Homework assignment 3a.

(Dated: January 16, 2020)

Fermi liquid theory (Chapter 6 of Coleman' textbook)

Kinetic equation for quasiparticle distribution function $n = n(\mathbf{r}, \mathbf{p}, \sigma, t)$ where $\mathbf{r}, \mathbf{p}, \sigma, t$ are coordinate, momentum, spin and time, reads:

$$\frac{\partial n}{\partial t} + \frac{\partial n}{\partial \boldsymbol{r}} \frac{\partial \varepsilon}{\partial \boldsymbol{p}} - \frac{\partial n}{\partial \boldsymbol{p}} \frac{\partial \varepsilon}{\partial \boldsymbol{r}} = 0 \tag{1}$$

Iterations between quasiparticles described in the framework of Fermi-liquid theory through the dependence of energy ε on the distribution function which is expressed by Landau interaction function $F_{\sigma,\sigma'}(\mathbf{p},\mathbf{p}')$.

• Problem 1. Zero sound and plasma waves.

(a) Calculate the spectrum of collective modes in Fermi liquid with short-range scalar interaction between quasiparticles when $F = F_0^s$.

(b) Calculate the spectrum of collective modes in Fermi liquid the long-range (Coulomb) interaction when $F(\mathbf{p}, \mathbf{p}') = 4\pi e^2 \nu / |\mathbf{p} - \mathbf{p}'|^2$, where ν is density of states in the Fermi gas, e is electron charge.

• Problem 2. Spin waves. Calculate the spectrum of collective modes in Fermi liquid with spin-dependent interaction between quasiparticles

 $F_{\sigma,\sigma'} = \sigma \sigma' F_0^a$ where $\sigma, \sigma' = \pm 1$ for spin-up/down quasiparticles.