(1) Since

$$
\begin{aligned}
\mathbb{E} e^{\eta X} & =\int_{0}^{\infty} \mathbb{P}\left(e^{\eta X}>t\right) d t=\int_{0}^{1} \mathbb{P}(\Omega) d t+\int_{1}^{\infty} \mathbb{P}\left(e^{\eta X}>t\right) d t \\
& =1+\int_{0}^{\infty} \mathbb{P}\left(e^{\eta X}>e^{\eta s}\right) \eta e^{\eta s} d s=1+\eta \int_{0}^{\infty} \mathbb{P}(X>s) e^{\eta s} d s \\
& =1+\eta \int_{0}^{\infty} e^{\eta s}(1-F(s)) d s
\end{aligned}
$$

we get $\int_{0}^{\infty} e^{\eta s}(1-F(s)) d s=\frac{1}{\eta}\left(\mathbb{E} e^{\eta X}-1\right)$.
(2) (a)

$$
\frac{1-F(x)}{e^{-\lambda x}}=\frac{\left(\frac{b}{x}\right)^{a}}{e^{-\lambda x}}=b^{a} \frac{e^{\lambda x}}{x^{a}} \rightarrow \infty
$$

as $x \rightarrow$ for any $\lambda>0$, since the exponential function increases faster than any power function. Thus the distribution is heavy tailed.
(b)

$$
\frac{1-F(x)}{e^{-\lambda x}}=\frac{e^{-c x^{\tau}}}{e^{-\lambda x}}=e^{\lambda x-c x^{\tau}}=e^{\lambda x\left(1-\frac{c}{\lambda} x^{\tau-1}\right)}
$$

If $\tau<1$, then $x^{\tau-1} \rightarrow 0$ as $x \rightarrow \infty$ and

$$
\lim _{x \rightarrow \infty} e^{\lambda x\left(1-\frac{c}{\lambda} x^{\tau-1}\right)}=\lim _{x \rightarrow \infty} e^{\lambda x}=\infty
$$

for all $\lambda>0$. Hence the Weibull distribution is heavy tailed for $\tau<1$.
If $\tau \geq 1$, then $x^{\tau-1} \geq 1$ for all $x>0$ and $-\frac{c}{\lambda} x^{\tau-1} \leq-\frac{c}{\lambda}$. Choose $\lambda<c$, so that $1-\frac{c}{\lambda} x^{\tau-1} \leq 1-\frac{c}{\lambda}<0$. Then

$$
\lim _{x \rightarrow \infty} e^{\lambda x\left(1-\frac{c}{\lambda} x^{\tau-1}\right)} \leq \lim _{x \rightarrow \infty} e^{\lambda x\left(1-\frac{c}{\lambda}\right)}=\lim _{x \rightarrow \infty} e^{(\lambda-c) x}=0
$$

Hence the Weibull distribution is light tailed for $\tau \geq 1$.
(3) (a)

$$
\begin{aligned}
q_{n} & =\binom{m}{n} p^{n}(1-p)^{m-n}=\frac{m!}{(m-n)!n!} p^{n}(1-p)^{m-n} \\
& =\frac{(m-n+1) m!}{(m-n+1)(m-n)!(n-1)!n} p p^{n-1} \frac{1}{1-p}(1-p)^{m-n+1} \\
& =\frac{m-n+1}{n} \frac{m!}{(m-n+1)!(n-1)!} \frac{p}{1-p} p^{n-1}(1-p)^{m-n+1} \\
& =\left(-1+\frac{m+1}{n}\right) \frac{p}{1-p} \frac{m!}{(m-(n-1))!(n-1)!} p^{n-1}(1-p)^{m-(n-1)} \\
& =\left(-\frac{p}{1-p}+\frac{(m+1) \frac{p}{1-p}}{n}\right) q_{n-1},
\end{aligned}
$$

so that $a=-\frac{p}{1-p}$ and $b=(m+1) \frac{p}{1-p}$.
(b)

$$
\begin{aligned}
q_{n} & =\binom{v+n-1}{n} p^{v}(1-p)^{n}=\frac{(v+n-1)!}{(v+n-1-n)!n!} p^{v}(1-p)^{n} \\
& =\frac{(v+n-2)!(v+n-1)}{(v-1)!(n-1)!n} p^{v}(1-p)(1-p)^{n-1} \\
& =\frac{v+n-1}{n}(1-p) \frac{(v+n-2)!}{(v-1)!(n-1)!} p^{v}(1-p)^{n-1} \\
& =\left(1+\frac{v-1}{n}\right)(1-p) \frac{(v+(n-1)-1)!}{(v+(n-1)-1-(n-1))!(n-1)!} p^{v}(1-p)^{n-1} \\
& =\left(1-p+\frac{(v-1)(1-p)}{n}\right)\binom{v+(n-1)-1}{n-1} p^{v}(1-p)^{n-1} \\
& =\left(1-p+\frac{(v-1)(1-p)}{n}\right) q_{n-1},
\end{aligned}
$$

so that $a=1-p$ and $b=(v-1)(1-p)$.
(4) $N(T, \omega)-N(T-, \omega)=1$ if and only if there is a jump in the path at T, that means $T_{n}(\omega)=T$ for some $n=1,2, \ldots$. Therefore

$$
\begin{aligned}
\mathbb{P}(N(T)-N(T-)=1) & =\mathbb{P}\left(T_{n}=T \text { for some } n=1,2, \ldots\right)=\mathbb{P}\left(\bigcup_{n=1}^{\infty}\left\{T_{n}=T\right\}\right) \\
& =\sum_{n=1}^{\infty} \mathbb{P}\left(T_{n}=T\right) .
\end{aligned}
$$

We have $T_{n}=W_{1}+\cdots+W_{n}$, where W_{1}, \ldots, W_{n} are independent and have exponential distribution. Then also T_{n} has a density function h_{n} (Exercises -1-) and

$$
\mathbb{P}\left(T_{n}=T\right)=\int_{\mathbb{R}} \mathbb{I}_{\{T\}}(x) h_{n}(x) d x=\int_{T}^{T} h_{n}(x) d x=0 .
$$

Hence $\mathbb{P}(N(T)-N(T-)=1)=0$.

