proof. Let x, y ∈ B(x0, r), then

u(y)
mvp
=

∫
B(y,3r)

u dz
B(x,r)⊂B(y,3r)

≥ |B(x, r)|
|B(y, 3r)|

∫
B(x,r)

u dz
mvp
=

1

3n
u(x).

Fix η > 0 and choose

u(y) < inf
B(x0,r)

u+ η, u(x) + η > sup
B(x0,r)

u.

�

Corollary 4.28 (Harnack’s inequality, general form). Let u ≥ 0 be har-
monic in Ω and V b Ω be a connected open set. Then there is c = c(n, V ) >
0 s.t.

sup
V
u ≤ c inf

V
u.

Proof. Idea: covering argument. Let r = dist(V , ∂Ω)/4,

V ⊂ {B(xγ , r)}γ .
By compactness, there is a subcover

V ⊂ {B(xi, r)}Ni=1.

Then for x, y ∈ V , use Harnack N times

u(y) ≥ (1/3n)Nu(x).

�
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Remark 4.29. u ≥ 0 essential: let Ω = (−1, 1) and u(x) = x.

Harnack’s inequality implies strong maximum principle. We have already
proved this starting from the mean value property but for many equations
Harnack ie holds but mvp not.

Corollary 4.30 (Strong max principle). Let Ω be a bounded open set and
u ∈ C2(Ω) ∩ C(Ω) harmonic in Ω. Then if U is connected and there is
x0 ∈ Ω such that

u(x0) = max
Ω

u

it follows that

u is constant in Ω.

Proof. Let M = u(x0) = maxΩ u. Then

v = M − u ≥ 0 is harmonic, v(x0) = 0.

Choose connected V 3 x0 s.t. V b Ω

0 ≤ sup
V
v ≤ C inf

V
v ≤ Cv(x0) = 0.

�

4.6. Green’s functions. We are going to look for a so called Green function
that helps to represent the solution to the boundary value Poisson problem.

Theorem 4.31. Let ∂Ω ∈ C1, u ∈ C2(Ω). If u solves{
−∆u = f in Ω

u = g on ∂Ω,

then

u(x) = −
∫
∂Ω
g(y)

∂G

∂ν
(x, y) dS(y) +

∫
Ω
f(y)G(x, y) dy,

where G is the Green function.

Remark 4.32. Observe that this resemples Φ since u = Φ ∗ f solved

−∆u = f

in Rn under suitable assumptions. Now in addition we have boundary con-
ditions.

The theorem says: if there is such u and we can find G, then we have
solved the Poisson problem. However, finding G can be difficult, and usually
we can derive explicit formulas in the simple domains (like ball, later) only.
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First recall that from Gauss-Green
∫
U uxi dx =

∫
∂U uνi dx it follows inte-

gration by parts formula

∫
U
uxiv dx =

∫
∂U
uvνi dS(x)−

∫
U
uvxi dx (4.4)

and using this twice for u ∈ C2(Ω) Green’s formula

∫
U
v∆u dx =

∫
∂U

∂u

∂ν
v dS(x)−

∫
U

∑
uxivxi dx

=

∫
∂U

∂u

∂ν
v dS(x)−

∫
∂U
u
∂v

∂ν
dS +

∫
U
u∆v dx. (4.5)

Let Ω be bounded, ∂Ω ∈ C1, u ∈ C2(Ω). Let B(x, ε) b Ω. Then

∫
Ω\B(x,ε)

u(y) ∆Φ(y − x)︸ ︷︷ ︸
=0

−Φ(y − x)∆u(y) dy

Green
=

∫
∂(Ω\B(x,ε))

u(y)
∂Φ

∂ν
(y − x)− Φ(y − x)

∂u

∂ν
(y) dS(y) (4.6)

where ν is the exterior unit normal vector to Ω \B(x, ε). Further,

∣∣∣∣∣
∫
∂B(x,ε)

Φ(y − x)
∂u

∂ν
(y) dS(y)

∣∣∣∣∣ u ∈ C1

≤ cεn−1 max
∂B(x,ε)

|Φ(y − x)|

≤ εn−1

{
ε2−n n ≥ 3

|log ε| n = 2
→ 0, ε→ 0.

(4.7)

Similarly

∫
∂B(x,ε)

u(y)
∂Φ

∂ν
(y − x) dS(y)

cf. (4.2)
=

∫
∂B(x,ε)

u(y)ω−1
n ε1−n dS(y)

=

∫
∂B(x,ε)

u(y) dy → u(x), ε→ 0. (4.8)
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Recall that above ν is exterior unit normal to Ω\B(x, ε) on ∂B(x, ε) so that
it points towards x. Now

u(x)
(4.8)
= lim

ε→0

∫
∂B(x,ε)

u(y)
∂Φ

∂ν
(y − x) dS(y)

(4.7)
= lim

ε→0

{∫
∂B(x,ε)

u(y)
∂Φ

∂ν
(y − x) dS(y)−

∫
∂B(x,ε)

Φ(y − x)
∂u

∂ν
(y) dS(y)

}
(4.6)
= lim

ε→0

{
−
∫
∂Ω
u(y)

∂Φ

∂ν
(y − x) dS(y) +

∫
∂Ω

Φ(y − x)
∂u

∂ν
(y) dS(y)

−
∫

Ω\B(x,ε)
Φ(y − x)∆u(y) dy

}
= −

∫
∂Ω
u(y)

∂Φ

∂ν
(y − x) dS(y) +

∫
∂Ω

Φ(y − x)
∂u

∂ν
(y) dS(y)

−
∫

Ω
Φ(y − x)∆u(y) dy.

Collecting

u(x) = −
∫
∂Ω
u(y)

∂Φ

∂ν
(y − x) dS(y) +

∫
∂Ω

Φ(y − x)
∂u

∂ν
(y) dS(y)

−
∫

Ω
Φ(y − x)∆u(y) dy (4.9)

for any x ∈ Ω and any u ∈ C2(Ω).

Above an extra term that we need to get rid of. Let us find a suitable
corrector ϕx:

0 =

∫
∂Ω
u(y)

∂ϕx

∂ν
(y)− ϕx(y)

∂u

∂ν
(y) dS(y)

+

∫
Ω
ϕx(y)∆u(y) dy −

∫
Ω

∆yϕ
x(y)u(y) dy.

To cancel the extra term, we require{
∆yϕ

x(y) = 0, y ∈ Ω

ϕx(y) = Φ(y − x), y ∈ ∂Ω.

Thus

0 =

∫
∂Ω
u(y)

∂ϕx

∂ν
dS(y)− Φ(y − x)

∂u

∂ν
(y) dS(y) +

∫
Ω
ϕx(y)∆u(y) dy + 0

(4.10)
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Summing (4.9) and (4.10)

u(x) = −
∫
∂Ω
u(y)

∂Φ

∂ν
(y − x) dS(y) +

∫
∂Ω
u(y)

∂ϕx

∂ν
(y) dS(y)

+

∫
∂Ω

Φ(y − x)
∂u

∂ν
(y) dS(y)−

∫
∂Ω

Φ(y − x)
∂u

∂ν
(y) dS(y)

+

∫
Ω
ϕx(y)∆u(y) dy −

∫
Ω

Φ(y − x)∆u(y) dy

The second line cancels and thus

u(x) =−
∫
∂Ω
u(y)(

∂Φ

∂ν
(y − x)− ∂ϕx

∂ν
(y)) dS(y)

−
∫

Ω
(Φ(y − x)− ϕx(y))∆u(y) dy

=−
∫
∂Ω
g(y)(

∂Φ

∂ν
(y − x)− ∂ϕx

∂ν
(y)) dS(y)

+

∫
Ω

(Φ(y − x)− ϕx(y))f(y) dy,

where the last line holds if −∆u = f in Ω and u = g on ∂Ω. This motivates:

Definition 4.33. Green function for the region Ω is

G(x, y) = Φ(y − x)− ϕx(y), x, y ∈ Ω, x 6= y.

Remark 4.34. • Formally −∆yG(x, y) = −∆y(Φ(y − x) − ϕx(y)) =
δx − 0 = δx in Ω, and G(x, y) = Φ(y − x)− Φ(y − x) = 0 in y ∈ ∂Ω
i.e. {

−∆yG(x, y) = δx, y ∈ Ω,

G(x, y) = 0, y ∈ ∂Ω.

• If {
∆u = 0 Ω

u = g ∂Ω,

we get the Poisson formula

u(x) =

∫
∂Ω
K(x, y)g(y) dy

where

K(x, y) = −∂G(x, y)

∂ν

is called the Poisson kernel.
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4.7. Green function on the half space. Denote

Rn+ = {x = (x1, . . . , xn) : xn > 0}.
Reflection of x = (x1, . . . , xn) is

x∗ = (x1, . . . ,−xn).

Let

ϕx(y) = Φ(y − x∗) = Φ(y1 − x1, . . . , yn−1 − xn−1, yn + xn).

where Φ is the fundamental solution. For y ∈ ∂Rn+ and

ϕx(y) = Φ(y − x∗) radial
= Φ(y − x),

so that {
∆ϕx(y) = 0, Rn+
ϕx(y) = Φ(y − x), ∂Rn+,

i.e. G(x, y) = Φ(y−x)−ϕx(y) = Φ(y−x)−Φ(y−x∗) is the Green function.
If y ∈ ∂Rn+, then |y − x| = |y − x∗|, ν = (0, . . . , 0,−1) and

∂G(x, y)

∂ν
= DG(x, y) · ν

= −∂G(x, y)

∂yn

= −∂Φ(y − x)

∂yn
+
∂Φ(y − x∗)

∂yn
n≥3
= −cn(2− n){|y − x|−n+1 yn − xn

|y − x|
− |y − x∗|−n+1 yn + xn

|y − x∗|
}

=
1

nα(n)
{yn − xn
|y − x|n

− yn + xn
|y − x|n

}

= − 1

nα(n)

2xn
|y − x|n

.

Thus the solution to {
∆u = 0, Rn+
u = g, ∂Rn+.

is

u(x) = −
∫
∂Rn+

∂G(x, y)

∂ν
g(y) dy =

2xn
nα(n)

∫
∂Rn+

g(y)

|y − x|n
dy =:

∫
∂Rn+

K(x, y)g(y) dy.

This also holds when n = 2. Next we verify that this indeed gives a solution.

Theorem 4.35. If g ∈ C(∂Rn+) is bounded and u as above, then

(1) ∆u = 0 in Rn+
(2) limRn+3x→x0 u(x) = g(x0) for all x0 ∈ ∂Rn+.
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Proof. (1): Sketch (details through difference quotients as before):

∆u = ∆x

∫
∂Rn+

K(x, y)g(y) dy

=

∫
∂Rn+

∆xK(x, y)︸ ︷︷ ︸
=0,ex.

g(y) dy = 0,

observing that |y − x| ≥ |xn| > 0 so that K(x, y) is smooth in the integration
domain.

(2): x0 ∈ ∂Rn+, ε > 0, x ∈ Rn+. Then

|u(x)− g(x0)| =

∣∣∣∣∣∣∣∣∣
∫
∂Rn+

K(x, y)g(y) dy − g(x0)

∫
∂Rn+

K(x, y) dy︸ ︷︷ ︸
=1

∣∣∣∣∣∣∣∣∣
≤
∫
∂Rn+

K(x, y) |g(y)− g(x0)| dy

=

∫
∂Rn+∩B(x0,δ)

K(x, y) |g(y)− g(x0)| dy +

∫
∂Rn+\B(x0,δ)

K(x, y) |g(y)− g(x0)| dy

= I + J,

where the computation for
∫
∂Rn+

K(x, y) dy = 1 is omitted. Then by conti-

nuity of g

I ≤
∫
∂Rn+∩B(x0,δ)

K(x, y) |g(y)− g(x0)| dy

≤
∫
∂Rn+∩B(x0,δ)

K(x, y)ε dy ≤ ε.

Further if

|x− x0| < δ/2, |y − x0| ≥ δ

then

|y − x0| ≤ |y − x|+ |x− x0|

≤ |y − x|+ δ

2

≤ |y − x|+ 1

2
|y − x0| ,

so that

1

2
|y − x0| ≤ |y − x| .
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Using this

J =

∫
∂Rn+\B(x0,δ)

K(x, y) |g(y)− g(x0)| dy

≤ max
y∈Rn+

2 |g(y)|
∫
∂Rn+\B(x0,δ)

K(x, y) dy

= max
y∈Rn+

2 |g(y)| 2xn
nα(n)

∫
∂Rn+\B(x0,δ)

|y − x|−n dy

= cxn

∫
∂Rn+\B(x0,δ)

|y − x|−n︸ ︷︷ ︸
≤( 1

2
|y−x0|)−n

dy

≤ cxn
∫ ∞
δ

∫
∂Rn+∩∂B(x0,r)

|y − x0|−n dS(y) dr

= cxn

∫ ∞
δ

crn−2r−n dr = cxnδ
−1 → 0

as xn → 0. Thus we have shown that |u(x)− u(x0)| ≤ 2ε when |x− x0| is
small enough. �

27.09.2017

4.8. Green function on the ball: B(0, 1). We know Φ(y − x) but need
to solve the corrector:{

∆ϕx(y) = 0 y ∈ B(0, 1)

ϕx(y) = Φ(y − x) y ∈ ∂B(0, 1).

to find G(x, y) = Φ(y − x)− ϕx(y).

We define an inversion through ∂B(0, 1) for x 6= 0

x∗ =
x

|x|
1

|x|
=

x

|x|2

If y ∈ ∂B(0, 1), x 6= 0, then

|x|2 |y − x∗|2 = |x|2 (|y|2 − 2x∗ · y + |x∗|2) = |x|2 (|y|2 − 2
x

|x|2
· y +

1

|x|2
)

= |x|2 − 2x · y + 1 = |x− y|2 . (4.11)

Then for y ∈ ∂B(0, 1) for x 6= 0

Φ(|x| (y − x∗)) = cn ||x| (y − x∗)|2−n = cn |x− y|2−n = Φ(y − x)

and

∆yΦ(|x| (y − x∗)) = |x|2 ∆Φ = 0

so that

ϕx(y) = Φ(|x| (y − x∗)).
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Thus

G(x, y) = Φ(y − x)− ϕx(y)

= Φ(y − x)− Φ(|x| (y − x∗))

Also holds when n = 2.

Example 4.36. Consider {
∆u = 0 B(0, 1)

u = g ∂B(0, 1).

Then

u(x) = −
∫
∂B(0,1)

g(y)
∂G(x, y)

∂ν
dS(y),

with

DyG(x, y) = DyΦ(y − x)−DyΦ(|x| (y − x))

= cn(2− n)(|y − x|1−n y − x
|y − x|

− ||x| (y − x∗)|1−n |x| (y − x
∗) |x|

|x| |y − x∗|
(4.11)

= cn(2− n)(
y − x
|y − x|n

− |x|
2 y − x
|y − x|n

)

= cn(2− n)
y(1− |x|2)

|y − x|n
.

Thus

∂G(x, y)

∂ν
= DyG(y, x) · ν = DyG(y, x) · y

|y|

= cn(2− n)
y(1− |x|2)

|y − x|n
· y
|y|

|y|=1
= cn(2− n)

1− |x|2

|y − x|n
.

Recalling (4.3) i.e. cn = 1/(n(n− 2)α(n)), we have arrived at the Poisson’s
representation formula

u(x) =
1− |x|2

nα(n)

∫
∂B(0,1)

g(y)

|y − x|n
dS(y).

Next we consider {
∆v = 0 B(0, r)

v = g ∂B(0, r).
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Then u(x) := v(xr) solves{
∆xu(x) = r2∆v(xr) = 0 x ∈ B(0, 1)

u(x) = v(xr) = g(xr) x ∈ ∂B(0, 1).

Thus by the previous formula

u(x) =
1− |x|2

nα(n)

∫
∂B(0,1)

g(yr)

|y − x|n
dS(y)

so that setting z = xr

v(z) = u(z/r) =
1− |z|2 /r2

nα(n)

∫
∂B(0,1)

g(yr)

|y − z/r|n
dS(y)

y′=yr, dS(y′)=rn−1 dS(y)
=

1− |z|2 /r2

nα(n)

∫
∂B(0,r)

g(y′)

|y′ − z|n
rn

rn−1
dS(y′)

=
r2 − |z|2

rnα(n)

∫
∂B(0,r)

g(y′)

|y′ − z|n
dS(y′).

4.9. Variational method. Some heuristics: Let{
−∆u = f Ω

u = 0 ∂Ω.

Then ∫
Ω
fu dx =

∫
Ω
−∆uu dx =

∫
Ω
−div(Du)u dx

int by parts
=

∫
Ω
Du ·Dudx

=

∫
Ω
|Du|2 dx ≥ 1

2

∫
Ω
|Du|2 dx.

We define

Definition 4.37 (Energy/variational integral).

I(w) =

∫
Ω

1

2
|Dw|2 − fw dx, (4.12)

where w ∈ A = {w ∈ C2(Ω) : w = g on ∂Ω}.

We show variational principle sometimes also called Dirichlet principle.

Theorem 4.38 (Variational principle). A function u ∈ C2(Ω) solves the
Dirichlet problem {

−∆u = f Ω

u = g ∂Ω,
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if and only if

I(u) = min
w∈A

I(w).

Proof. ”⇒ ” : w ∈ A

0 =

∫
Ω

(−∆u− f)(u− w) dx
int by parts

=

∫
Ω
Du ·D(u− w)− f(u− w) dx,

where no boundary term in int by parts since u− w = g − g = 0. Thus∫
Ω
|Du|2 − fu dx =

∫
Ω
Du ·Dw − fw dx

Cauchy-Schwarz
≤ 1

2

∫
Ω
|Du|2 +

1

2

∫
Ω
|Dw|2 −

∫
Ω
fw dx,

since by Cauchy-Schwarz |Du ·Dw| ≤ 1
2 |Du|

2 + 1
2 |Dw|

2. Thus

I(u) ≤ I(w).

”⇐ ” : v ∈ C∞0 (Ω). Then we vary u by εv so that

u+ εv = g on ∂Ω⇒ u+ εv ∈ A,
so that

I(u) ≤ I(u+ εv).

Setting

Ψ(ε) := I(u+ εv)

it follows that Ψ′(0) = 0 (if exists).

Ψ(ε) =

∫
Ω

1

2
|D(u+ εv)|2 − f(u+ εv) dx

=

∫
Ω

1

2
|D(u+ εv)|2 − f(u+ εv) dx

=

∫
Ω

1

2
(|Du|2 + 2εDu ·Dv + ε2 |Dv|2)− f(u+ εv) dx.

Thus

0 = Ψ′(0) =

∫
Ω
Du ·Dv − fv dx

int by parts
=

∫
Ω

(−∆u− f)v dx.

for every v ∈ C∞0 (Ω). As we have shown in the exercises this implies −∆u−
f = 0. �

Remark 4.39. The existence of the Dirichlet problem could be proven using
variational integral. This is done in ’PDE2’.
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4.10. Eigenvalue problem/ Helmholz equation. Consider u ∈ C2(Ω), ∂Ω ∈
C1.

Definition 4.40. If {
−∆u = λu Ω

u = 0 ∂Ω.

with λ > 0 has a nontrivial solution i.e. u 6≡ 0, then λ is eigenvalue of ∆ in
Ω. The corresponding u is an eigenfunction.

Remark 4.41. (1) If u is an eigenfunction, so is cu.
(2) If λ ≤ 0, then there is no nontrivial solution. Let

D = {x ∈ Ω : u > 0}.

Then {
−∆u = λu < 0 D

u = 0 ∂D.

By a maximum principle for subharmonic functions (defined as −∆u <
0) (see Demo 4), we have

u ≤ 0 in D ⇒ D = ∅.

Similarly, {x ∈ Ω : u < 0} = ∅. Thus u ≡ 0.

Let w ∈ A = {w ∈ C2(Ω) : w = 0 on ∂Ω, w 6≡ 0} and

Definition 4.42 (Rayleigh quotient (Rayleighin osamäärä)).

Q[w] =

∫
Ω |Dw|

2 dx∫
Ωw

2 dx

Set

m := inf
w∈A

Q[w].

From Sobolev-Poincaré inequality it follows that (omitted till course ’PDE2’)

m ≥ n

4 diam(Ω)
> 0.

Lemma 4.43. If λ is an eigenvalue of ∆, then λ ≥ m.

Proof. Since

−∆u = λu,

we have ∫
Ω
λuu dx =

∫
Ω
−∆uu dx

int by parts
=

∫
Ω
|Du|2 dx.
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Thus

m ≤
∫

Ω |Du|
2 dx∫

Ω u
2 dx

= λ. �

Theorem 4.44 (Rayleigh’s principle). If there is u ∈ A s.t.

Q[u] = m,

then m is the smallest eigenvalue of ∆.

Proof. Let v ∈ C∞0 (Ω), ε ∈ R

Ψ(ε) =

∫
Ω |D(u+ εv)|2 dx∫

Ω(u+ εv)2 dx
.

By the assumption

Ψ(ε) = Q[u+ εv] ≥ Q[u] = Ψ(0).

Thus

0
min at ε = 0

= Ψ′(0) =

∫
Ω 2Du ·Dv dx

∫
Ω u

2 dx−
∫

Ω |Du|
2 dx

∫
Ω 2uv dx

(
∫

Ω u
2 dx)2

.

It follows ∫
Ω
Du ·Dv dx =

∫
Ω |Du|

2 dx∫
Ω u

2 dx

∫
Ω
uv dx

= m

∫
Ω
uv dx.

int by parts⇒ −
∫

Ω
∆uv dx = m

∫
Ω
uv dx

for every v ∈ C∞0 (Ω). From this is follows (as shown in Ex) that

−∆u = mu.

�

Showing that such u really exists is beyond our scope, see for example
Jost: Partial differential equations. Taking the existence for granted, this
then gives the smallest eigenvalue/ the principal eigenvalue/first eigenvalue
which is often denoted by λ1.

Theorem 4.45. Let u be an eigenfunction corresponding to λ1. Then either
u > 0 or u < 0 in Ω.

We omit the proof.

Theorem 4.46. The first eigenspace is one dimensional i.e. the first eigen-
value is simple.
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Proof. Let u, v be two such eigenfunctions and set

k = u(x0)/v(x0).

Then w = u− kv satisfies the Helmholz equations and by the above w > 0,
w < 0 or w ≡ 0, and since w(x0) = 0 the third case must apply. �

Lemma 4.47. Let λ, µ be the eigenvalues corresponding to the eigenfunc-
tions u, v ∈ C2(Ω). Then

either λ = µ or

∫
Ω
uv dx = 0.

Proof.

λ

∫
Ω
uv dx = −

∫
Ω

∆uv dx

int by parts
=

∫
Ω
Du ·Dv dx

int by parts
= −

∫
Ω
u∆v dx

= µ

∫
Ω
uv dx.

�

Remark 4.48. • We state without a proof that

0 < λ1 < λ2 ≤ λ3 ≤ . . . , λi →∞.

5. Heat equation

We consider the heat equation

ut = ∆u

and

ut = ∆u+ f,

where u = u(x, t) depends on space and time, ut is time derivative, and ∆
is taken only respect to the space variable x:

∆u(x, t) =

n∑
i=1

∂2u(x, t)

∂x2
i

Dirichlet problem {
ut = ∆u in ΩT := Ω× (0, T )

u = g on ∂pΩT ,

where ∂pΩT = Ω× {0} ∪ (∂Ω× [0, T ]).
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Cauchy problem {
ut = ∆u in Rn × (0, T )

u = g on Rn.

Example 5.1. Harmonic function u, ∆u = 0 is a solution u(x, t) := u(x)
(constant in time) ut = 0 = ∆u.

Example 5.2 (Time evolution of diffusion). Change is caused by the diffu-
sion:∫

U
∂tu dx = ∂t

∫
U
u dx︸ ︷︷ ︸

change of amount of heat

= −
∫
∂U
F · ν dS︸ ︷︷ ︸

net flux

div-thm
= −

∫
U

div(F ) dx,

where ν is the exterior unit normal vector. Thus

∂tu = −div(F ).

If again the flux density is proportional to the gradient (heat flow from hot
to cold, proportional to difference)

F = −aDu

and setting for simplicity a = 1 we get

ut = −div(−Du) = ∆u.

If in addition, there is a heat source, change is flux plus the added heat:∫
U
∂tu dx = ∂t

∫
U
u dx︸ ︷︷ ︸

change of amount of heat

= −
∫
∂U
F · ν dS︸ ︷︷ ︸

net flux

+

∫
U
f dx

div-thm
=

∫
U
−div(F ) dx+

∫
U
f dx,

i.e.

ut = ∆u+ f.

More concretely take 1D steel rod on Ω = (0, 1) that is insulated except at
the ends

ut = uxx

u(x, 0) = g(x, 0) initial temperature distribution

u(0, t) = g(0, t) known outside temperature at x = 0

u(1, t) = g(1, t) known outside temperature at x = 1.

Then solution u(x, t) tells the temperature at x at later time t in the rod.
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5.1. Fundamental solution. It is known that for parabolic equations it is
useful to search solutions in self-similar form: Assume

u(x, t) = λαu(λβx, λt)

and set λ = t−1. Then

u(x, t) = t−αu(t−βx, 1) =: t−αv(t−βx)

so that we look for the solution in the form

u(x, t) = t−αv(t−βx), |x| 6= 0. (5.13)

There are other ways to get the fundamental solution without such a guess
but this is quick.

Then

ut(x, t) = −αt−α−1v(t−βx)− t−αβxt−β−1Dv(t−βx)

y = t−βx
= −αt−α−1v(y)− t−α−1βyDv(y),

∆u(x, t) = t−α−2β∆v(t−βx) = t−α−2β∆v(y)

i.e. plugging these into heat eq

0 = αt−α−1v(y) + t−α−1βyDv(y) + t−α−2β∆v(y).

We seek to simplify and select β = 1
2 , and thus

0 = αt−α−1v(y) + t−α−1 1

2
yDv(y) + t−α−1∆v(y)

⇒ 0 = αv(y) +
1

2
yDv(y) + ∆v(y).

To further simplify, let us look for radial solution w s.t. v(y) = w(|y|) (as
for Laplace), so that in particular y ·Dv(y) = y ·w′(|y|) y

|y| , and recall radial

Laplacian

0 = αw +
1

2
rw′(y) + w′′(y) +

n− 1

r
w′

where r = |y|. Now

0 = αw +
1

2
rw′(y) + w′′(y) +

n− 1

r
w′

(α := n/2)
= (

1

2
(rnw) + rn−1w′)′r1−n.

Thus
1

2
(rnw) + rn−1w′ = a.

Assume to again simplify that a = 0 and thus

w′ = −1

2
rw
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which has a solution

w(r) = be−r
2/4.

Recalling all the selections

u(x, t) = t−αv(t−βx) = t−n/2w(t−
1
2 |x|) =

b

tn/2
e−
|x|2
4t .

Definition 5.3 (Fundamental solution to heat equation).

Φ(x, t) =

 1
(4πt)n/2

e−
|x|2
4t , (x, t) ∈ Rn × (0, T )

0, t ≤ 0.

The selection of the constant:

Lemma 5.4. ∫
Rn

Φ(x, t) dx = 1, t > 0.

Proof. ∫
Rn

Φ(x, t) dx =
1

(4πt)n/2

∫
Rn
e−
|x|2
4t dx

y=x/(4t)1/2, dy= dx/(4t)n/2

=
1

πn/2

∫
Rn
e−|y|

2

dy

|y|2=
∑
y2i=

1

πn/2
Πn
i=1

∫ ∞
−∞

e−y
2
i dyi =

πn/2

πn/2
= 1

where

(

∫
e−y

2
1 dy1)2 =

∫
e−y

2
1 dy1

∫
e−y

2
2 dy2

=

∫ ∫
e−y

2
1−y22 dy1 dy2

=

∫ ∞
0

∫
∂B(0,r)

e−r
2
dS dr

2D
=

∫ ∞
0

2πre−r
2
dr

= |∞0 − πe−r
2

= π.

�
4.10.2017

5.2. Cauchy problem.

Theorem 5.5 (Cauchy problem for heat eq). Let g ∈ C(Rn) be a bounded
function and

u(x, t) = (Φ ∗ g)(x, t) =

∫
Rn

Φ(x− y, t)g(y) dy =
1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t g(y) dy,
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t > 0. Then

(1) u ∈ C2(Rn × (0,∞))
(2) ut −∆u = 0 in Rn × (0,∞)
(3) lim(Rn×(0,∞))3(x,t)→(x0,0) u(x, t) = g(x0).

Proof. (1): Similarly as before chg the order of int and diff and recall t > 0:

uxixj (x, t)
cf. (4.6)

= (Φxixj ∗ g)(x, t) ∈ C(Rn × (0,∞))

ut(x, t)
cf. (4.6)

= (Φt ∗ g)(x, t) ∈ C(Rn × (0,∞)).

Thus u ∈ C2(Rn × (0,∞)).

(2):

ut(x, t)−∆u(x, t)

chg ord int, der
=

∫
Rn

(Φt(x− y, t)−∆xΦ(x− y, t))︸ ︷︷ ︸
=0

g(y) dy = 0.

(3): x0 ∈ Rn, ε > 0, then there is δ > 0 s.t.

|g(y)− g(x0)| < ε, when |y − x0| < δ.

|u(x, t)− g(x0)| L5.4
=

∣∣∣∣∫
Rn

Φ(x− y, t)(g(y)− g(x0)) dy

∣∣∣∣
≤
∫
Rn∩B(x0,δ)

Φ(x− y, t) |g(y)− g(x0)| dy

+

∫
Rn\B(x0,δ)

Φ(x− y, t) |g(y)− g(x0)| dy = I + J.

I = ε

∫
Rn∩B(x0,δ)

Φ(x− y, t) dx ≤ ε.

|x− x0| < δ/2, |y − x0| ≥ δ
cf. Gr in half space⇒ |y − x| ≥ 1

2
|y − x0| .
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J ≤ 2 max
Rn
|g|
∫
Rn\B(x0,δ)

Φ(x− y, t) dy

≤ c

tn/2

∫
Rn\B(x0,δ)

e−
|x−y|2

4t dy

≤ c

tn/2

∫
Rn\B(x0,δ)

e−
( 12 |y−x0|)

2

4t dy

=
c

tn/2

∫
Rn\B(x0,δ)

e−
|y−x0|

2

16t dy

=
c

tn/2

∫ ∞
δ

∫
B(x0,r)

e−
|y−x0|

2

16t dS(y) dr

=
c

tn/2

∫ ∞
δ

rn−1e−
r2

16t dr

=
c

tn/2

∫ ∞
δ

rn−1e−
r2

16t dr → 0, as t→ 0.

Thus first choosing δ small enough and then |x− x0| ≤ δ/2, t > 0 small
enough

|u(x, t)− g(x0)| ≤ I + J ≤ ε+ J ≤ 2ε.

�

Remark 5.6. (1) It is often denoted that{
Φt −∆Φ = 0 in Rn × (0,∞)

Φ = δ0 on Rn × {t = 0},

where δ0 is Dirac’s delta at the origin.
(2) Observe that if g > 0 and t > 0, then

u(x, t) =
1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t g(y) dy > 0

for any x ∈ Rn. This means that the heat equation has an infinite
speed of propagation.

5.3. Inhomogenous Cauchy problem. Consider{
ut −∆u = f in Rn × (0,∞)

u = 0 on Rn × {t = 0}.

We use so called Duhamel’s principle and define

u(x, t) =

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s) dy ds

=

∫ t

0

1

(4π(t− s))n/2

∫
Rn
e
− |x−y|

2

4(t−s) f(y, s) dy ds
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Theorem 5.7. Let f has a compact support, f,Dxf,D
2
xf, ft continuous.

Then for the above u it holds that

(1) u,Dxu,D
2
xu, ut are continuous in Rn × (0,∞)

(2) ut −∆u = f in Rn × (0,∞)
(3) lim(Rn×(0,∞))3(x,t)→(x0,0) u(x, t) = 0.

Proof. (1): We want to avoid the singularity and change variables

u(x, t) =

∫ t

0

∫
Rn

Φ(y, s)f(x− y, t− s) dy ds

so that we may change the order of int and diff

ut(x, t) =

∫ t

0

∫
Rn

Φ(y, s)ft(x− y, t− s) dy ds+

∫
Rn

Φ(y, t)f(x− y, 0) dy

uxixj (x, t) =

∫ t

0

∫
Rn

Φ(y, s)fxixj (x− y, t− s) dy ds,

and they are continuous using similar techniques as before. Other derivatives
follow similarly.

(2): We divide the integral to the cases close and far away from the singu-
larity:

ut(x, t)−∆u(x, t) =

∫ t

0

∫
Rn

Φ(y, s)(
∂

∂t
−∆x)f(x− y, t− s) dy ds

+

∫
Rn

Φ(y, t)f(x− y, 0) dy

=

∫ t

ε

∫
Rn

+

∫ ε

0

∫
Rn

+

∫
Rn

= I + J +K.

|J | ≤ max(|ft|+ |∆f |)
∫ ε

0

∫
Rn

Φ(y, s) dy ds
L5.4
≤ cε.

I =

∫ t

ε

∫
Rn

Φ(y, s)(
∂

∂t
−∆x)f(x− y, t− s) dy ds

=

∫ t

ε

∫
Rn

Φ(y, s)(− ∂

∂s
−∆y)f(x− y, t− s) dy ds

int by parts, f cmp supp
=

∫ t

ε

∫
Rn

(
∂

∂s
−∆y)Φ(y, s)︸ ︷︷ ︸

=0

f(x− y, t− s) dy ds

−
∫
Rn

Φ(y, t)f(x− y, 0) dy +

∫
Rn

Φ(y, ε)f(x− y, t− ε) dy

=−K +

∫
Rn

Φ(y, ε)f(x− y, t− ε) dy.



PDE 53

Thus

I +K =

∫
Rn

Φ(y, ε)f(x− y, t− ε) dy

and

ut(x, t)−∆u(x, t) = I + J +K = lim
ε→0

(I + cε+K)

= lim
ε→0

∫
Rn

Φ(y, ε)f(x− y, t− ε) dy cf. Thm 5.5, ex
= f(x, t).

(3):

|u(x, t)| ≤ max |f |
∣∣∣∣∫ t

0

∫
Rn

Φ(y, s) dy ds

∣∣∣∣
≤ ct→ 0, as t→ 0.

�

5.4. Max principle. Let Ω be a bounded domain, recall ΩT = Ω× (0, T ),
∂pΩT = Ω× {0} ∪ (∂Ω× [0, T ]) and consider{

ut −∆u = 0 in ΩT

u = g on ∂pΩT .

Theorem 5.8 (Weak min/max principle, bdd set). Let Ω be a bounded set
u ∈ C2(ΩT ) ∩ C(ΩT ). If

ut −∆u ≥ 0(supersolution) (5.14)

then u attains its min on ∂pΩT , and if

ut −∆u ≤ 0(subsolution). (5.15)

then u attains its max on ∂pΩT .

Proof. Assume first that ut − ∆u < 0 consider Ωτ , τ ∈ (0, T ). If max is
attained at

(x0, t0) ∈ Ω× {t = τ}
then

ut(x0, t0) ≥ 0,∆u(x0, t0) ≤ 0

i.e.

ut(x0, t0)−∆u(x0, t0) ≥ 0

a contradiction. Thus u cannot attain its max at any unterior point of Ωτ ,
and by continuity of u

max
ΩT

u = lim
τ→T

max
Ωτ

u

= lim
τ→T

max
∂pΩτ

u = max
∂pΩT

u.
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Consider then the general case ut −∆u ≤ 0, and consider instead

v = u− εt,

vt −∆v = ut − ε−∆u ≤ −ε < 0.

Thus by the above,

max
ΩT

u ≤ max
ΩT

(v + εt)

≤ max
ΩT

(v + εT )

above
= max

∂pΩT
(v + εT )

v ≤ u
≤ max

∂pΩT
(u+ εT ).

By ε→ 0

max
ΩT

u ≤ max
∂pΩT

u.

Since max∂pΩT u ≤ maxΩT
u

max
ΩT

u = max
∂pΩT

u.

The proof of the minimum principle for the supersolutions is similar. �

Heat equation also has a mean value property when interpreted correctly.

Definition 5.9 (Heat ball).

E(x, t, r) = {(y, s) ∈ Rn+1 : s < t,Φ(x− y, t− s) > 1

rn
}.

Remark 5.10. Observe that this does not look ball in Rn+1 in the usual
Euclidean metric.

Theorem 5.11 (Mean value property for the heat equation). If u is a
solution to the heat equation in ΩT , then

u(x, t) =
1

4rn

∫ ∫
E(x,t,r)

u(y, s)
|x− y|2

(t− s)2
dy ds,

for every E(x, t, r) b ΩT

We omit the proof.

This implies the strong max principle:

Theorem 5.12 (Strong max principle, bdd set). Let u ∈ C2(ΩT ) ∩ C(ΩT )
be a solution to the heat equation in ΩT , and Ω bounded, connected, and
(x0, t0) ∈ ΩT such that

u(x0, t0) = max
ΩT

u,
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then

u ≡ c in Ωt0 .

Remark 5.13. • It suffices to assume subsolution above. Strong min-
imum principle for supersolutions.
• In a connected domain, u ≥ 0 is positive somewhere, then positive

everywhere from there on: Infinite speed of propagation.

Theorem 5.14 (Uniqueness in a bounded set). Let g ∈ C(∂pΩT ) and f ∈
C(ΩT ). Then the problem {

ut = ∆u+ f ΩT

u = g ∂pΩT

has at most one solution in C2(ΩT ) ∩ C(ΩT ).

Proof. As before: Let u, v be two solutions. Then u− v and v−u have zero
boundary values and thus the max for both is 0. �

Theorem 5.15 (Max principle for the Cauchy problem). Let u ∈ C2(Rn ×
(0, T ]) ∩ C(Rn × [0, T ]) solves{

ut = ∆u Rn × (0, T )

u = g Rn × {t = 0}

and

u(x, t) ≤ Aea|x|
2

, (x, t) ∈ Rn × [0, T ],

for some a,A > 0. Then

sup
Rn×[0,T ]

u = sup
Rn

g.

Proof. Fix y ∈ Rn, µ > 0 and define

v(x, t) = u(x, t)− µ

(T + ε− t)n/2
e
|x−y|2

4(T+ε−t) .

It holds (ex)

vt −∆v = 0 in Rn × (0, T ).

Let r > 0, Ω = B(y, r), ΩT = B(y, r) × (0, T ). By the max principle in a
bdd set

max
ΩT

v = max
∂pΩT

v

We estimate that on ∂pΩT it holds v ≤ supRn g:

v(x, 0) = u(x, 0)− µ

(T + ε)n/2
e
|x−y|2
4(T+ε) ≤ u(x, 0) = g(x),
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for all x ∈ Rn. Next we assume 4aT < 1 (this will have to be guaranteed at
the end), and that ε > 0 is s.t.

4a(T + ε) < 1.

If |x− y| = r, 0 ≤ t ≤ T , then

v(x, t) = u(x, t)− µ

(T + ε− t)n/2
e

r2

4(T+ε−t)

≤ Aea|x|
2

− µ

(T + ε− t)n/2
e

r2

4(T+ε−t)

|x| ≤ |x− y|+ |y| = r + |y|
≤ Aea(|y|+r)2 − µ

(T + ε)n/2
e

r2

4(T+ε)

1
4(T+ε)

> a⇒ 1
4(T+ε)

= a+ γ, γ > 0
= Aea(|y|+r)2 − µ

(T + ε)n/2
e(a+γ)r2

choose large r,a+γ>a
≤ sup

Rn
g.

Thus

v(y, t) ≤ sup
ΩT

v ≤ sup
∂pΩT

v ≤ sup
Rn

g

if 4aT < 1, and further

u(y, t) = lim
µ→0

v(y, t) ≤ sup
Rn

g.

If 4aT ≥ 1, then iterate

[0, T ′], [T ′, 2T ′], . . .

where T ′ = 1/(8a). �

Theorem 5.16 (Uniqueness to the Cauchy problem). Let g ∈ C(Rn) and
f ∈ C(Rn × [0, T ]). Then the problem{

ut = ∆u+ f Rn × (0, T )

u = g Rn × {t = 0},

has at most one solution C2(Rn × (0, T )) ∩ C(Rn × [0, T ]) satisfying the
growth condition

|u(x, t)| ≤ Aea|x|
2

, (x, t) ∈ Rn × [0, T ].

Proof. Let u and v be solutions. Then u− v satisfies{
(u− v)t = ut − vt = ∆u−∆v + f − f = ∆(u− v) Rn × (0, T )

u− v = g − g = 0 Rn × {t = 0}

and

|u(x, t)− v(x, t)| ≤ |u(x, t)|+ |v(x, t)| ≤ 2Aea|x|
2

.
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Thus by the max principle for the Cauchy problem

u− v ≤ max
Rn

g = 0,

and by the similar argument v − u ≤ 0. Thus u = v. �

Remark 5.17. The growth condition is essential. The problem{
ut = ∆u Rn × (0, T )

u = 0 Rn × {t = 0}
has infinitely many solutions without the growth condition that all except
u ≡ 0 grow fast as |x| → ∞. For a counterexample of Tychonov, see for
example DiBenedetto: PDEs, p146.

5.5. Energy methods and backwards in time uniqueness. Let Ω be
bounded and smooth, and consider{

ut = ∆u+ f ΩT

u = g ∂pΩT .

We have shown that this has only one solution, but here is another way. If
u and v are solutions w = u− v solves{

(w)t = ∆w + f − f = ∆w ΩT

w = u− v = g − g = 0 ∂pΩT .

Let

I(t) =

∫
Ω
w(x, t)2 dx.

Then

I ′(t) =
d

dt
(

∫
Ω
w(x, t)2 dx)

chg order int diff
=

∫
Ω

∂

∂t
w(x, t)2 dx

= 2

∫
Ω
w(x, t)

∂

∂t
w(x, t) dx

= 2

∫
Ω
w(x, t)∆w(x, t) dx

int by parts
= −2

∫
Ω
|Dw(x, t)|2 dx ≤ 0.

Thus

I(t) ≤ I(0) = 0

so that w = u− v = 0 for all 0 ≤ t ≤ T . 11.10.2017

If we know that the lateral boundary values are the same and the solutions
are the same at some time instant t = T , then the solutions have been same
in the past. In particular, below we do not assume that u = v on Ω×{t = 0}.
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Theorem 5.18 (Backwards in time uniqueness). Let u, v ∈ C2(ΩT ){
ut = ∆u, vt = ∆v ΩT

u = v = g ∂Ω× [0, T ] (only lateral boundary),

and

u(x, T ) = v(x, T ).

Then

u = v in ΩT .

Proof. Let w = u− v and

I(t) =

∫
Ω
w(x, t)2 dx.

As above

I ′(t) = −2

∫
Ω
|Dw|2 dx.

Then

I ′′(t) = −2
d

dt

∫
Ω
|Dw|2 dx.

chg order int, diff
= −2

∫
Ω

∂

∂t
|Dw|2 dx

chain rule
= −2

∫
Ω

2 |Dw| Dw
|Dw|

· ∂
∂t
Dw dx

= −4

∫
Ω
Dw ·D ∂

∂t
w dx

int by parts, wt = 0 on bdr
= 4

∫
Ω

∆w
∂w

∂t
dx

wt=∆w
= 4

∫
Ω

(∆w)2 dx.

∫
Ω
|Dw|2 dx int by parts

= −
∫

Ω
w∆w dx

≤
∫

Ω
|w| |∆w| dx

Cauchy-Schwarz ie
≤ (

∫
Ω
|w|2 dx)1/2(

∫
Ω
|∆w|2 dx)1/2.
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Thus

(I ′(t))2 = 4(

∫
Ω
|Dw|2 dx)2

above
≤ (

∫
Ω
|w|2 dx)︸ ︷︷ ︸
=I(t)

(4

∫
Ω
|∆w|2 dx)︸ ︷︷ ︸
=I′′(t)

(5.16)

≤ I(t)I ′′(t).

If I(t) = 0, 0 ≤ t ≤ T , then

w = 0 in ΩT ,

and the claim follows. Otherwise, there exists [t1, t2] ⊂ [0, T ] such that{
I(t) > 0, t1 ≤ t < t2 and

I(t2) = 0 since w(x, T ) = u(x, T )− v(x, T ).

Define

Ψ(t) := log(I(t)), t1 ≤ t ≤ t2.

Then

Ψ′(t) =
I ′(t)

I(t)
,

and

Ψ′′(t) =
I ′′(t)I(t)− I ′(t)I ′(t)

I(t)2

=
I ′′(t)

I(t)
− (I ′(t))2

I(t)2

(5.16)

≥ (I ′(t))2

I(t)

1

I(t)
− (I ′(t))2

I(t)2
= 0.

Thus

Ψ convex over (t1, t2)

i.e.

Ψ((1− λ)t1 + λt) ≤ (1− λ)Ψ(t1) + λΨ(t), t1 < t ≤ t2, 0 < λ < 1.

In other notation

log I((1− λ)t1 + λt) ≤ (1− λ) log I(t1) + λ log I(t)

= log I(t1)1−λI(t)λ.

From this

0 ≤ I((1− λ)t1 + λt2) ≤ I(t1)1−λ I(t2)λ︸ ︷︷ ︸
=0

= 0,
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i.e.

I((1− λ)t1 + λt2) = 0, 0 < λ < 1, ⇒ I(t) = 0, t1 ≤ t ≤ t2,

a contradiction. �

5.6. Regularity results.

Theorem 5.19. Let u ∈ C2(ΩT ) be a solution to the heat equation in ΩT .
Then

u ∈ C∞(ΩT ).

Moreover, solutions to the heat equation also have derivative estimates (cf.
Laplace case). However, solutions to the heat equation are not necessarily
real analytic in t .

5.6.1. Integral regularity. Let us investigate{
ut −∆u = f Rn × (0, T )

u = g Rn × {t = 0}

a smooth solution. Then∫
Rn
f2 dx =

∫
Rn

(ut −∆u)2 dx

=

∫
Rn

(u2
t − 2ut∆u+ (∆u)2) dx (5.17)

int by parts
=

∫
Rn

(u2
t + 2Dut ·Du+ (∆u)2) dx.

Since

2Du ·Dut = 2Du · ∂
∂t
Du =

∂

∂t
|Du|2

we have∫ s

0

∫
Rn

2Du ·Dut dx dt =

∫ s

0

∫
Rn

∂

∂t
|Du|2 dx dt

= |s0
∫
Rn
|Du|2 dx (5.18)

Du(x, 0) = Dg(x)
=

∫
Rn
|Du(x, s)|2 dx−

∫
Rn
|Dg(x)|2 dx
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On the other hand, assuming that the boundary terms vanish∫
Rn

(∆u)2 dx =

∫
Rn

n∑
i=1

∂2u

∂x2
i

n∑
j=1

∂2u

∂x2
j

dx

=
n∑

i,j=1

∫
Rn

∂2u

∂x2
i

∂2u

∂x2
j

dx

int by parts
= −

n∑
i,j=1

∫
Rn

∂3u

∂x2
i ∂xj

∂u

∂xj
dx

int by parts
=

n∑
i,j=1

∫
Rn

∂2u

∂xi∂xj

∂2u

∂xi∂xj
dx

=

∫
Rn

∣∣D2u
∣∣2 dx,

(5.19)

where we denoted

D2u =


∂2u
∂x21

. . . ∂2u
∂x1∂xn

∂2u
∂x2∂x1

. . . ∂2u
∂x2∂xn

...
. . .

...
∂2u

∂xn∂x1
. . . ∂2u

∂x2n


and

∣∣D2u
∣∣2 =

∑n
i,j=1

(
∂2u

∂xi∂xj

)2
. Choose t0 ∈ [0, T ] in (5.18) such that

∫
Rn
|Du(x, t0)|2 dx = sup

0≤t≤T

∫
Rn
|Du(x, t)|2 dx.

Combining the estimates

sup
0≤t≤T

∫
Rn
|Du(x, t)|2 dx =

∫
Rn
|Du(x, t0)|2 dx

(5.18)
=

∫ t0

0

∫
Rn

2Du ·Dut dx dt+

∫
Rn
|Dg|2 dx

≤
∫ t0

0

∫
Rn

( u2
t︸︷︷︸
≥0

+2Du ·Dut + (∆u)2︸ ︷︷ ︸
≥0

) dx dt+

∫
Rn
|Dg|2 dx

(5.17)
=

∫ t0

0

∫
Rn
f2 dx dt+

∫
Rn
|Dg|2 dx

≤
∫ T

0

∫
Rn
f2 dx dt+

∫
Rn
|Dg|2 dx.
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Moreover,∫ T

0

∫
Rn

((ut)
2 +

∣∣D2u
∣∣2) dx dt

(5.19)
=

∫ T

0

∫
Rn

((ut)
2 + |∆u|2) dx dt

(5.17)
=

∫ T

0

∫
Rn

(f2 − 2Du ·D(ut)) dx dt

(5.18)
=

∫ T

0

∫
Rn
f2 dx dt+

∫
Rn
|Dg|2 dx−

∫
Rn
|Du(x, T )|2 dx

≤
∫ T

0

∫
Rn
f2 dx dt+

∫
Rn
|Dg|2 dx.

Collecting

sup
0≤t≤T

∫
Rn
|Du(x, t)|2 dx+

∫ T

0

∫
Rn

((ut)
2 +

∣∣D2u
∣∣2) dx dt

≤ c
(∫ T

0

∫
Rn
f2 dx dt+

∫
Rn
|Dg|2 dx

)
.

Remark 5.20. This was formal since we assumed smoothness but this can
be done without this assumption. This is an example of the principle that
”u has two more derivatives in space than f”, in a suitable integral sense.

5.6.2. Harnack. We denote

Q̃ = B(0, R)× (−3R2, 3R2),

Q+ = B(0, R/2)× (2R2 − (R/2)2, 2R2 + (R/2)2),

Q− = B(0, R/2)× (−2R2 − (R/2)2,−2R2 + (R/2)2).

(5.20)

Theorem 5.21 (Harnack). Let u ≥ 0 be a solution to the heat equation in

Q̃. Then

sup
Q−

u ≤ c inf
Q+

u,

where c = c(n).

Discussion about the proof is postponed to PDE2.

Example 5.22. ”Elliptic” Harnack’s ie., where we have same cylinder on
both sides, does not hold in the parabolic case: the equation ∂u

∂t − uxx = 0

has a nonnegative solution in (−R,R)× (−R2, R2) (translated fundamental
solution)

u(x, t) =
1√

t+ 2R2
e
− (x+ξ)2

4(t+2R2)

where ξ is a constant. Let x ∈ (−R/2, R/2), x 6= 0 and t ∈ (−R2, R2).
Then

u(0, t)

u(x, t)
= e
− ξ

2−(x+ξ)2

4(t+2R2) = e
−−x

2−2xξ

4(t+2R2) = e
x2+2xξ

4(t+2R2) → 0
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as ξ signx→ −∞.

6. Wave equation (aaltoyhtälö)

Let Ω ⊂ Rn We study the wave equation

utt(x, t) = ∆u(x, t)

and its the solution

u : Ω× (0, T )→ R.

Remark 6.1. The behaviour is essentially different from the heat equation:
finite speed of propagation, usually nonsmooth solutions.

Example 6.2 (Physical interpretations).

n = 1, vibrating string

n = 2, vibrating membrane

n = 3, vibrating elastic body.

Let U ⊂ Ω smooth set. Then the net accelaration within U is

∂tt(

∫
U
u(x, t) dx)

chg order int, diff
=

∫
U
utt(x, t) dx

and net contact force is

−
∫
∂U
F · ν dS

where F = (F1, . . . , Fn) is the force caused by the oscillation. According
to Newtons law ”mass × acceleration=total force at the boundary” (as we
assume no other forces are present, and assume mass density to be unity)
i.e. ∫

U
utt dx = −

∫
∂U
F · ν dS div thm

= −
∫
U

divF dx.

For the elastic bodies, F is a function of the displacement gradient Du, and
often for small Du, the linearization ≈ −aDu.) . We get

utt = a∆u

and for simplicity we set a = 1 to get the wave equation.

Think about the string: it seems credible that we need

u(x, 0) = g(x) the initial displacement

ut(x, 0) = h(x) the initial velocity.

to solve the problem.
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6.1. n = 1, d’Alembert formula. We study
utt − uxx = 0, in R× (0,∞)

u(x, 0) = g(x), on R× {t = 0}
ut(x, 0) = h(x), on R× {t = 0}

and look for an explicit solution u assuming it is smooth. Observe

(
∂

∂t
+

∂

∂x
)(
∂

∂t
− ∂

∂x
)u = (

∂

∂t
+

∂

∂x
)
∂

∂t
u− (

∂

∂t
+

∂

∂x
)
∂

∂x
u

=
∂

∂t

∂

∂t
u+

∂

∂x

∂

∂t
u− (

∂

∂t

∂

∂x
u+

∂

∂x

∂

∂x
u)

= utt − uxx.

Denote

v(x, t) := (
∂

∂t
− ∂

∂x
)u

so that

∂

∂t
v +

∂

∂x
v = vt + vx = 0.

This is first order equation, whose solution as we remember (Section 2) with

v(x, 0) = a(x)

is

v(x, t) = a(x− t).

Thus {
ut(x, t)− ux(x, t) = a(x− t), R× (0, T )

u(x, 0) = g(x), R.

This is inhomogenous transport equation (Section 3) whose solution is as
we remember (f(x, t) := a(x− t), g = g, b = −1)

u(x, t) = g(x− bt) +

∫ t

0
f(b(s− t) + x, s) ds

= g(x+ t) +

∫ t

0
a(−(s− t) + x− s) ds

= g(x+ t) +

∫ t

0
a(x+ t− 2s) ds

y = x+ t− 2s
= g(x+ t) +

1

2

∫ x+t

x−t
a(y) dy.

Since

a(x) = v(x, 0) = ut(x, 0)− ux(x, 0) = h(x)− g′(x)
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we get

u(x, t) = g(x+ t) +
1

2

∫ x+t

x−t
(h(y)− g′(y)) dy

= g(x+ t)− 1

2
g(x+ t) +

1

2
g(x− t) +

1

2

∫ x+t

x−t
h(y) dy

=
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y) dy.

This is d’Alembert’s formula.

Remark 6.3. By d’Alembert’s formula:

• If g ∈ Ck and h ∈ Ck−1 then

u ∈ Ck.

No instant smoothening in contrast to the heat equation.
• The solution at (x, t) is determined by the values of g and h on [x−
t, x+ t]. Huygens principle. On the other hand every y on the intial
boundary only affects on conical area: Finite speed of propagation.
• Suppose that u and v are solutions. Then u − v solves the prob-

lem with zero initial values. By d’Alembert’s formula this is ≡ 0.
Uniqueness!
• Stability: let u have inititial values g1, h1 and v have initial values
g2, h2 :

|u(x, t)− v(x, t)| ≤ 1

2
|g1(x+ t)− g2(x+ t)|+ 1

2
|g1(x− t)− g2(x− t)|

+
1

2

∫ x+t

x−t
|h1(y)− h2(y)| dy

≤ sup
y∈R
|g1 − g2|+ t sup

y∈R
|h1 − h2|

≤ ε+ tε = (1 + t)ε.

Example 6.4 (String).
utt − uxx = 0, in R× (0,∞)

u(x, 0) = g(x), on R× {t = 0}
ut(x, 0) = 0, on R× {t = 0},

where

g(x) =

{
1− |x| , −1 ≤ x ≤ 1

0 otherwise.

Not regular, but lets not worry about it.
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Then by d’Alembert’s formula

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y) dy =

1

2
(g(x+ t) + g(x− t)).

Draw the following pictures

t =
1

2
: u(x,

1

2
) =

1

2
(g(x+

1

2
) + g(x− 1

2
)), ,

t = 1 : u(x, 1) =
1

2
(g(x+ 1) + g(x− 1)),

t = 2 : u(x, 2) =
1

2
(g(x+ 2) + g(x− 2)),

6.2. Reflection method.
utt − uxx = 0, in R+ × (0,∞)

u(x, 0) = g(x), on R+ × {t = 0}
ut(x, 0) = h(x), on R+ × {t = 0}
u(0, t) = 0, on {x = 0} × (0,∞)

Let us continue the functions in the whole of R by odd reflection:

ũ(x, t) =

{
u(x, t), x ≥ 0, t ≥ 0

−u(−x, t), x < 0, t ≥ 0,

g̃(x) =

{
g(x), x ≥ 0,

−g(−x), x < 0,

h̃(x) =

{
h(x), x ≥ 0,

−h(−x), x < 0.

Also assume that g, h are such that their reflections are C2 and C1 . Then
we get the solution to

ũtt − ũxx = 0, in R× (0,∞)

ũ(x, 0) = g̃(x), on R× {t = 0}
ũt(x, 0) = h̃(x), on R× {t = 0}.

By d’Alembert’s formula:

ũ(x, t) =
1

2
(g̃(x+ t) + g̃(x− t)) +

1

2

∫ x+t

x−t
h̃(y) dy

=

{
1
2(g(x+ t) + g(x− t)) + 1

2

∫ x+t
x−t h(y) dy, x ≥ t ≥ 0

1
2(g(x+ t)− g(t− x)) + 1

2

∫ x+t
t−x h(y) dy 0 ≤ x ≤ t,

(6.21)

since in the second case∫ x+t

x−t
h̃(y) dy = −

∫ 0

x−t
h(−y) dy +

∫ x+t

0
h(y) dy =

∫ x+t

t−x
h(y) dy.
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Example 6.5. If h = 0, then

ũ(x, t) =

{
1
2(g(x+ t) + g(x− t)), x ≥ t ≥ 0
1
2(g(x+ t)− g(t− x)), 0 ≤ x ≤ t.

Draw the following pictures

g(x) =

{
1/2− |x− 1.5| 1 ≤ x ≤ 2

0 otherwise.

t = 0 :

t = 1 :

t = 2 : .
18.10.2017

6.3. Spherical means. First recall Laplacian for a radially symmetric func-
tion u(t, x) = v(t, |x|)

utt −∆u = vtt − vrr −
n− 1

r
vr = 0.

This is called Euler-Poisson-Darboux equation.

Let n ≥ 2, k ≥ 2, and u ∈ Ck(Rn × (0,∞)) solves
utt −∆u = 0, in Rn × (0,∞)

u(x, 0) = g(x), on Rn × {t = 0}
ut(x, 0) = h(x), on Rn × {t = 0}.

Denote

U(x, r, t) =

∫
∂B(x,r)

u(y, t) dS(y)

G(x, r) =

∫
∂B(x,r)

g(y) dS(y)

H(x, r) =

∫
∂B(x,r)

h(y) dS(y).

Fix x and regard U as a function of r, t.

We also continue the functions for r ≤ 0 as

U(x, r, t) = U(x,−r, t), r < 0, U(x, 0, t) = u(x, t),

G(x, r) = G(x,−r), r < 0, G(x, 0) = g(x),

H(x, r) = H(x,−r), r < 0, H(x, 0) = h(x).

Lemma 6.6. It holds that U ∈ Ck(R× [0,∞)) and{
Utt − Urr − n−1

r Ur = 0, in R× (0,∞)

U = G,Ut = H, on R× {t = 0}.
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Proof. Initial conditions hold.

When proving mean value property for Laplacian, we obtained the for-
mula

Ur(x, r, t) =
r

n

∫
B(x,r)

∆u(y, t) dy︸ ︷︷ ︸
bounded

=
1

ωnrn−1

∫
B(x,r)

∆u(y, t) dy,

so that

lim
r→0±

Ur(x, r, t) = 0

so that Ur ∈ C. Since Urr(x, r, t) = Urr(x,−r, t) it follows that Urr is
continuous at 0 and by a straightforward computation elsewhere. Further
U ∈ Ck (omitted).

Then

∂r(ωnr
n−1Ur) = ∂r(

∫
B(x,r)

∆u(y, t) dy)

= ∂r(

∫ r

0

∫
∂B(x,ρ)

∆u(y, t) dS(y) dρ)

=

∫
∂B(x,r)

∆u(y, t) dS(y)

=

∫
∂B(x,r)

utt(y, t) dS(y)

= ωnr
n−1

∫
∂B(x,r)

utt(y, t) dS(y)

= ωnr
n−1Utt.

Since

(rn−1Ur)r = rn−1(
n− 1

r
Ur + Urr)

this implies the claim. �

6.4. Solution when n = 3. Letting r → 0 gives solution to the original
equation:

u(x, t) = lim
r→0

U(x, r, t),

h(x) = lim
r→0

H(x, r),

g(x) = lim
r→0

G(x, r).

Denote

Ũ = rU, G̃ = rG, H̃ = rH.

Then
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Lemma 6.7.

Ũtt − Ũrr = 0 R+ × (0,∞)

Ũ = G̃, R+ × {t = 0}

Ũt = H̃, R+ × {t = 0}

Ũ = 0, {r = 0} × (0,∞).

Similar statement also holds for R instead of R+ above.

Proof. Equation:

Ũtt = rUtt
Euler-Poisson-Darboux, n-1=2

= r(Urr +
2

r
Ur)

= rUrr + 2Ur

= (U + rUr︸ ︷︷ ︸
Ũr

)r

= Ũrr.

Initial conditions:

Ũ(x, r, 0) = rU(x, r, 0)

= r

∫
∂B(x,r)

u(y, 0) dS(y)

= r

∫
∂B(x,r)

g(y) dS(y)

= rG(x, r) = G̃(x, r).

Ũt(x, r, 0) = rUt(x, r, 0)

= r

∫
∂B(x,r)

ut(y, 0) dS(y)

= r

∫
∂B(x,r)

h(y) dS(y)

= rH(x, r) = H̃(x, r).

Ũ(x, 0, t) = lim
r→0

r

∫
∂B(x,r)

u(y, t) dS(y)

= u(x, t) lim
r→0

r = 0.

�
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This is one dimensional wave equation so that we may use the d’Alembert
formula with reflection (6.21):

Ũ(x, r, t) =
1

2
(G̃(r + t)− G̃(t− r)) +

1

2

∫ t+r

t−r
H̃(y) dy, 0 ≤ r ≤ t.

Thus

u(x, t) = lim
r→0

∫
∂B(x,r)

u(y, t) dS(y)

= lim
r→0

U(x, r, t) = lim
r→0

Ũ(x, r, t)

r

= lim
r→0

[ 1

2r
(G̃(r + t)− G̃(t− r)) +

1

2r

∫ r+t

t−r
H̃(y) dy

]
= G̃′(t) + H̃(t)

= (t

∫
∂B(x,t)

g(y) dS(y))t + t

∫
∂B(x,t)

h(y) dS(y)

=

∫
∂B(x,t)

g(y) dS(y) + t(

∫
∂B(x,t)

g(y) dS(y))t + t

∫
∂B(x,t)

h(y) dS(y)

where

(

∫
∂B(x,t)

g(y) dS(y))t

y = x+ tz
= (

∫
∂B(0,1)

g(x+ tz)tn−1t−(n−1) dS(z))t

=

∫
∂B(0,1)

Dg(x+ tz) · z dS(z)

=

∫
∂B(x,t)

Dg(y) · y − x
t

dS(y).

Thus

u(x, t) = (t

∫
∂B(x,t)

g(y) dS(y))t + t

∫
∂B(x,t)

h(y) dS(y)

=

∫
∂B(x,t)

g(y) dS(y) + t(

∫
∂B(x,t)

g(y) dS(y))t + t

∫
∂B(x,t)

h(y) dS(y)

=

∫
∂B(x,t)

(g(y) +Dg(y) · (y − x) + th(y)) dS(y). (6.22)

This is called the Kirchhoff formula in three dimensions.

Remark 6.8. (1) Implies uniqueness, stability cf. remark after d’Alemberts
formula.

(2) The value at (x, t) is determined by the values of g and h on ∂B(x, t):
Huygens principle. On the other hand, every point affect the values
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on:

{(x, t) ∈ R3 × (0,∞) : |x− y| = t}.

Finite speed of propagation.

6.5. Solution when n = 2. Assume u ∈ C2(R2 × (0,∞)) and
utt −∆u = 0, in R2 × (0,∞)

u(x, 0) = g(x), on R2 × {t = 0}
ut(x, 0) = h(x), on R2 × {t = 0}.

Define ũ : R3 × (0,∞)→ R setting

ũ(x1, x2, x3, t) = u(x1, x2, t),

and similarly

g̃(x1, x2, x3) = g(x1, x2)

h̃(x1, x2, x3) = h(x1, x2),

i.e. trivial extension. Then
ũtt −∆ũ = 0, in R3 × (0,∞)

ũ(x, 0) = g̃(x), on R3 × {t = 0}
ũt(x, 0) = h̃(x), on R3 × {t = 0}.

Denote

x = (x1, x2) ∈ R2 x̃ = (x1, x2, 0) ∈ R3.

By Kirchhoff’s formula

u(x, t) = ũ(x̃, t) =

∫
∂B3(x̃,t)

(g(y) +Dg(y) · (y − x) + th(y)) dS(y)

where we integrate over the boundaries of 3D balls. Here∫
∂B3(x̃,t)

g̃(y) dS(y) =
1

4πt2

∫
∂B3(x̃,t)

g̃(y) dS(y)

g(y1, y2, y3) = g(y1, y2)
=

2

4πt2

∫
B2(x,t)

g(y)

√
1 + |Dγ(y)|2 dy,

where B3 is 3D ball and B2 is 2D ball , and γ : B2(x, t)→ R,

γ(y) =

√
t2 − |y − x|2,
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is parametric presentation of the one half of the sphere. The factor 2 comes
from the fact that sphere has two parts, upper and lower. Now

Dγ(y) =
1

2
(t2 − |y − x|2)−

1
2Dy(− |y − x|2)

=
1

2
(t2 − |y − x|2)−

1
2 (−2) |y − x| y − x

|y − x|
= −(t2 − |y − x|2)−

1
2 (y − x).

Thus

|Dγ(y)| = (t2 − |y − x|2)−
1
2 |y − x| .

Further,

(1 + |Dγ(y)|2)
1
2 =

(
1 +

|y − x|2

t2 − |y − x|2

) 1
2

=

(
t2 − |y − x|2 + |y − x|2

t2 − |y − x|2

) 1
2

t > 0
= (t2 − |y − x|2)−

1
2 t.

Thus ∫
∂B3(x̃,t)

g̃ dS =
1

2πt

∫
B2(x,t)

g(y)√
t2 − |y − x|2

dy

∣∣B2(y, t)
∣∣ = πt2

=
t

2

∫
B2(x,t)

g(y)√
t2 − |y − x|2

dy.

Similarly ∫
∂B3(x̃,t)

h̃ dS =
t

2

∫
B2(x,t)

h(y)√
t2 − |y − x|2

dy

and ∫
∂B3(x̃,t)

Dg̃(y) · (y − x) dS(y) =
t

2

∫
B2(x,t)

Dg(y) · (y − x)√
t2 − |y − x|2

dy.

This gives us the formula

u(x, t) =
1

2

∫
B2(x,t)

tg(y) + t2h(y) + tDg(y) · (y − x)√
t2 − |y − x|2

dy

for the 2D problem. First solving 3D and then dropping to 2D is called
method of descent.
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Remark 6.9. • The value at (x, t) is determined by the values on
B(x, t) (different from 3D case). On the other hand each point y ∈
R2 affects the values in the cone

{(x, t) ∈ R2 × (0,∞) : |x− y| ≤ t}.

• Also Dg present. Irregularities may focus, i.e. solution may be more
irregular than the initial data.
• The above approach can be generalzed to higher dimensions: solve

odd n problem and then use method of descend to get to n− 1.

6.6. Inhomogenous problem. Assume u ∈ C2(R2 × (0,∞)) and
utt −∆u = f, in Rn × (0,∞)

u(x, 0) = 0, on Rn × {t = 0}
ut(x, 0) = 0, on Rn × {t = 0}.

Duhamel’s principle: Solve
utt(x, t, s)−∆u(x, t, s) = 0, (x, t) ∈ Rn × (s,∞)

u(x, s, s) = 0, (x, t) ∈ Rn × {t = s}
ut(x, s, s) = f(x, s), in (x, t) ∈ Rn × {t = s}.

and set

u(x, t) =

∫ t

0
u(x, t, s) ds.

This solves the inhomogenous problems since

ut(x, t) = u(x, t, t)︸ ︷︷ ︸
=0

+

∫ t

0
ut(x, t, s) ds =

∫ t

0
ut(x, t, s) ds.

utt(x, t) = ut(x, t, t) +

∫ t

0
utt(x, t, s) ds

= f(x, t) +

∫ t

0
utt(x, t, s) ds.

∆u(x, t) = ∆

∫ t

0
u(x, t, s) ds

=

∫ t

0
∆u(x, t, s) ds

=

∫ t

0
utt(x, t, s) ds
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Thus

utt(x, t) = f(x, t) +

∫ t

0
utt(x, t, s) ds

= f(x, t) + ∆u(x, t).

Moreover,

u(x, 0) = ut(x, 0) = (

∫ 0

0
. . . ds) = 0.

Solution to general inhomogenous problem is then solved by

v + u

where v is the solution to
vtt −∆v = 0, in Rn × (0,∞)

v(x, 0) = g(x), on Rn × {t = 0}
vt(x, 0) = h(x), on Rn × {t = 0}.

obtained by the Euler-Poisson-Darboux equation and spherical means, and
u by the Duhamel’s principle as above.

Example 6.10. Inhomogenous problem:

• n = 1 : d’Alembert

u(x, t, s) =
1

2

∫ x+(t−s)

x−(t−s)
f(y, s) dy.

Duhamel:

u(x, t) =

∫ t

0
u(x, t, s) ds

=
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
f(y, s) dy ds

s=t−r
=

1

2

∫ t

0

∫ x+r

x−r
f(y, t− r) dy dr

=
1

2

∫ t

0

∫ x+s

x−s
f(y, t− s) dy ds.

• n = 3: Kirchhoff formula:

u(x, t, s) = (t− s)
∫
∂B(x,t−s)

f(y, s) dS(y).
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Duhamel:

u(x, t) =

∫ t

0
u(x, t, s) ds

=

∫ t

0
(t− s)

∫
∂B(x,t−s)

f(y, s) dS(y) ds

|∂B(x,t−s)|=4π(t−s)2
=

1

4π

∫ t

0

∫
∂B(x,t−s)

f(y, s)

t− s
dS(y) ds

r=t−s
=

1

4π

∫ t

0

∫
∂B(x,r)

f(y, t− r)
r

dS(y) dr

=
1

4π

∫
B(x,t)

f(y, t− |y − x|)
|y − x|

dy.

6.7. Energy method. Let Ω ⊂ Rn be a smooth open set, u = 0 on ∂Ω.

Definition 6.11.

I(t) =
1

2

∫
Ω

((ut(x, t))
2 + |Du(x, t)|2) dx.

Now

I ′(t)
chg int diff

=
1

2

∫
Ω
∂t((ut(x, t))

2 + |Du(x, t)|2) dx

=
1

2

∫
Ω

2ut(x, t)utt(x, t) + 2 |Du(x, t)| Du(x, t)

|Du(x, t)|
Dut(x, t) dx

=

∫
Ω
ut(x, t)utt(x, t) +Du(x, t) ·Dut(x, t) dx

int by parts, u = 0 on ∂Ω
=

∫
Ω
ut(x, t)utt(x, t)−∆u(x, t)ut(x, t) dx

=

∫
Ω
ut(x, t)(utt(x, t)−∆u(x, t)︸ ︷︷ ︸

=0

) dx = 0.

We have proven

Theorem 6.12 (Conservation of energy). If u is a solution to utt−∆u = 0
and u = 0 on ∂Ω, then the energy is conserved i.e.

I(t) ≡ C.

Recall ∂pΩT = Ω× {0} ∪ (∂Ω× [0, T ]).

Theorem 6.13 (Uniqueness by energy method). Assume Ω ⊂ Rn bounded.
The problem 

utt −∆u = f, in ΩT

u(x, 0) = g(x), on ∂pΩ

ut(x, 0) = h(x), on Ω× {t = 0}
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has at most one solution.

Proof. Let u, v be solutions and set w = u− v is a solution to
wtt −∆w = 0, in ΩT

w(x, 0) = 0, on ∂pΩ

wt(x, 0) = 0, on Ω× {t = 0}.

Then by the energy conservation above,

I(t) =
1

2

∫
Ω

((wt(x, t))
2 + |Dw(x, t)|2) dx

= I(0) = 0, 0 ≤ t ≤ T.

Thus

(wt(x, t))
2 + |Dw(x, t)|2 = 0

thus wt(x, t) = 0 and Dw(x, t) = 0 in ΩT so that

w = u− v ≡ C.

Since

w = 0 on Ω× {t = 0}

it holds

w = 0 on ΩT .

�
25.10.2017

Finite speed of propagation also follows from the energy method. We
denote

C = {(x, t) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

with fixed x0 ∈ Rn and t0 > 0. We are going to show that the external
disturbances outside C do not affect the value at (x0, t0). This follows from
the Kirchhoff’s formula, but energy method gives easier and more flexible
proof.

Theorem 6.14 (Finite speed of propagation). Let

utt −∆u = 0, in Rn × (0,∞).

If

u(x, 0) = 0 and ut(x, 0) = 0

for all x ∈ B(x0, t0), then

u(x, t) = 0 for all (x, t) ∈ C.
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Proof.

I(t) =
1

2

∫
B(x0,t0−t)

((ut(x, t))
2 + |Du(x, t)|2) dx, 0 ≤ t ≤ t0.

I ′(t) = ∂t
1

2

∫ t0−t

0

∫
∂B(x0,s)

((ut(x, t))
2 + |Du(x, t)|2) dS ds

= −1

2

∫
∂B(x0,t0−t)

((ut(x, t))
2 + |Du(x, t)|2) dS

+
1

2

∫ t0−t

0

∫
∂B(x0,s)

∂t((ut(x, t))
2 + |Du(x, t)|2) dS ds

= −1

2

∫
∂B(x0,t0−t)

((ut(x, t))
2 + |Du(x, t)|2) dS

+

∫ t0−t

0

∫
∂B(x0,s)

(ut(x, t)utt(x, t) +Du(x, t) ·Dut(x, t)) dS ds

= −1

2

∫
∂B(x0,t0−t)

((ut(x, t))
2 + |Du(x, t)|2) dS

+

∫
B(x0,t0−t)

(ut(x, t)(utt(x, t)−∆u(x, t)︸ ︷︷ ︸
=0

) dx

+

∫
∂B(x0,t0−t)

∂u

∂ν
ut dS

=

∫
∂B(x0,t0−t)

(
∂u

∂ν
ut −

1

2
u2
t −

1

2
|Du|2) dS

below
≤ 0,

where the last inequality follows as∣∣∣∣∂u∂ν ut
∣∣∣∣ Cauchy-Schwarz

≤ |Du| |ν|︸︷︷︸
=1

|ut|

Cauchy/Young’s ie

≤ 1

2
|Du|2 +

1

2
|ut|2 .

Thus

0 ≤ I(t) ≤ I(0) = 0, 0 ≤ t ≤ t0,

where the last equality holds because

u = 0⇒ Du = 0 in B(x0, t0),

ut = 0 in B(x0, t0).
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We have proven

I(t) = 0, 0 ≤ t ≤ t0,
ut = 0, Du = 0 in B(x0, t0 − t) for all 0 ≤ t ≤ t0.

Thus

u = 0 in C.

�

7. Other ways of representation of solutions

Examples of methods of finding explicit solutions.

7.1. Fourier series. In this section the underlying space is C.

Definition 7.1. The space L2([−π, π]) consists of the functions f : [−π, π]→
C such that ∫ π

−π
|f(t)|2 dt <∞,

where |f(t)| denotes the modulus or length of the corresponding complex
number.

Example 7.2. f : [−π, π]→ R,

f(t) =

{
1√
|t|
, t 6= 0

0 t = 0.∫ π

−π
|f(t)|2 dt =

∫ 0

−π
1/ |t| dt+

∫ π

0
1/t dt =∞,

i.e. f /∈ L2([−π, π]).

Definition 7.3. Inner product in L2 is defined as

〈f, g〉 =
1

2π

∫ π

−π
f(t)g(t) dt.

The norm

||f ||2 =
√
〈f, f〉 =

( 1

2π

∫ π

−π
f(t)f(t) dt

)1/2

zz=(x+iy)(x−iy)=x2−(iy)2=|z|2
=

( 1

2π

∫ π

−π
|f(t)|2 dt

)1/2
.

Remark 7.4. For inner product we need

〈f, f〉 = 0 ⇒ f = 0

by agreeing that f = g in L2 sense if∫ π

−π
|f − g|2 dt = 0.
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Recall the following inequalities:
Cauchy-Schwarz:

|〈f, g〉| ≤ ||f ||2 ||g||2 = (

∫ π

−π
|f |2 dt)1/2(

∫ π

−π
|g|2 dt)1/2.

Triangle inequality

||f + g||2 ≤ ||f ||2 + ||g||2 .

Next we denote

ej : [−π, π]→ C, ej(t) = eijt, j ∈ Z.

Recall Euler’s formula

ej(t) = eijt = cos(jt) + i sin(jt).

Now

〈ej , ek〉 =
1

2π

∫ π

−π
eijteikt dt

=
1

2π

∫ π

−π
eijte−ikt dt

=
1

2π

∫ π

−π
ei(j−k)t dt

=

{
1

2π
1

i(j−k) |
π
−πe

it(j−k) = 0, j 6= k

1, j = k.

Thus {ej : j ∈ Z} is an orthonormal set in L2([−π, π]).

Definition 7.5. The jth Fourier coefficient of f is

f̂(j) = 〈f, ej〉 =
1

2π

∫ π

−π
f(t)e−ijt dt, j ∈ Z.

The partial sum of Fourier series is

Sk(t) = Skf(t) =

k∑
j=−k
〈f, ej〉ej =

k∑
j=−k

f̂(j)eijt, k = 0, 1, 2, . . .

The Fourier series is the limit of the partial sum (if exists)

f(t)
later
= lim

k→∞
Sk(t) = lim

k→∞
Skf(t) = lim

k→∞

k∑
j=−k

f̂(j)eijt =

∞∑
j=−∞

f̂(j)eijt.

For the next proofs that were covered in the lectures, see for example
Juha Kinnunen: Partial differential equations https://koppa.jyu.fi/en/

courses/216483/kinnunenpde.pdf.

https://koppa.jyu.fi/en/courses/216483/kinnunenpde.pdf
https://koppa.jyu.fi/en/courses/216483/kinnunenpde.pdf
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Theorem 7.6 (Best approximation). If f ∈ L2([−π, π]), then

||f − Sk||2 ≤

∣∣∣∣∣∣
∣∣∣∣∣∣f −

k∑
j=−k

αkej

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

and Sk(t) is the orthogonal projection on Span{ej : j = −k, . . . , k}.

We call
∑k

j=−k αkej kth order trigonometric polynomial. This says that

the partial sum of Fourier series gives the best approximation in L2 in the
class of kth order trigonometric polynomials.

Theorem 7.7 (L2-convegence). If f ∈ L2([−π, π]), then

||f − Sk||2 → 0

as k →∞.

This justifies writing

f(t) =
∞∑

j=−∞
f̂(j)eijt in L2-sense.

The following theorem and remark were not proved in the lectures.

Theorem 7.8. Let f ∈ L2([−π, π]) and f differentiable at t1. Then

f(t1) = lim
k→∞

Sk(t1)

in the pointiwise sense.

Remark 7.9. • The pointwise converge does not necessarily hold if f
only continuous.
• If f : R→ C is 2π-periodic, and f satisfies the Lipschitz condition

|f(t)− f(s)| ≤ C |t− s| for all s, t ∈ R,

then

max
t∈[−π,π]

|Sk(t)− f(t)| → 0, when k →∞,

i.e. Sk → f uniformly.

Theorem 7.10 (Parseval). If f ∈ L2([−π, π]), then

||f ||2 =

∞∑
j=−∞

∣∣∣f̂(j)
∣∣∣2 .

Theorem 7.11 (Uniqueness). Let f, g ∈ L2([−π, π]) and f̂(j) = ĝ(j), then

f = g in L2.

Naturally also: if f = g, then f̂(j) = ĝ(j).
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Definition 7.12. A function f : R→ C is 2π-periodic if

f(t+ 2π) = f(t).

Example 7.13. •

f : R→ C

f(t) = eijt

is 2π-periodic, since

f(t+ 2π) = eij(t+2π) = eijt eij2π︸︷︷︸
=1

= f(t).

• Thus, the partial sum of Fourier series

Sk(t) =

k∑
j=−k

f̂(j)eijt

is 2π-periodic.
• From the previous, the limit limk→∞ Sk is 2π-periodic (if exists).

Thus we can only directly approximate 2π-periodic functions by Fourier
series, or f : [−π, π]→ R.

7.1.1. Fourier series in real form (vs. complex form).

Sk =

k∑
j=−k

f̂(j)eijt

=

−1∑
j=−k

f̂(j)eijt + f̂(0) +

k∑
j=1

f̂(j)eijt

= f̂(0) +

k∑
j=1

(f̂(j)eijt + f̂(−j)e−ijt)

= f̂(0) +

k∑
j=1

(f̂(j)(cos(jt) + i sin(jt)) + f̂(−j)(cos(jt)− i sin(jt)))

= f̂(0) +

k∑
j=1

(f̂(j) + f̂(−j)) cos(jt) +

k∑
j=1

i(f̂(j)− f̂(−j)) sin(jt),

where

f̂(0) =
1

2π

∫ π

−π
f(t) dt,
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f̂(j) + f̂(−j) =
1

2π

∫ π

−π
f(t)(e−ijt + eijt) dt

=
1

2π

∫ π

−π
f(t)2 cos(jt) dt

=
1

π

∫ π

−π
f(t) cos(jt) dt,

and

i(f̂(j)− f̂(−j)) =
i

2π

∫ π

−π
f(t)(e−ijt − eijt) dt

=
i

2π

∫ π

−π
f(t)(−2i) sin(jt) dt

=
−i2

π

∫ π

−π
f(t) sin(jt) dt

=
1

π

∫ π

−π
f(t) sin(jt) dt.

Thus we have obtained the following real form Fourier series

Sk =
k∑

j=−k
f̂(j)eijt

=
a0

2
+

k∑
j=1

(aj cos(jt) + bj sin(jt)) (7.23)

where

a0 =
1

π

∫ π

−π
f(t) dt,

aj =
1

π

∫ π

−π
f(t) cos(jt) dt, j = 0, 1, . . .

bj =
1

π

∫ π

−π
f(t) sin(jt) dt, j = 1, 2, . . .

Remark 7.14. • If f : R → R, then there are only real numbers
visible in the above form.
• If Fourier series is given in the real form, we can transform it back

to the complex form by recalling

cos(jt) =
1

2
(eijt + e−ijt),

sin(jt) =
1

2i
(eijt − e−ijt).
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7.1.2. Fourier series on the general interval, odd and even functions. If f :
[a, b]→ C, then

Sk(t) =
k∑

j=−k
f̂(j)e

2πijt
b−a .

where

f̂(j) =
1

b− a

∫ b

a
f(t)e−

2πijt
b−a dt, j ∈ Z.

This is due to the change of variables. In particular for f : [−L,L] → C in
the real form

Sk =
a0

2
+

k∑
j=1

(aj cos(
πjt

L
) + bj sin(

πjt

L
))

where

aj =
1

L

∫ L

−L
f(t) cos(

πjt

L
) dt, j = 0, 1, . . .

bj =
1

L

∫ L

−L
f(t) sin(

πjt

L
) dt, j = 1, 2, . . .

Recall

Definition 7.15. The function f : R→ C is odd if

f(−t) = −f(t)

and even if

f(−t) = f(t).

In the Fourier series of odd function cos-terms vanish i.e.

aj =
1

L

∫ L

−L
f(t) cos(

πjt

L
) dt = 0,

⇒f(t) =
∞∑
j=1

bj sin(
πjt

L
)

and of even function

bj =
1

L

∫ L

−L
f(t) sin(

πjt

L
) dt = 0

⇒f(t) =
a0

2
+

∞∑
j=1

aj cos(
πjt

L
).

These are called sin- and cos-series.
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Example 7.16.

f : [−π, π]→ R, f(t) = t.

Then we can calculate that

k∑
j=−k

f̂(j)eijt =

k∑
j=−k,j 6=0

i

j
(−1)jeijt,

and in the real form

−
n∑
j=1

2

j
(−1)j sin(jt).

Observe that the cos terms vanish.
1.11.2017

Example 7.17.

f : [−π, π]→ R, f(t) =

{
−1, −π ≤ t < 0

1, 0 ≤ t ≤ π.
.

Then we can calculate that the Fourier series in real form is

sgn(t) =
4

π

∞∑
j=0

sin((2j + 1)t)

2j + 1
, −π < t < π.

Observe that the cos terms vanish.

Remark 7.18. Observe that Fourier series can be formed for discontinuous
functions unlike Taylor’s expansion.

Remark 7.19. Applications to
• PDEs (below)
• image compression
• signal processing

7.2. Separation of variables. Strategy

(1) In rectangular, cylindrical etc domain separate the variables i.e. try
finding the solution in the form v(x)w(y)

(2) We obtain system of simpler differential equations: solving produces
a series representation

(3) Boundary values determine coefficients of the Fourier series
(4) Derive a representation formula if possible

Example 7.20. Consider

u : [0, a]× [0, b]→ R, Ω = [0, a]× [0, b].
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and 

∆u = uxx + uyy = 0, Ω

u(x, 0) = 0, 0 < x < a

u(x, b) = 0, 0 < x < a

u(0, y) = 0, 0 ≤ y ≤ b
u(a, y) = g(y), 0 ≤ y ≤ b,

where g ∈ C1. Set u(x, y) = v(x)w(y)

0 = ∆u(x, y) = v′′(x)w(y) + v(x)w′′(y)

i.e.

v′′(x)

v(x)
= λ = −w

′′(y)

w(y)
, λ ∈ R.

Case 1: λ < 0: λ = −µ2, µ > 0

w′′(y) = µ2w(y), r2 − µ2 = 0, r = ±µ,
w(y) = c1 sinh(µy) + c2 cosh(µy)

where sinh(x) = 1
2(ex − e−x), sinh(0) = 0, cosh(x) = 1

2(ex + e−x) and

0 = w(0) = c2

0 = w(b) = c1 sinh(µb)

⇒ c1 = c2 = 0.

Case 1: λ = 0:

w′′(y) = 0, w(y) = c1y + c2, w(0) = 0 = w(b) ⇒ w = 0

Case 3: λ > 0: λ = µ2, µ > 0{
v′′(x) = µ2v(x)

−w′′(y) = µ2w(y)
and thus

{
r2

1 = µ2

−r2
2 = µ2

i.e.

{
r1 = ±µ
r2 = ±iµ.

which gives {
v(x) = c1 sinh(µx) + c2 cosh(µx)

w(y) = d1 sin(µy) + d2 cos(µy).

From boundary conditions

v(0) = 0⇒ c2 = 0

w(0) = 0⇒ d2 = 0,

and from w(b) = 0 we get that one of the two holds

d1 = 0⇒ w(y) = 0 discarded, or

sin(µb) = 0⇒ µ =
jπ

b
, j = 1, 2, . . . .



86 PDE

Thus {
v(x) = c1 sinh( jπxb )

w(y) = d1 sin( jπyb ).

Thus

uj(x, y) = v(x)w(x) = aj sinh(
jπx

b
) sin(

jπy

b
)

are nontrivial special solutions. The full solution is looked for as a series

u(x, y) =

∞∑
j=1

aj sinh(
jπx

b
) sin(

jπy

b
) (7.24)

The last boundary condition

g(y) = u(a, y) =
∞∑
j=1

aj sinh(
jπa

b
) sin(

jπy

b
).

Extend g as an odd function to the whole of R. Then its Fourier series is a
sin-series

g =
∞∑
j=1

bj sin
jπy

b
,

bj =
1

b

∫ b

−b
g(y) sin

jπy

b
dy =

2

b

∫ b

0
g(y) sin

jπy

b
dy.

Comparing the coefficients, we get

aj sinh(
jπa

b
) =

2

b

∫ b

0
g(y) sin

jπy

b
dy i.e.

aj =
2

b sinh( jπab )

∫ b

0
g(y) sin

jπy

b
dy

and inserting this into (7.24) gives a representation formula for the solution.
This is a formal solution at this point, as we didn’t consider the convergence
and the regularity of the limit.

Example 7.21. Ω open and bounded, ΩT = Ω× (0, T ), Ω ⊂ Rn.
ut −∆u = 0, in ΩT

u = 0, on ∂Ω

u(x, 0) = g(x), on Ω.

Step 1 (Separation of variables):

u(x, t) = v(t)w(x),

ut(x, t) = v′(t)w(x),

∆u(x, t) = v(t)∆w(x),
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so that

0 = ut(x, t)−∆u(x, t)

= v′(t)w(x)− v(t)∆w(x).

In other words

v′(t)

v(t)
= −λ =

∆w(x)

w(x)
.

i.e. {
v′(t) = −λv(t)

∆w(x) = −λw(x).

Step 2 (Solving the separated equations): Then

0 = v′(t)eλt + λv(t)eλt = (v(t)eλt)′

so that

v(t)eλt = c⇒ v(t) = ce−λt, c ∈ R.
Recall

Definition 7.22. If {
−∆w = λw Ω

w = 0 ∂Ω.

with λ > 0 has a nontrivial solution i.e. w 6≡ 0, then λ is eigenvalue of ∆ in
Ω. The corresponding w is an eigenfunction.

Thus

u(x, t) = ce−λtw(x).

solves {
ut −∆u = 0, ΩT

u = 0, ∂Ω.

Step 3 (Solving the full problem): Let

λj , j = 1, 2, 3, . . .

wj , j = 1, 2, 3, . . .

be eigenvalues and eigenfunctions. Then we try the linear combination

u(x, t) =

∞∑
j=1

cie
−λjtwj(x)

requiring that

u(x, 0) =

∞∑
j=1

cj e0︸︷︷︸
=1

wj(x) =
∞∑
j=1

cjwj(x) = g(x).



88 PDE

As partly stated before there is an infinite number of eigenvalues and eigen-
functions can be chosen to form an orthonormal basis in L2(Ω). Similarly
as in the theory Fourier series, if g ∈ L2(Ω), and

cj = 〈g, wj〉 :=

∫
Ω
g(y)wj(y) dy, j = 1, 2, . . .

where 〈., .〉 is the inner product in L2, then the series

g =
∞∑
j=1

cjwj =
∞∑
j=1

〈g, wj〉wj

converges in L2. Thus we have the representation formula

u(x, t) =

∞∑
j=1

〈g, wj〉e−λjtwj(x)

=

∞∑
j=1

(

∫
Ω
g(y)wj(y) dy)e−λjtwj(x)

=

∫
Ω

(

∞∑
j=1

e−λjtwj(x)wj(y))g(y) dy

=

∫
Ω
K(x, y, t)g(y) dy,

where

K(x, y, t) =

∞∑
j=1

e−λjtwj(x)wj(y),

is the heat kernel in Ω.

Remark 7.23. Existence of a solution can be proved using separation of
variables and eigenfunction expansions in bounded domains. Requires: find-
ing enough eigenfunctions and eigenvalues and proving convergence and reg-
ularity.

Example 7.24. Separation of variables also sometimes works for nonlinear
PDEs. Porous medium equation in Rn, n ≥ 2

ut = ∆(um), m > 1.

Try u(x, t) = w(x)v(t) so that

v′(t)w(x) = vm(t)∆wm(x).

Thus

v′(t)

vm(t)
= λ =

∆wm(x)

w(x)
.

A solution for v′ = λvm is

v(t) = ((1−m)λt+ a)
1

1−m ,
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for a ∈ R that we take to be positive, since

v′(t) =
1

1−m
((1−m)λt+ a)

m
1−m (1−m)λ,

λvm(t) = λ((1−m)λt+ a)
m

1−m .

Then we solve

∆wm(x) = λw(x).

We try w(x) = |x|α , f(x) = |x|αm and first observe

f(x) = |x|αm ,

Df(x) = αm |x|αm−2 x

D2f(x) = αm(αm− 2) |x|αm−2 x

|x|
⊗ x

|x|
+ αm |x|αm−2 I,

∆f(x) = αm |x|αm−2 (αm− 2 + n)

where we recall the shorthand a⊗ b is the matrix with the entries aibj. Thus

0 = ∆wm(x)− λw(x)

= αm(αm− 2 + n) |x|αm−2 − λ |x|α

choose αm−2=α
= (αm(αm− 2 + n)− λ) |x|α

αm(αm−2+n)−λ=0
= 0

i.e. α = 2/(m− 1), λ = αm(αm− 2 + n) > 0. Thus for every a > 0

u(x, t) = w(x)v(t) = |x|α ((1−m)λt+ a)
1

1−m

is a solution. This represents a solution that blows up when (1−m)λt+a→
0+, a huge amount of mass diffuses from in from infinity.

Example 7.25. Separation of variables also sometimes works in terms of
addition instead of multiplication. This is also nonlinear example.

Hamilton-Jacobi: {
ut +H(Du) = 0, Rn × (0,∞)

u(x, 0) = g(x), x ∈ Rn,

where H : Rn → R is given. Try

u(x, t) = w(x) + v(t).

Then

0 = ut(x, t) +H(Du(x, t))

= v′(t) +H(Dw(x)).

Now we get

H(Dw(x)) = µ = −v′(t).
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Thus

v(t) = −µt+ b

u(x, t) = w(x)− µt+ b.

In particular, if we select w(x) = x · a for which H(a) = µ, then

u(x, t) = a · x−H(a)t+ b

is a solution for the initial condition g(x) = a · x+ b.

Observe that in general the Hamilton-Jacobi equation is nonlinear and we
cannot sum up the solutions.

7.3. Fourier transform. Fourier series associates a function and its Fourier
coefficients. Similarly Fourier transform associates the functions to its Fourier
transform. Now the functions do not need to be periodic. The use of Fourier
transform in solving the PDEs is based on the fact that it changes derivarives
to a multiplication.

This also works on Rn, but we restrict ourselves first on R.

We define a Fourier transform of f ∈ L1(R), f : R→ C i.e.
∫
R |f | dx <∞

as

F (f) = f̂(ξ) =

∫
R
f(x)e−2πixξ dx. (7.25)

Remark 7.26. (i) e−2πixξ = cos(2πxξ) − i sin(2πxξ), (even part in real,
and odd in imaginary).

(ii) Theory generalizes to Rn (then x · ξ =
∑n

i=1 xiξi and e−2πix·ξ) as we
will see later.

It is common to start consideration of Fourier transform of smooth and
rapidly decreasing functions, the so called Schwarz class. In particular, for
f ∈ L1 it maybe that f̂ /∈ L1 (we will see example later). Then writing
down inverse Fourier transform later would require more care. For Schwarz
class these problems do not occur. Many properties hold for L1 nonetheless
so we state properties for both the classes.

Definition 7.27. A function f is in the Schwartz class S(R) if

(i) f ∈ C∞(R)
(ii)

sup
x∈R
|x|k

∣∣∣∣dlf(x)

dxl

∣∣∣∣ <∞, for every k, l ≥ 0.

In other words, every derivative decays at least as fast as any power of
|x|.

Many properties also hold for L1 functions instead of S, so we state prop-
erties whichever assumption is the most appropriate.



PDE 91

Lemma 7.28. (i) α, β ∈ C, f ∈ L1 ⇒ ̂(αf + βg) = αf̂ + βĝ, .

(ii) f ∈ S(Rn) ⇒
(̂
df
dx

)
(ξ) = 2πiξf̂(ξ).

(iii) f ∈ L1 ⇒ ̂f(x+ h) = f̂(ξ)e2πihξ,

Proof. (i) Integral is linear.
(ii) (̂

df

dx

)
(ξ) =

∫
R

(
df

dx

)
e−2πixξ dx

integrate by parts
= −

∫
R
f(x)

d

dx
e−2πixξ dx

= 2πiξ

∫
R
f(x)e−2πixξ dx = 2πiξf̂(ξ).

(iii)

̂f(x+ h) =

∫
R
f(x+ h)e−2πixξ dx

y=x+h, dy= dx
=

∫
R
f(y)e−2πi(y−h)ξ dy = f̂(ξ)e2πihξ.

�

Theorem 7.29. If f ∈ S(R), then

(i) f̂ ∈ S(R) (similar result does not hold in L1),
(ii)

F−1(f) :=

∫
R
f(ξ)e2πixξ dξ ∈ S(R)

whenever f ∈ S(R), where F−1 is called the Fourier inverse transform.

Lemma 7.30. If f, g ∈ L1(R), then

f̂ ∗ g = f̂ ĝ

Proof. We take for granted that conditions to Fubini’s theorem are ok. Then

f̂ ∗ g =

∫
R

∫
R
f(y)g(x− y) dy e−2πixξ dx

Fubini
=

∫
R
f(y)

∫
R
g(x− y)e−2πixξ dx dy

x−y=z, dx= dz
=

∫
R
f(y)

∫
R
g(z)e−2πi(z+y)ξ dz dy

=

∫
R
f(y)e−2πiyξ dy

∫
R
g(z)e−2πizξ dz = f̂ ĝ. �
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Theorem 7.31 (Fourier inversion). If f ∈ S(R), then

f(x) =

∫
R
f̂(ξ)e2πixξ dξ,

or with the other notation f(x) = F−1(F (f)) = F−1(f̂).

We can state the following L1 version as well.

Theorem 7.32 (Fourier inversion for L1). If f ∈ L1(R), f̂ ∈ L1, then

f(x) =

∫
R
f̂(ξ)e2πixξ dξ,

or with the other notation f(x) = F−1(F (f)) = F−1(f̂).

Remark 7.33. Above a function can be recovered from its Fourier trans-
form. This corresponds to the Fourier series representation of a periodic
function.

Example 7.34 (Bessel potential).

−u′′ + u = f R,

where f ∈ S(R). Then

û′′(ξ) = (2πiξ)2û(ξ) = −4π2ξ2û(ξ).

Thus by the equation

(4π2ξ2 + 1)û(ξ) = f̂(ξ)

and thus

û(ξ) =
f̂(ξ)

4π2ξ2 + 1

i.e. by Lemma 7.30 u = g ∗ f where

ĝ(ξ) =
1

4π2ξ2 + 1
.

We need to find the g i.e. inverse Fourier transform for ĝ. It holds that∫ ∞
0

e−ta dt =
1

a

so that ∫ ∞
0

e−t(4π
2ξ2+1) dt =

1

4π2ξ2 + 1
.
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Thus

g(x) =

∫
R
ĝ(ξ)e2πixξ dξ

=

∫
R

1

4π2ξ2 + 1
e2πixξ dξ

=

∫
R

∫ ∞
0

e−t(4π
2ξ2+1)e2πixξ dt dξ

=

∫ ∞
0

e−t
∫
R
e2πixξ−t4π2ξ2 dξ dt.

(7.26)

Then we perform a change of variables z =
√
bξ − a

2
√
b
i so that

∫ ∞
−∞

eiaξ−bξ
2
dξ =

e−
a2

4b

√
b

∫
Γ
e−z

2
dz,

where Γ = {Im(z) = − a
2
√
b
}.

Further from the complex analysis it follows∫
Γ
e−z

2
dz =

∫ ∞
−∞

e−ξ
2
dξ

Lemma 5.4
=

√
π.

Thus ∫ ∞
−∞

eiaξ−bξ
2
dξ = e−

a2

4b

√
π

b
(7.27)

It follows that (a = 2πx, b = t4π2)∫
R
e2πixξ−t4π2ξ2 dξ = e

− (2πx)2

4(t4π2)

√
π

t4π2
=

1√
4πt

e−
x2

4t .

Recalling (7.26) we get

g(x) =

∫ ∞
0

e−t
∫
R
e2πixξ−t4π2ξ2 dξ dt

=

∫ ∞
0

e−t
1√
4πt

e−
x2

4t dt =
1

2
e−|x|.

This is sometimes called the Bessel potential. Then

u(x) = (g ∗ f)(x) =
1√
4π

∫ ∞
0

∫
R

1√
t
e−t−

|x−y|2
4t f(y) dy dt =

1

2

∫
R
e−|x−y|f(y) dy.

is a solution to the equation.

Example 7.35. {
utt − uxx = 0 R× (0,∞)

u = g, ut = h R× {t = 0}.
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Fourier transform wrt x gives{
ûtt(ξ, t) + 4π2ξ2û(ξ, t) = 0,

û = ĝ, ût = ĥ.

Solving the ODE we first get the characteristic equation

r2 = −4π2ξ2 ⇒ r = ±i2πξ,

and we get

û(ξ, t) = A(ξ) cos(2πξt) +B(ξ) sin(2πξt).

By the initial conditions

û(ξ, 0) = A(ξ) = ĝ(ξ),

ût(ξ, 0) = 0 + 2πξ cos(0)B(ξ) = ĥ(ξ).

Thus for ξ 6= 0

û(ξ, t) = ĝ(ξ) cos(2πξt) +
ĥ(ξ)

2πξ
sin(2πξt).

Then let H(x) =
∫ x
−∞ h(y) dy (assume that exists) so that H ′ = h and

further by Lemma 7.28

2πiξĤ(ξ) = ĥ(ξ).

From this we get

û(ξ, t) = ĝ(ξ) cos(2πξt) +
ĥ(ξ)

2πξ
sin(2πξt)

= ĝ(ξ)
1

2
(e2πiξt + e−2πiξt) +

ĥ(ξ)

2πξ

1

2i︸ ︷︷ ︸
= 1

2
Ĥ

(e2πiξt − e−2πiξt)

L7.28
=

1

2
( ̂g(x+ t)(ξ) + ̂g(x− t)(ξ) +

1

2

(
̂H(x+ t)(ξ)− ̂H(x− t)(ξ)

)
.

From this it follows

u(x, t) =
1

2
(g(x+ t) + g(x− t) +

1

2

(
H(x+ t)−H(x− t)

)
=

1

2
(g(x+ t) + g(x− t) +

1

2

∫ x+t

x−t
h(y) dy,

i.e. D’Alembert formula. Naturally we need suitable assumptions so that the
above computations are valid.
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7.3.1. Fourier transform in Rn. The Fourier transform extends to Rn in a
straightforward manner: The defintions of L1(Rn) and S(Rn) are analogous
as well as

F (f) = f̂(ξ) =

∫
Rn
f(x)e−2πix·ξ dx. (7.28)

and inverse

F−1(f)(ξ) :=

∫
Rn
f(ξ)e2πix·ξ dξ.

Lemma 7.36. Suppose that f, g ∈ S(Rn). Then

(i)
(̂
df
dxj

)
(ξ) = 2πiξj f̂(ξ).

(ii) f̂ ∗ g = ĝf̂

Proofs are similar to the one dimensional case.

Example 7.37. {
ut −∆u = 0 Rn × (0,∞)

u(x, 0) = g(x) Rn × {t = 0}.

We assume that g is suitable for the following computation. Now we Fourier
transform only with respect to x:{

ût(ξ, t) +
∑n

j=1 4π2ξ2
j û(ξ, t) = ût(ξ, t) + 4π2 |ξ|2 û(ξ, t) = 0

û(ξ, 0) = ĝ(ξ) .

We solve the ordinary differential equation ût+4π2 |ξ|2 û = 0 as usual to get

û(ξ, t) = Ce−4π2t|ξ|2 .

By

û(ξ, 0) = C = ĝ(ξ).

Thus

û(ξ, t) = ĝ(ξ)e−4π2t|ξ|2

and

u = F−1(ĝ(ξ)e−4π2t|ξ|2)

= F−1(ĝ ∗ Φ)

= g ∗ Φ,
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where Φ is such that Φ̂(ξ) = e−4π2t|ξ|2. Now

Φ(x) = F−1(e−4π2t|ξ|2)(x)

=

∫
Rn
e2πix·ξ−4π2t|ξ|2 dξ

=

∫
Rn
e
∑n
j=1 2πixjξj−4π2tξ2j dξ

= Πn
j=1

∫ ∞
−∞

e2πixjξj−4π2tξ2j dξj .

Selecting (a = 2πxj , b = 4π2t) in (7.27), we get∫ ∞
−∞

eiaξj−bξ
2
j dξj = e−

a2

4b

√
π

b

= e
−

(2πxj)
2

4(4π2t)

√
π

4π2t

= e−
x2j
4t

1√
4πt

.

Combining

Φ(x) = Πn
j=1

∫ ∞
−∞

e2πixj ·ξj−4π2tξ2j dξj

= Πn
j=1e

−
x2j
4t

1√
4πt

= e−
|x|2
4t

1

(4πt)n/2
.

Thus the full solution

u(x, t) =
1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t g(y) dx,

that we encountered already before.
8.11.2017

7.3.2. About the definition and extensions. After seeing applications to PDEs
we go back to the definition in R.

Example 7.38 (Warning). The Fourier transform is well defined for f ∈
L1(R) because ∣∣∣f(x)e−2πixξ

∣∣∣ = |f(x)|

which is integrable. However, nothing guarantees that f̂(ξ) would be in
L1(R). Indeed let f : R → R, f(x) = χ(−1/2,1/2)(x), which is in L1(R).
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Then for ξ 6= 0,

f̂(ξ) =

∫
R
f(x)e−2πixξ dx

=

∫ 1/2

−1/2
e−2πixξ dx

=

∫ 1/2

−1/2
cos(2πxξ) dx− i

∫ 1/2

−1/2
sin(2πxξ) dx︸ ︷︷ ︸

=0

=
/1/2

−1/2

sin(2πxξ)

2πξ

=
2 sin(πξ)

2πξ
=

sin(πξ)

πξ
,

but sin(πξ)
πξ is not integrable (the integral of the positive part = ∞ and simi-

larly for the integral over the negative part over any interval (a,∞)).

The problem described in the example above does not appear for the
functions that are smooth and decay rapidly at the infinity, the Schwartz
class that we defined before.

Next we prove Plancherel’s theorem. The theorem plays a central role,
when extending the definition of the Fourier transform to the L2-functions.

Theorem 7.39 (Plancherel). If f ∈ S(R), then

||f ||2 = ||f̂ ||2 =
∣∣∣∣F−1f

∣∣∣∣
2
. (7.29)

It also holds that if f ∈ L1(Rn) ∩ L2(Rn), then f̂ = F (f) ∈ L2(Rn) and
F−1(f) ∈ L2(Rn) and the same norm equalities hold.

The last statement above after ’It also holds...’ would also allow us to for-
mulate the theory without Schwarz class by approximating L1(Rn)∩L2(Rn)
below.

Theorem 7.40. Let f ∈ L2(R), and φj ∈ S(R), j = 1, 2, . . . such that

lim
j→∞

||φj − f ||2 = 0,

which exists. Then there exists a limit which we denote by f̂ such that

lim
j→∞

||φ̂j − f̂ ||2 = 0.

The function f̂ is called a Fourier transform of f ∈ L2(R). Moreover, f̂
does not depend on the choice of an approximating sequence.

Proof. First of all, there exists a sequence φj ∈ S(R), j = 1, 2, . . . such that

lim
j→∞

||φj − f ||2 = 0
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because S(R) is dense in L2(R): We have already seen that C0(R) is dense
in L2(R). On the other hand, if f ∈ C0(R) then C∞0 (R) 3 f ∗ φε → f in
L2(R), where φε is a standard mollifier, and we see that C∞0 (R) is dense in
L2(R), which is contained in S(R).

Then by Plancherel’s theorem

||φ̂j − φ̂k||2 = ||φj − φk||2 → 0

as j, k →∞ and thus φ̂j , j = 1, 2, . . . is a Cauchy sequence. Since L2(R) is

complete, φ̂j converges to a limit, which we denote by f̂ .

Next we show that the limit is independent of the approximating sequence.
Let ϕj be another sequence such that

ϕj → f in L2(R)

and let g ∈ L2(R) be the limit

ϕ̂j → g in L2(R).

Then

0
φj , ϕj → f

= lim
j→∞

||ϕj − φj ||2
Plancherel

= lim
j→∞

||ϕ̂j − φ̂j ||2 = ||g − f̂ ||2. �

Similarly we obtain a unique inverse Fourier transform of any L2-function.

We state separately a result from the previous proof.

Corollary 7.41 (Plancerel in L2). If f ∈ L2(R), then

||f ||2 = ||f̂ ||2.

Remark 7.42. • Now, we could extend the basic properties of Lemma
7.28 to L2 using approximations in the proofs.
• There are several versions of the Fourier-transform: for example

F (u) =
1

(2π)n/2

∫
Rn
e−ix·ξu(x) dx,

F−1(u) =
1

(2π)n/2

∫
Rn
eix·ξu(ξ) dξ,

in the Evans book. In each of the version, you will be having the
2π-popping up somewhere.
• There are plenty of tables of Fourier transforms.
• There are other integral transforms like Laplace transform, s ≥ 0

u#(s) =

∫ ∞
0

e−stu(t) dt

that are useful in solving PDEs. This one for example for the heat
equation taking Laplace transform wrt t that runs from (0,∞).
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8. Matlab

8.1. Getting started.

• Readily installed on the university computers
• Once the command prompt is started, set ’Current directory’ from

the pull down menu, for example U:\MATS230. You can create a new
directory also in Matlab writing mkdir(’U:\MATS230’).
• Instead of using pull down menu, you can also write cd U:\MATS230

to change the current directory.
• If you save data on Matlab, they are now saved to this directory,

or if you write your own code put the file in this directory, so that
Matlab can find it.

8.2. Help.

• doc: open interactive manual
• lookfor: search for keyword in all help entries
• help: show function’s help entry,

>> lookfor identity

EYE Identity matrix.

SPEYE Sparse identity matrix.

>> help eye

EYE Identity matrix.

EYE(N) is the N-by-N identity matrix.

...

>> a=eye(2)

a =

1 0

0 1

• Summary:
doc Open help browser.
help Display help of a command.
lookfor Search functions with a keyword.
whos Display all defined variables.
clear Clear workspace variables.
diary Save command window input/output to

a file.

8.3. Default variables. Reserved variables:
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ans Answer of the most recent unassigned calcu-
lation.

pi Value of π.
i or j Imaginary unit.
inf Positive infinity.
nan Not-a-number.

8.4. Variables.

• = assigns to the variable named on the left the value on the right as
we saw above
• Basic data type us matrix: scalar is 1 × 1 matrix, vectors N × 1

(column) or 1×N (row)
• ; at the end of the line means that the result will not be displayed

on the command prompt (, or <Enter> alone that it is displayed).
Remember to put ; when assigning for example big matri-
ces!!!
• <Enter> executes the command written on the line
• All the usual operations +, -, *, /, \, ^ are matrix opera-

tions!!!
• Componentwise operations by adding a dot .*, ./, .\, .^.
• ’ on Hermitean transpose ja .’ transpose (same for real matrices).
• . desimal point
• % comment (you may write notes in the code)
• [ ] creating matrix, collecting block matrix, assigning multible out-

puts on variables.

>> a=[1 3; 2,4]

a =

1 3

2 4

>> x = [5;6]

x =

5

6

>> x2=a*x

x2 =

23

34

>> x2*x

??? Error using ==> mtimes

Inner matrix dimensions must agree.

>> x2+x

ans =

28
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40

>> pi*a

ans =

3.1416 9.4248

6.2832 12.5664

• Plenty of ready functions : For example, sin, cos, tan, asin, acos,
atan, sqrt, exp, log, abs, mod.
• See also: help elfun.

>> y=sin(x); % Lasketaan sini x:n alkioista

>> y’

ans =

-0.9589 -0.2794

>> x2.*x

ans =

115

204

>> x2’*x

ans =

319

>> a*[1+3i; 2.5]

ans =

8.5000 + 3.0000i

12.0000 + 6.0000i

8.5. Indexing.

• Matrix indexing: you can pick elements using brackets. Indexing
begins with 1 in Matlab, not with zero.
• : alone creates a vector with consecutive integers or any specified

interval. In indexing means all the entries in a row or column.

>> a

a =

1 4 7

2 5 8

3 6 9

>> a(1,2)

ans =

4

>> a(1,:)

ans =

1 4 7

>> a(:,2:end)

ans =
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4 7

5 8

6 9

>> b = 1:3

b =

1 2 3

>> a(b, [1 3])

ans =

1 7

2 8

3 9

>> a(1:2,1:2) = eye(2)

a =

1 0 7

0 1 8

3 6 9

• Summary:
a=[1;2;3] Set the variable a to a column vector

(1, 2, 3).

[1,2,3;4,5,6] Matrix

[
1 2 3
4 5 6

]
.

[X Y] Block matrix
[
X Y

]
.

2:5 A vector (2, 3, 4, 5).
1:3:10 A vector (1, 4, 7, 10).
a(2) 2nd element of a vector.
a(1,2) (1,2):th element of a matrix.
a(1,:) first row of a matrix.
a(:,3)=b Set the third column of matrix a to the

value b.
a(3:2:end,:) Matrix formed by every second rows from

the third to the last row of a.
[a,b]=fun(x,y) Call function fun with arguments x and y

and assign the two return values to vari-
ables a and b.

8.6. Elementary matrix operations. Some commands for creating ma-
trices.
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linspace Linearly spaced vector.
eye Identity matrix.
diag Diagonal matrix or diagonal of a matrix.
rand Random matrix with elements uniformly dis-

tributed in (0, 1).
zeros Matrix of zeros.
ones Matrix of ones.
length Length of a vector.
size Size of a matrix.
repmat Replicate matrix.
find Find nonzero elements.

See also: help elmat.

>> a=rand(3)

a =

0.9501 0.4860 0.4565

0.2311 0.8913 0.0185

0.6068 0.7621 0.8214

>> b=ones(3,1)

b =

1

1

1

>> c=zeros(1,3)

c =

0 0 0

>> d = [a b;c 42]

d =

0.9501 0.4860 0.4565 1.0000

0.2311 0.8913 0.0185 1.0000

0.6068 0.7621 0.8214 1.0000

0 0 0 42.0000

>> diag(d)

ans =

0.9501

0.8913

0.8214

42.0000

>> e = diag([pi exp(1)])

e =

3.1416 0

0 2.7183

8.7. Graphics.
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• One of Matlab’s strengths is visualization.
• Also here you create matrices or vectors and then just plot the values

(examples below)
• Several ways of creating vectors that can be used in plots

>> x=0:0.1:0.5

x =

0 0.1000 0.2000 0.3000 0.4000 0.5000

>> x=linspace(0,0.5,5)

x =

0 0.1250 0.2500 0.3750 0.5000

• Lets plot...

>> x = linspace(-2*pi,2*pi,1000);

>> y = sin(x);

>> plot(x,y)

−8 −6 −4 −2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

• Lets add another curve and customise settings:

>> hold on

>> plot(x, 0.5*cos(x), ’r--’)

>> axis tight, grid on, box off

>> xlabel ’x’; ylabel ’y’; title ’Esimerkkikuva’

>> set(gca,’tickdir’,’out’);

>> print -depsc example.eps
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−5 0 5

−0.5

0

0.5

x

y

Esimerkkikuva

• Vizualization of 2D functions. First we need meshgrid:

x = 0 1 2 3

y = 8 9 10

>> [X,Y]=meshgrid(x,y)

X =

0 1 2 3

0 1 2 3

0 1 2 3

Y =

8 8 8 8

9 9 9 9

10 10 10 10

• Continue visualization...

>> x = linspace(-2*pi,2*pi,100); y=x;

>> [xx,yy] = meshgrid(x,y);

>> f = sin(xx).*cos(yy) ...

.*exp(-(sqrt(xx.^2+yy.^2)-5).^2);

>> surf(x,y,f);

>> imagesc(x,y,f); colorbar

>> contour(x,y,f)
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−5

0

5

−5

0

5

−0.5

0

0.5

surf(x,y,f)

imagesc(x,y,f)

−5 0 5

−5

0

5
−0.5

0

0.5

contour(x,y,f)

−5 0 5

−5

0

5

15.5.2017

8.8. M-files and own functions.

• You can create ”M-files” for example mfile.m, that includes a list
of commands

N = 3;

a = ones(N,1);

x = [a, rand(N,N)]

• This corresponds to the typing the commands on the command
prompt.
• ’Another type of ’M-file” is a functions meaning that you can call it

with the parameters and it returns values.
• You execute the file calling it by name without .m so in this case

mfile
• Function is saved in a file with the same name. For example func-

tion foo, we create foo.m.

>> edit foo

(write function on an editor and save it)

>> z = foo(15,4)
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z =

15.5242

• foo.m looks as:

function d = foo(x, y)

d = sqrt(x^2+y^2);

• Function needs to follow this syntax: function name on the first line
and file name are the same.

8.9. Loops and logical expressions.

• Matlab like other programming languages has loops and logical
expressions

– if: expression inside is executed if the condition is true: Con-
dition is ”true”, if it is not zero.

– for-loop goes through the values of a given vector.
– while-loop goes on as long as the condition is true

• In logical conditions you may use for example <, <=, ==, ~=, &, |

(help relop).

N = 6;

a = eye(N);

for k=1:N

j = 1;

while j<k

if mod(k,j) == 0

a(k,j) = 1;

end

j = j+1;

end

end

• Logical operations also work for matrices, and can be used in index-
ing

>> a=1:5, b=rand(1,5)*5

a =

1 2 3 4 5

b =

4.0736 4.5290 0.6349 4.5669 3.1618
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>> a<b

ans =

1 1 0 1 0

>> find(a<b)

ans =

1 2 4

>> a(a<b)=0

a =

0 0 3 0 5

>> a=1:5

a =

1 2 3 4 5

>> a(find(a<b))=0

a =

0 0 3 0 5

8.10. Programming strategy.

• For-loops are slow in Matlab! If possible replace with built-in ma-
trix operations!
• Not like this:

n=1100;

x=linspace(0,2*pi,n);

y=linspace(pi,3*pi,n);

for i=1:n,
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for j=1:n,

X(i,j)=x(i);

Y(i,j)=y(j);

Z(i,j)=sin(x(i))*cos(y(j));

end

end

mesh(X,Y,Z)

• But like this:

n=1100;

x=linspace(0,2*pi,n);

y=linspace(pi,3*pi,n);

[X,Y]=meshgrid(x,y);

Z=sin(X).*cos(Y);

mesh(X,Y,Z)

8.11. Saving and loading data.

• Variables can be saved by a command save, and loaded by load

>> a=1:5;

>> save foo

>> clear

>> a

??? Undefined function or variable ’a’.

>> load foo

>> a

a =

1 2 3 4 5

• You can also load data produced by other programs. For example in
Excel you can save data in CSV-form (Comma Separated Values).
Read data in Matlab using csvread or dlmread.

9. Numerics

9.1. Laplace equation. Numerics has tight connections to the theory. For
example many numerical methods for producing solutions are related to
the existence methods. Convergence proofs for numerical approximations
require regularity estimates etc. These are however mostly beyond our scope
and we simply aim at producing (formally) approximating solutions using
difference methods.



110 PDE

Let u : R→ R be a smooth function. By Taylor’s theorem

u(x+ h) = u(x) + u′(x)h+
1

2
u′′(x)h2 +

1

6
u′′′(x)h3 +O(h4)

u(x− h) = u(x)− u′(x)h+
1

2
u′′(x)h2 − 1

6
u′′′(x)h3 +O(h4),

the big oh notation means O(h4) ≤ Ch4. Subtracting, we get

u′(x) =
1

2h
(u(x+ h)− u(x− h)) +O(h2)

and summing up

u′′(x) =
1

h2
(u(x− h)− 2u(x) + u(x+ h)) +O(h2).

Next we divide the interval [0, 1] into

xj = jh, h =
1

m+ 1
, j = 0, 1, . . . ,m+ 1.

Consider Poisson equation

∆u = f

in 1D. Thus dropping the error terms

∆u = u′′(x) ≈ 1

h2
(u(x+ h)− 2u(x) + u(x− h)),

and 
∆u(x) = f(x), x ∈ (0, 1)

u(0) = a

u(1) = b

can be discretized as

1

h2


h2 0 . . . . . . . . . 0
1 −2 1 0 . . . 0
...

. . .
. . .

. . . . . .
...

0 . . . 0 1 −2 1
0 . . . . . . . . . 0 h2




u0

u1
...
um
um+1

 =


a
f1
...
fm
b

 ,
where we have encoded the boundary values on the first and the last row.
If u(0) = 0 = u(1) we may drop the first and the last row by observing

u′′(1− h) =
1

h2
(u(1− 2h)− 2u(1− h) + u(1))

=
1

h2
(u(1− 2h)− 2u(1− h))

u′′(h) =
1

h2
(u(0)− 2u(h) + u(2h))

=
1

h2
(−2u(1− 2h) + u(2h)).
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Thus the problem can be discretized as ∆hu = f , missä ∆h ∈ Rm×m, u, f ∈
Rm

∆h =
1

h2


−2 1 0 . . . 0 0
1 −2 1 0 . . . 0
...

. . .
. . .

. . . . . .
...

0 . . . 0 1 −2 1
0 . . . . . . 0 1 −2

 , f =

 f1
...
fm

 , and u =

u1
...
um

 .

We want to solve u and know f so

u = ∆−1
h f,

where ∆−1
h is the inverse of the matrix ∆h. To highlight that we are using

Dirichlet condition on both ends, we denote ∆h =: ∆h,D−D. If we have
nonzero Dirichlet condition u(0) = a, we get

u′′(h) =
1

h2
(a− 2u(h) + u(2h)) =

1

h2
(−2u(h) + u(2h)) +

a

h2

and moving a/h2 in f , we can still write the equation in the form ∆hu = . . ..

To obtain the Neumann boundary condition at 1, observe

u(1− h) = u(1)− u′(1)h+
1

2
u′′(1)h2 − 1

3!
u′′′(1)h3 +O(h4)

−4u(1− h) = −4u(1) + 4u′(1)h− 4
1

2
u′′(1)h2 + 4

1

3!
u′′′(1)h3 +O(h4)

u(1− 2h) = u(1)− u′(1)2h+
1

2
u′′(1)(2h)2 − 1

3!
u′′′(1)(2h)3 +O(h4)

3u(1) = 3u(1).

Summing up the last three equations we get

u(1− 2h)− 4u(1− h) + 3u(1) = 0 + 2hu′(1) + 0 +O(h3)

i.e.
1

2h
(u(1− 2h)− 4u(1− h) + 3u(1)) +O(h2) = u′(1). (9.30)

Thus 
∆u(x) = f(x), x ∈ (0, 1)

u(0) = a

ux(1) = b

corresponds to

1

h2


h2 0 . . . . . . . . . 0
1 −2 1 0 . . . 0
...

. . .
. . .

. . . . . .
...

0 . . . 0 1 −2 1

0 . . . . . . h
2 −h

2 4 h
2 3




u0

u1
...
um
um+1

 =


a
f1
...

fm−1

b

 .
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If u′(1) = 0 then by (9.30)

u(1) =
1

3
(4u(1− h)− u(1− 2h)).

Using this in the second order expansion

u′′(1− h) ≈ 1

h2
(u(1− 2h)− 2u(1− h) + u(1))

=
1

h2
(u(1− 2h)− 2u(1− h) +

1

3
(4u(1− h)− u(1− 2h)))

=
1

h2
(
2

3
u(1− 2h)− 2

3
u(1− h)). (9.31)

With u(0) = u′(1) = 0 using (9.31) we get the discretization of the Lapla-
cian with Dirichlet-Neumann boundary conditions

∆h = ∆D−N,h =
1

h2


−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
...

. . .
. . .

. . . . . .
...

0 . . . 0 1 −2 1
0 . . . . . . 0 2

3 −2
3

 ,

∆h ∈ Rm×m, and the equation again takes the form

∆hu = f, u = ∆−1
h f,

u, f ∈ Rm. If we have nonzero boundary condition, we may again move the
excess terms into f and write the equation in the form ∆hu = . . ..

9.1.1. 2 dimensional case. Consider Ω = (0, 1)× (0, 1). Set

m1,m2 ∈ N, h1 =
1

m1 + 1
, h2 =

1

m2 + 1
.

Now it is convenient to write the approximative values u(ih1, jh2) ≈ ui,j as

U := Uh =

 u1,1 . . . u1,m2

...
...

um1,1 . . . um1,m2

 , i = 1, . . . ,m1, j = 1, . . . ,m2.

Approximating again

ux1x1 ≈
1

h2
1

(ui+1,j − 2ui,j + ui−1,j)

ux2x2 ≈
1

h2
2

(ui,j+1 − 2ui,j + ui,j−1).

In matrix form

Ux1x1 ≈ ∆h1,D−DU

Ux2x2 ≈ U∆T
h2,D−D.



PDE 113

Thus we get a discretization for the 2-dimensional Laplacian

∆u ≈ ∆h1h2U := ∆h1,D−DU + U∆T
h2,D−D.

We want to solve for U and therefore wish to write ∆h1,D−DU+U∆T
h2,D−D

in the form matrix*vector since this is then easy to solve by inverting the
matrix. To this end, let us then denote the vector

uh = T (U) = (u1,1, . . . , um1,1, u1,2, . . . , um1,m2)T ∈ Rm1m2

i.e. we write the matrix U as a vector by putting the colums at the top of
each other (In Matlab simply U(:)).

Lemma 9.1. Let A ∈ Rm1×m1 , U ∈ Rm1×m2 , B ∈ Rm2×m2

T (AUBT ) = (B ⊗A)T (U)

where

B ⊗A =


b11A b12A . . . b1m2A
b21A b22A . . . b2m2A

...
...

...
bm21A bm22A . . . bm2m2A

 .

Proof that we omit is simply writing down carefully the both sides.

Using the lemma, we have

T (∆h1h2U) = T (∆h1,D−DU + U∆T
h2,D−D)

= T (∆h1,D−DUI
T
m2

+ Im1U∆T
h2,D−D)

lemma
= (Im2 ⊗∆h1 + ∆h2 ⊗ Im1)uh,

where Im1 ∈ Rm1×m1 , Im2 ∈ Rm2×m2 are identity matrices. Taking h =
h1 = h2, we obtain

∆h =
1

h2




−4 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 −4

 I

I


−4 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 −4

 I

. . .
. . .

. . .

I


−4 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 −4




Example 9.2. Let us solve problem{

∆u(x) = 0 x = (x1, x2) ∈ Ω = (0, 1)× (0, 1)

u = f ∂Ω,
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with

f(x) = 1− |1− 2x1| .

0

1

0.2

0.8
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1

0.6

0.6 0.8

0.8

0.60.4

1

0.4
0.2

0.2

0 0

% Dim2_d.m

% This solves Laplace u(x)=0

% in unit square with the boundary values u(x)=f(x).

%

n1=29;

n2=29;

h1=1/(n1+1);

h2=1/(n2+1);

D1=sparse(-diag(2*ones(n1,1))+diag(ones(n1-1,1),1)...

+diag(ones(n1-1,1),-1))/h1^2;

D2=sparse(-diag(2*ones(n2,1))+diag(ones(n2-1,1),1)...

+diag(ones(n2-1,1),-1))/h2^2;

M=sparse(kron(D2,eye(n1))+kron(eye(n2),D1));

b=zeros(n1*n2,1);

U=zeros(n1+2,n2+2);

for i=1:n1,

k=i; s=f([i*h1;0]); % boundary values

b(k)=b(k)-s/h2^2; U(i+1,1)=s; % added

k=i+n1*(n2-1); s=f([i*h1;1]); % to b

b(k)=b(k)-s/h2^2; U(i+1,n2+2)=s; % and to

end % matrix U

for j=1:n2 ,

k=1+n1*(j-1); s=f([0;j*h2]);

b(k)=b(k)-s/h1^2; U(1,j+1)=s;

k=n1+n1*(j-1); s=f([1;j*h2]);

b(k)=b(k)-s/h1^2; U(n1+2,j+1)=s;

end

u=M\b; % solve equation
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for j=1:n2 , % values to

U(2:(n1+1),j+1)=u((j-1)*n1+1:j*n1); % matrix U

end;

U(1,1)=f([0;0]); U(n1+2,1)=f([1;0]); % and

U(1,n2+2)=f([0;1]); U(n1+2,n2+2)=f([1;1]); % corners

mesh(linspace(0,1,n2+2),linspace(0,1,n1+2),U);

9.2. Wave equation. One dimensional case: we may discretize both in space and time.
Let δ > 0 be time discretization parameter and h = 1/(1 + m) the space discretization
parameter. For the wave equation

utt − uxx = 0, in (0, 1)× (0,∞)

u(x, 0) = g(x), ut(x, 0) = h(x), on (0, 1)× {t = 0}
u(0, t) = u(1, t) = 0.

we get a discretized version

1

δ2
(uk+1
h − 2ukh + uk−1

h ) = ∆hu
k
h,

where k refers to the time step k i.e. t = kδ, and

ukh =

uk1
...

ukm

 , gh =

 g1
...
gm

 , hh =

h1

...
hm

 .

We need two values u0
h and u1

h to start with the method. We get

u0
h = gh

u1
h ≈ uh(0) + u′h(0)δ +

1

2
u′′h(0)δ2 +O(δ3)

≈ u0
h + δhh +

1

2
∆huh(0)δ2

≈ gh + δhh +
1

2
∆hghδ

2,

were we used initial conditions, Taylor’s theorem and the equation, and uh(0) denotes
vector obtained by disretizing in space but not time. This gives discretized problem{

uk+1
h = 2ukh − uk−1

h + δ2∆hu
k
h,

u0
h = gh, u1

h = (I + δ2

2
∆h)gh + δhh.

One could also discretize the heat equation along the similar lines but using the discretiza-
tion for the first order time derivative.

We tested the method in the lectures with the wave equation and the code

% D1_hyp.m

%

% Solves 1-dim wave equation

% u_tt=u_xx

% initial conditions u(x,0)=g(x), u_t(x,0)=h(x) and u(0)=u(1)=0

%

n=99; h1=1/(n+1); dt=0.01; nt=200;
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D=(diag(-2*ones(n,1))+diag(ones(n-1,1),1)+diag(ones(n-1,1),-1))/h1^2;

gh=0*D(:,1); hh=gh;

for j=1:n , gh(j)=g(j*h1); hh(j)=h(j*h1);end

uo=gh; u=gh+0.5*dt^2*(D*gh)+dt*hh;

for k=2:nt ,

un=2*u-uo+dt^2*(D*u); uo=u; u=un;

plot([0;u;0])

axis([1,n+2,-1.5,1.5]); drawnow

end

In 2D we may use the 2D discretization of the Laplacian from above. Otherwise the
methods remains the same. Here is an example that we tested in the lectures.

% D2_hyp.m

%

% Solves 2D wave eq

% u_tt=Laplace(u)

% in (0,2)x(0,2) with the boundary conditions

% u(0,x2,t)=u(2,x2,t)=0, u_{x2}(x1,0,t)=u_{x2}(x1,2,t)=0

% And initial conditions u(x,0)=f2(t), u_t(x,0)=g2(x) .

%

figure(1);

n1=2*39; n2=2*39; h1=2/(n1+1); h2=2/(n2+1); nt=200; dt=0.005;

D1=spdiags(ones(n1,1)*[1,-2,1]/h1^2,[-1,0,1],n1,n1);

D2=spdiags(ones(n2,1)*[1,-2,1]/h2^2,[-1,0,1],n2,n2);

D2(1,1:2)=[-2/3,2/3]/h2^2;

D2(n2,n2-1:n2)=[2/3,-2/3]/h2^2; % Neumann-condion

D=sparse(kron(D2,eye(n1))+kron(eye(n2),D1));

uo=zeros(n1*n2,1); gv=uo;

for i=1:n1 , for j=1:n2 , % init. cond.

uo(i+n1*(j-1))=f2([i*h1,j*h2]);

gv(i+n1*(j-1))=g2([i*h1,j*h2]);

end; end;

u=uo+0.5*dt^2*(D*uo)+dt*gv; U=zeros(n1+2,n2+2); % u(dt)

for k=2:nt , un=2*u-uo+dt^2*(D*u); uo=u; u=un; % time integration

for j=1:n2 , U(2:(n1+1),j+1)=u((j-1)*n1+1:j*n1); end; % to U plot

U(:,1)=(4*U(:,2)-U(:,3))/3;

U(:,n2+2)=(4*U(:,n2+1)-U(:,n2))/3; % values on bdr

mesh(U);

axis([1,n1+2,1,n2+2,-1.5,1]); axis off;

view(-32,24); drawnow,

end;

29.11.2017
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10. Notes

These lecture notes are mostly based on Evans: Partial Differential Equations. Other
references include the lecture notes Eirola: Osittaisdifferentiaaliyhtälöt, Kinnunen: Partial
Differential Equations, and the books DiBenedetto: Partial Differential Equations, and
Jost: Partial Differential Equations. I also thank Tero Kilpeläinen and Xiao Zhong for
providing material at my disposal.

Department of Mathematics and Statistics, University of Jyväskylä, PO Box 35,
FI-40014 Jyväskylä, Finland

E-mail address: Please email typos/errors to:mikko.j.parviainen@jyu.fi
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