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We derive the full microscopic set of equations governing small oscillations : 
(1) in the magnitude of the superconducting order parameter (the Schmid 
mode), (2) the phase of the order parameter in a neutral superfluid (the 
Anderson-BogoIiubov mode), and (3) the coupled oscillations in the phase 
of the order parameter and in the electric field (the transverse, or Carlson- 
Goldman mode). The derivation is not limited by the restrictions of previous 
papers. No limitations are required for the magnitude of the frequency, the 
concentration of impurities, or the magnitude of the temperature. Special 
attention is given to the Carlson-Goldman (CG) mode, whose dispersion law 
frequency (oJ) vs. wave vector (k) and damping is calculated. The velocity of 
the CG mode in the propagation region oJ/Ik [ is found to equal c =  
[22xDx(21rTr)], where D is the diffusion constant and X is the function 
appearing in the theory of superconducting alloys. In the dirty (l << ~:o) and 
clean (l >> ~o) limits, this expression reduces to those previously derived by 
Schmid and Sch6n, and by Artemenko and Volkov, respectively. A t  large 
values of k, the frequency of the CG mode approaches a limiting value of 2 h. 
The damping is small in this limit and tends to zero as Ik[ increases. 

Our results are obtained by calculating the linear response of a super- 
conductor to a perturbation in the magnitude and phase of the order parameter, 
and the electromagnetic potentials. The response of the superconductor to these 
perturbations is calculated by properly continuing the thermodynamic per- 
turbation function of linear response from imaginary frequencies to the real 
ones, then inserting into the self-consistency BCS equation and Poisson's 
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equation. The derivation is based on the self-consistent B C S  scheme. No 
kinetic equations are introduced at any stage of the calculation. 

1. INTRODUCTION 

The dynamical properties of superconductors have proven to be quite 
complex, requiring more than a decade of development to elaborate those 
theoretical techniques necessary to treat nonlinear, nonstationary problems. 
The techniques are generally quite complex, and are effectively limited to 
specific ranges of temperature, frequency, or impurity concentration. These 
approaches have clarified the processes of order parameter relaxation, 
charge imbalance (or branch mixing) relaxation, characteristic penetration 
length for an electric field in a superconductor, and the possibility of unequal 
quasiparticle and pair chemical potentials. 

The most illuminating and, fundamentally, simplest experimental 
method for studying the dynamical properties of the order parameter is the 
pair-susceptibility technique developed by the Goldman group. 1 This 
method was originally developed theoretically by Ferrell, 2 Scalapino, 3 and 
Kulik. 4 It permits measurement of the dispersion law of collective waves 
which propagate in the superconductor. The wave vector is selected by the 
magnetic field of a given strength transverse to a tunneling junction between 
two superconductors, while the frequency is determined by the voltage 
across the junction using the Josephson relation. The method was first 
applied 5 to superconductors above the transition temperature, where the 
order parameter dynamics is simple and can be described by the time- 
dependent Ginzburg-Landau (GL) equation. 6-8 Below To, as shown by 
Gorkov and Eliashberg, 9 the GL equation is valid only in the case of gapless 
superconductors (e.g , for sufficiently strong pair-breaking scattering by 
magnetic impurities). Carlson and Goldman 1 discovered the existence of a 
collective mode of oscillation when the gap is finite but small (T ~< To), which 
we shall later refer to as the Carlson-Goldman (CG) model. Their discovery 
overcame the more or less widespread opinion that collective oscillations 
predicted for a neutral superfluid 1~ should be forced to frequencies of the 
order of the plasma frequency (oJp ~ 1016 se(:~) by virtue of the Coulomb 
interaction in a real metal. The Goldman group's experiments ~'5 stimulated 
a number of theoretical papers ~2-18 predicting low-frequency propagating 
modes in the vicinity of To. The technique of the present paper generates 
most of these results and allows one to extend many of the previous 
calculations to arbitrary electron mean free paths l, higher frequencies, and 
to all temperatures. 

The methods currently in use for studying collective oscillations in 
superconductors all lead to kinetic equations governing the time depen- 
dence of the quasiparticle distribution and the BCS self-consistency 
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equation for the order parameter. We find it more natural for the purpose 
of studying small oscillations of the superconducting order parameter not 
to invoke kinetic equations of any type, but rather to use a microscopic 
approach based on linear response theory. We perturb the symmetry- 
breaking state (here, the superconductor) by a small deviation in the 
magnitude and phase of the order parameter, followed by small perturba- 
tions in the electromagnetic field. This allows the appearance of oscillating 
modes (collective modes) of different types. We shall classify them as 
follows, following historical precedent. 

1.1. The Anderson-Bogoliubov Mode (AB Mode) 

This is a collective oscillation of the phase of the order parameter in a 
neutral superfluid Fermi liquid (we neglect Landau Fermi liquid corrections 
in what follows, treating a Fermi gas rather than a Fermi liquid). The AB 
mode is just the Goldstone mode allowed by the degeneracy of the ground 
state of the Fermi superfluid. At T = 0 and in the clean limit (l = oo) the 
frequency of the mode is given by o)= kvF/,/-3, corresponding to the 
compressibility of the Fermi gas. The mode is not heavily damped, at least at 
T = O, a direct consequence of the existence of an energy gap. 

1.2. The Schmid Mode (Longitudinal or Energy Mode) 

This type of excitation is composed of a collective oscillation in the 
magnitude of the order parameter. As discussed in Ref. 19, if a Cooper pair 
were to spontaneously dissociate, it would require the binding energy 2A 
(h being the energy gap) and so violate energy conservation. This is possible, 
however, due to the quantum mechanical energy-time uncertainty condi- 
tion, at times short compared to (2A) -1. We shall show that the magnitude 
of the order parameter, if perturbed at time t = 0, oscillates at frequency 
to = 2A, rather than relaxing directly to an equilibrium value. Inelastic 
processes, like those connected with electron-phonon or electron-electron 
collisions, will cause relaxation of this mode. One can argue that the Schmid 
mode, as it is introduced here, is not a true colIective mode because there 
does exist 2~ damping resembling Landau damping of collective oscilla- 
tions in plasmas. The oscillating perturbation in the magnitude of the order 
parameter thereby decreases in magnitude as a function of time as some 
power of 1/t. This type of damping does not require any collision mechan- 
ism, and is strong in the sense that the characteristic rate of the nonexponen- 
tial damping is of the order of A. 

1.3. The Carlson-Goldman Mode (CG or Transverse Mode) 

This type of oscillation is a coupled perturbation in the phase of the 
order parameter and electromagnetic potential. In a two-fluid picture, 
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supercurrent and normal current oscillate in such a way that there is no net 
charge produced in the superconductor. This provides for the existence of 
oscillations having small frequencies compared to the plasma frequency. 
The discussion of the properties of this mode at all impurity concentrations 
and temperatures is the main purpose of the paper. 

In Sections 2-4 the necessary techniques are developed to treat the 
general impure case and to properly take into account the electromagnetic 
effects of the oscillations. The primary physical content of the paper is 
concentrated in Section 5, in which the dispersion law of the CG mode is 
derived for arbitrary mean free paths and frequencies near the critical 
temperature To. We summarize our results in Section 6, indicating future 
extensions of the theory. We show how, even at this stage, one can include 
the effects of pair-breakers (inelastic phonon scattering) in the theory, 
obtaining as an example the frequency-dependent penetration length for an  
electric field in a superconductor (the Waldram 22 length). The calculation is 
valid for arbitrary concentration of impurities, reducing to the results of 
Artemenko et al. 23 in the dirty limit. Some lengthy calculations concerning 
the analytical continuation procedure encountered in the linear response 
theory are included in the Appendix. 

2. BASIC EQUATIONS 

In the pseudo-isospin (or Nambu) notation, the superconductor can be 
described by the Hamiltonian 

1 H = ~ Ap+q/2 (~paqo+e~bq)7-3--- (Aq. p),~o-AqT"_-A_q'r+ Ap=q/2 (1) 
pq [ m c  

where Ap, A~ are the vectors 

~ a p f ]  
A p = / a  , /,  

e -p+ J 

and "~i are the Pauli matrices: 

~0--[~0 ~], ~1=[~ 

,+ ~ . . .  [o 
~--- 2-(71 -- lr2) = 

Ap =[apl, a_p+] 

lo], 21 
~ = 1(. 1 lo] (2) 

In Eq. (1), s = (pZ/2m)- ev, sF is the Fermi energy; 4,q(t), Aq(t) stand for 
the electromagnetic scalar and vector potentials, respectively; and Aq(t) is 
the Fourier transform of the pair potential of the superconductor. 



Pair Susceptibility and Mode Propagation in Superconductors 595 

The quantities Aq, Aq* and &q, Aq should be considered as the self- 
consistent off-diagonal and diagonal potentials, respectively. To obtain a 
closed set of equations, it is necessary to take advantage of the BCS 
self-consistency condition for A: 

- t A �9 Aq(t) = g Tr ~ (Ap_q/2(t)'r+Ap+q/2(t)) (3) 
P 

and Maxwell's equations for the diagonal potentials &, A. In what follows, 
we drop the vector potential without loss of generality, because of the 
gauge-invariant nature of the theory {i.e., only the quantity (1/2m) 
IV&-(2e/c)A],  the gauge-invariant superfluid velocity, will enter in all 
physical quantities; see Section 6 for an interesting use of this idea}. The 
diagonal potential satisfies Poisson's equation, 

q2t~q(t) = 4~'e Tr ~ * (Ap-q/2 ( t )'c3Ap+q/E( t ) ) (4) 
p 

In Eqs. (3) and (4), (. �9 .) denotes the Gibbs average, and Tr the trace over 
the components of the vectors Ap, A*p. 

The Hamiltonian (1) is appropriate for a pure superconductor. To 
include impurity scattering, we add to (1) the scattering term 

t (n)  ~ . . ( s )  ^ ~ - -  
Hi =- E Ap+q/2( Vq ' 1 " 3 +  V q  " T 0 ) . l ~ k p - q / 2  ( 5 )  

Pq  

where 
V(q n's) = ~  exp ( - i q .  Ri) Vn,s(Ri) (6) 

i 

Here, V(q n's} is the Fourier transform Of the potential (n) and spin-flip (s) 
scattering amplitudes, and Ri denotes the impurity coordinates. 

It is important to note that Eqs. (3) and (4) satisfy the continuity 
condition 

Op/Ot + div j = 0 (7) 

To see -this, note that the charge density p is the right-hand side of Eq. (4) 
divided by 4~-. The current density j is given by 

t jq = e Tr ~ ( A p - q / 2 v A p + q / 2 ) ,  v = p / m  (8) 
p 

To prove Eq. (7), we calculate the derivative 

apq/dt = ie Tr Y, ([H, * A Ap-q/2~'3Ap+q/2 ]) 
p 

We then find 

aOq ~_iq ]q=2ie Tr ~ * " (Ap-q,/2 (hq_q,.C_ - ~*q+r 
a t pq' 
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The right-hand side of this equality, from the self-consistency condition (3) 
and its complex conjugate, vanishes, and our conjecture is proven. In most 
Boltzmann equation schemes (but not in the case of IOK 21 and for the 
Green's function method) the continuity equation (7) is introduced as an 
independent condition. In these schemes, the supercurrent cannot be intro- 
duced in the same manner as the quasiparticle current. Nevertheless, in a 
proper kinetic scheme, with the phase of the order parameter taken into 
account self-consistently, the continuity equation must be a consequence of 
the kinetic equation itself, in the same manner as it would be for a 
nonsuperfluid system. As shown above, this condition is satisfied in the 
general nonequilibrium case, for arbitrarily strong order parameter per- 
turbations. 

We now consider the case of small variations of the order parameter 
near its equilibrium value A0. In equilibrium, A(r, t) = A0 and ~b = 0 (~b is the 
phase of the order parameter). Later, we shall denote Ao by A and suppose 
it to be real (without loss of generality). The perturbation of the spatial 
Fourier transform of A(r, t) will be denoted by Aq(t). In this manner, the 
Hamiltonian splits into two parts, an equilibrium expression and a part 
containing the departures from equilibrium: 

H = H 0 + H '  (9) 

where (including impurity scattering) H0 is 

*" A* c,,(s)- (n), H 0 = E A p e p A p + E  p + q / 2 ~ , l / q  7"0+ Vq 7"3)Ap-q/2 (10) 
p Pq 

and H '  is 
H' t ^ ^ - i t o t  = ~ Ap+k(AIT1 + A2T 2 -J- -J- H.c .  eOT-a)Ap e (11) 

pk 

Here, ~p is the single-particle Hamiltonian 

ea = ~p~a - A~I (12) 

and A1, A2 are the real and imaginary components of the perturbed order 
parameter. We have selected out the (k, to) components of the perturbation 
in (11) so that A1, h2, and d' are amplitudes of expressions like 
A1 exp [i(k. r-oJt)]. The matrix Hamiltonian (11) may be considered as a 
scalar product F. i yi~i, where yi is a 4-vector, 

Yi = (0, A1, A2, e~) 

To calculate the response of the superconductor to the perturbation 
(11), we introduce the response functions r/i: 

~ = Tr Y, (A*o(t)~iAp+k(t)) e i~ (13) 
p 
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where ~73 denotes the density perturbation, and 7• = rh ~: i~72 are the per- 
turbations of the order parameter. These quantities shall now be calculated, 
using standard linear response theory. 

The linear response can be written, using usual techniques (see Ref. 
24), as 

3 

hi(k, fl) = Y~ Oii(k, l-l)vj(k, fl)  (14) 
/ = 0  

at the imaginary frequencies fl = 2~rm T. It will then be necessary to perform 
an analytical continuation of O0" to the upper half (physical) complex 
frequency plane. The matrix O~j may be written explicitly as 

A ~ A --  I A t 
Q~i(k, 1"1) = - 2  (T[ap(z)r~Ap+u(~')Ap,+k('C )~.~Ap,(~- )])~ (15) 

p p '  

where T is the ordering operator along the axis of the imaginary time r, and 

= e ~ , ,  e , A p ( r )  = e ' A p  e -n"  

Introducing the Matsubara Green's functions 

dp,p , ( r -~- ' )  = - ( 7 " a p ( r ) A p , ( r ' ) )  

and making use of Wick's theorem, we obtain 

O,i(k, fl) = Av Tr T ~ Y~ r162 (o.) -- D) (16) 
oJ p p '  

where Av denotes averaging over the positions of the impurities and 
Gp.p,(W) is the Fourier transform of Gp,p,(r) at the odd frequencies, oJ = 
(2n + 1)~rT. 

At real frequencies, the linear response (14) leads ~7~ = Y4 Oq(k, w)y i. 
Substituting into the self-consistency equations (3) and (4) and using (13), 
we arrive at the set of equations 

2/A § q12 

q21 2/A + q22 

q31 q32 
q=3 l / a 2 / =  

- k2 /4~ 'e2N(O)  + q3J Le,l,J 
0 (17) 

Here, qij = Q J N ( O ) ,  where N(0) is the density of states at the Fermi level, 
N ( O )  = r n p v / 2 ~  2, and A is the dimensionless electron-phonon coupling 
constant, A = N(O)g .  As will be shown later, the matrix elements q12, q13, 
q21, and q31 are identically zero in the absence of a supercurrent, 15 so that 
the 11 mode (for A1) is deeoupled from the 22 and 33 modes. We identify 
the 11 mode as the Schmid (or longitudinal) mode, with a dispersion relation 

2/h + q~(k, (o) = 0 (18) 
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The remainder of (17) yields the dispersion relation for the Carlson- 
Goldman, or transverse mode (coupled phase of the order parameter and 
electric potential): 

2/h q-q22 q23 ][e~;] =0  (19) 
q32 - -  k2/41r e2N(0)  -b q33 

For an uncharged superfluid (e --- 0) the second component of the vector in 
(19) vanishes identically, leaving only the coefficient of the first component 
to vanish. The resulting equation is the Anderson-Bogoliubov (AB) mode 
relationship, 

2/A +q22(k,  to) = 0 (20) 

In real superconducting metals, because of the strong Coulomb interactions, 
Eq. (19) yields the dispersion relation for the Carlson-Goldman (CG) mode 

[2/A +q22 q23] =0 (21) 
q32 q 3 3 3  

where Eq. (21) is obtained from Eq. (19) by taking the limit e ~ co. We now 
proceed to analyze these results for the pure (clean) and general impure 
superconductor. 

3. THE CLEAN LIMIT 

We consider the case of a pure superconductor, so that no impurity 
scattering is included in the Hamiltonian. The Green's function in this case 
�9 .~ A 2 4  

is Gp,p, = GpSp,p,, where 

Gp(to) = ito _ ~p ~o2+A2+~2 (22) 

Inserting this expression into Eq. (16), we find for the linear response 
function 

where 

1 1 p_) 
Oij (k, l)) = T ~ Y. Tr ~g A + ~i _ 

,o p ko - e p  i ( to  - l ) )  

A• A = ( f p + k .  v/2)'~3--A~1 Ep = Ep• 

Making use of the identity 

(23) 

(24) 

1 1 n(eO-n(e2)  
TY,. (25) 

oJ lO)--El i ( o ) - O ) - e 2  e l - e 2 - i I 1  
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where n (e) = (e dT + 1) -1, we can express Eq. (23) as 

O i i ( k , ~ ) = T r ~  f d e l l d e 2 n ( e l ) - n ( e z ) ^  A+ ^ ^- p -  e l - -e2-- i~  ~'i6(el--ep)'ri6(ez--eP) (26) 

The 6-function of the operator is 

6 (E -- Ep) ~- ~p6 (e -- Ep) "~ ~p~ (e "4- ep) 

where 

ap = �89 + (gp/ep)], #p = �89 - (~p/ep)] (27) 

Equation (27) follows from taking 6 ( e - ~ p )  as a Fourier transform of 
exp ( -  igpt) and using the commutation relations for the Pauli matrices. 

The analytical continuation of (26) may be achieved by simply putting 
if~ equal to oJ + i& where 6 is an infinitesimal small positive quantity, 8 = +0. 
In this manner,  the function (26) will have simple poles in the lower 
half-plane of the complex variable w, and no singularities in the upper 
half-plane. At  the same time, for w = ill, f~ = 2zrmT, this function coincides 
with (26). Thus, the matrix qij (k, oJ) which generates the dispersion relations 
of Section 2 is [ql/= OJN(O)] 

d~q~, I + q,i(k, co)= I dsxp I ~ t - [ 1 - n ( e p ) - n ( e ~ ) ]  

[ (uv)ij (vu)ij ] 
X + ~ + ep + e ~ - w - i 6  ep +e ;  +oo+i6 +[n(e~)-n(e; )]  

[ (uu),j (vv),j ]} 
x + 4 + (28) 

e p - e ~ - o J - i 6  e p - e ~  +~o+i6 

Here, I d~p/4cr denotes the integration over the solid angle of the vector 
p on the Fermi surface, and the coefficients (uu)q, etc., are the coherence 
factors 

(vv)i~ = Tr {~i~3~.~3; } 
(29) 

(uv), i = Tr {"?,a;"?j~;} 

where ~, 13 are given by Eq. (27). 
An explicit calculation of Eq. (28) shows that the components ij -- 12, 

13,21, and 31 vanish. Thus, the 11 mode is left pure, while the 22 and 33 
modes are coupled together, as discussed in Section 2. 
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Making use of the BCS self-consistency equation for the unperturbed 
order  parameter,  

if 0o 1 - 2n (ep) + A2)1/2 
1 = A ,oo d~p 2ep ' ep = (~:~ (30/ 

we now inspect individually the three modes. 

3.1. The Mode (Schmid or Longitudinal Mode) 

From (29) we obtain 

(UU)ll~(VU)ll=~( 1 --~pff "/ 
(31) 

Consider for simplicity the case k = 0. The dispersion relation (18), when 
we use (30), takes the form 

tan ep (2 1 1 1 f d,p h2T{e2(2ep+to+i6+2ep_to_i6)--.~p}=O (32) 

The solution of (32) is to = 2A at arbitrary temperature,  A = A(T). This 
is the frequency of the Schmid mode at k = 0. There  is, however, an 
important point to notice. The left-hand side of Eq. (32) behaves as 
(toE _ 4 A 2 ) 1 / 2  a s  to  -~  2A, rather than as the first power of (to - 2A). Therefore,  
if one puts an external driving source on the right-hand side of (32), the 
perturbation of the order parameter  will be determined not by a simple pole, 
but by a more complicated singularity of the branch-point type. The 
consequences of branch-point behavior were analyzed in detail in Refs. 20 
and 21. The per turbed portion of the order  parameter  oscillates as 
cos (2At + 6), and at the same time decreases as a function of time like 1/x/t 
as t ~ oo. To our knowledge, this class of behavior has never been observed. 
In real metals, e lect ron-phonon scattering or pair-breaking mechanisms 
(small traces of magnetic impurities, stray magnetic fields, etc.) will alter the 
above picture and lead to a more conventional exponential relaxation of the 
order  parameter.  

3.2. The Mode (AB Mode for Neutral Superfluid) 

For an uncharged superfluid (e = 0) we have only the 22 mode [the 
Anderson-Bogol iubov (AB) mode]. The coefficients (uu)22, etc., in Eq. (28) 
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are 

(33) 

Inserting Eqs. (28) and (30) in Eq. (20), we obtain the dispersion relation 
for the AB mode at T = 0 (only this limit is considered explicitly, for 
simplicity) 

I I + - + - - 2  + _ ~ - ' ~ 0  d~p 4~r [w2-(ep +ep)  ]epep (34) 

At small wave vectors, the solution of (34) is 

,o = (1/  43)kvF  (35) 

which is a well-known result. At small wave vectors and at finite but small 
temperatures (T<< Tc), one obtains the result (see Ref. 25) 

k V F ~ l + 2 / 2 ~ T ' ~ l / 2 e x p [ I  - I  ~ A 2~ri [ A '3  '1/2"" 
o) = - ~ - [  5,,--A---- ) - T )  - - ~ -  exp[ - T ( 2 )  J} (36) 

3.3. Carlson-Goldman (CG) Mode 

The discussion of the CG mode is not meaningful for the pure neutral 
superconductor because of an identity for the (2, 3) part of the matrix qij 
(see below). We postpone discussion of this mode until Section 5, in which 
the general impure case will be considered. 

In general, the matrix qii, where i, [ = 0, 1, 2, 3 [see discussion after Eq. 
(12)] can be split into (0, 1) and (2, 3) boxes, which we label qA and qB: 

qg 0 ] (37) 
qq = 0 qB 

Note that qA and qB are 2 • 2 matrices. We have already calculated the 
coefficients (uu)ii, etc., entering qA [see .Eq. (31)]. To complete the calcula- 
tion of the coefficients entering qB, which will be used in what follows, we 
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note that from (29) 

(UU)33 = (1)12)33 = ~(1.4 ' ; ~ p  -- A 21 

(38) 
( u u h ~ = - ( v v h ~ = - ( u u ) ~  ( v v h z  1. § = = ~ a [ ( 1 / ~ ) - ( 1 / ~ ) ]  

(VU)32 = St A [ ( 1 / e  o ) + ( I / s o ) ]  (U/2)23 = --(1)U)23 = --(U/))32 = 1. + - 

At k = 0, we obtain from qB of (37) and Eq. (21) 
2 2 

= to to to I 
l (zo+Z3)+qB( to)  [ - - ( I + ~ - ~ ) Z O - - X ~ ' E + ( I - - ~ - ~ ) r 3  ] ( t o ) ( 3 9 )  

where 

I 2A E 
l ( t o )  = d~p [1 - 2 r t  ( ep ) ]  e p ( 4 e ~  _ toE)  (40) 

In (39), z~ are again the Pauli matrices, but this time without "hats" because 
they operate on the subspace (2, 3). As will be shown below, the function 
(39) will not change in the presence of nonmagnetic impurities. This 
property will be of use in the discussion of collective modes in Section 5. 

4. T H E  G E N E R A L  I M P U R E  CASE 

In an impure superconductor, the function Qlj(k, I1), Eq. (16), can be 
expressed as a product of the averaged Green's functions, 

Av Gp,p, = Gp((.o)t~p,p, 

and the vertex function ['(p, t o ; p - k ,  t o - l l ) .  In the ladder approxima- 
tion, 24 the equation for the impurity-averaged Green's  function and for the 
vertex function are represented by Feynman diagrams exhibited in Fig. 1. 
Assuming isotropic scattering and neglecting spin-flip effects (e.g., magnetic 
impurity scattering) one obtains 

1 ~, 
GP(to) = (ito + A~1)~7,, - ~p~3' ,/., = 1 q 2(A2 +to2)1/2 (41) 

Here,  u = ~-1 = 2~niN(O)] V,[ 2 is the impurity scattering rate. 
Equations (2) and (3) in Fig. 1, written analytically, read 

Q~j (k, fl) = T Y~ Y~ Tr A A ^ {r, Gp(to)Fi(p, to; p - k ,  oJ .- gl)t~p_k(to - tl)} (42) 
co p 
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G ~ G ~ / :  G "", G 
G = - + ~ ~ --- ~" ; (1) 

and 

Q ~ (2) 

p~o p-~,~o-~ 

Fig. 1. Feynman diagrams representing the effect of impurity 
scattering on (1) the Green 's  function, (2) the linear response 
function, and (3) the vertex function. The wavy lines rep- 
resent coupling to the external sources and do not enter  the 
equations. 

Fi(P, oJ; p - k ,  w - ~ )  

= .~j + n,  X I V , , (p  - p')12r ~ , , , (~ ) / " ; (p  ', ~ ; p ' - k ,  t o  - D.)  p' 

X G p , _ k ( O )  - -  ~ ' ~ ) ~ 3  

To solve the latter equation, we expand f'i in Pauli matrices 

3 

l=0 

and introduce the polarization function 

1 A A A 
i l l(k; (D ,  0.) - -  ~'~) = ~ ' ~  ~ Op(~O)"rlOp--k((.O - -  ~-~). 

Then, Eqs. (42) and (43) becomes 

qij = T ~, ~ Tr ('~iTil[Ii) 
to l 

and 

/-/ A ^ A f';=~;+--y~ A TflT.3Hfr 3 
27r t 

^ 

Expanding the polarization function 17i in Pauli matrices 

(b = E Slm~m 
m 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 
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where the coefficients St,,, can be found from Eqs. (41) and (45), we find that 
the equation for the vertex function takes the form 

it[ "rs'rmrsSlm = r i (49) 
m 

Now, regarding T~.t as the elements of a matrix T, this matrix is the inverse 
of the matrix: 

8it -- (t,/ 2 ~f )SjmE~?) 

where 
! . . . . . . .  

= 2 l r  tT"mr/rm) (50) 

From these results we obtain the following expression for the response 
function q (k, I~): )1 

q(k, 1~) = 2T E 1 -~---~ SE (33) S (51) 

written in matrix notation. The matrix S, from Eq. (45), is 

Stm=~Tr d~p -~Gp+k/E(W)~tGp-k/2(O)--l~)'~m (52) 

Inserting the expression for Gp, Eq. (41), into Eq. (52) yields a combination 
of the matrices E (ij) [see Eq. (50)]. These are readily calculated, and found 
to be of the quasidiagonal structure involving blocks (0, 1) and (2, 3): 

. E(OO)=[oO r0o], E~ )= [O~  _00], E(33)=[03 _03] 

E(~ rO], E~*~ _OrE ] 

(53) 

Thus, for a general concentration of impurities, the (0, 1) block of the 
perturbation matrix is decoupled from the (2, 3) block. The latter describes 
the AB and CG modes, as we have discussed in Section 2. 

Using Eqs. (51) and (53), we find that the (2, 3) part, denoted by qn 
[see Eq. (37)] is 

b' - 1  

where, from Eqs. (52) and (53), 

/ R + R ' + v  \(A2 + woo ' iAfl +rs~ 
S B = - ~ r \ ( R . + R , + v ) 2 + ( k . v v ) 2 / [  ~ ro+~-R-;Z2 ] (55) 
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Here  the following notations have been introduced: 

R = (A2 + o92) 1/2,  R'=(A2+o)'2) 1/2, ~o'=o)-l~ 

and (. �9 .) denotes average over the Fermi surface. The inverse of the matrix 
[1 + (v/2rr)SBr3] is calculated using the identity 

1 A - Br2 - Cr3 
A +Bz2+ Cr3- A 2 - B  2-  C 2 (56) 

The dispersion relation for the AB mode (neutral superfluid, only the 
22 matrix element is considered) is given by 

(1/a)(Zo + z3) + qB (k, o9)122 = 0 (57) 

whereas for the CG mode we have 

det [(1/A)(ro + r3) + qB (k, o9)] = 0 (58) 

In Eqs. (57) and (58), qB(k, to) means the analytically continued quantity 
qB (k, II). The problem of analytical continuation is far from trivial and is 
solved for the expression (55) in the Appendix. 

We now expand qB(k, l-l) in. powers of k: 

qB (k, f~) = a (f~) + ((k. vr)E)b (I~) + higher orders in k 2 (59) 

Using Eqs. (54)-(56) we obtain 

1 (A=+ coo) ' iAf~ \ 
a(f~)=-2~rTE~ R +R' \ ~ ro+-R--~'~2+r3) (60) 

1 (A2+~oco ' iAI~ r2+r3) (61) 
b(a)=2rrT~(R+R,)2(R+R,+v~ \ ~ ro+~-~ 

Only the k-dependent  part of qB(k, f~) depends on the scattering Iv does 
not appear in (60)]. This may be considered as a manifestation of the 
Anderson theorem (which states that time-reversal-invariant scattering 
does not affect the superconducting properties in the ground state). We may 
therefore expect that the analytical continuation of a (ft) should coincide 
with the quantity qB(to), Eq. (39), calculated in the previous section (in the 
clean limit). In fact, this is the case, as shown in the Appendix by directly 
performing the procedure of analytical continuation. 

The next term in the expansion (59) is impurity scattering-dependent. 
The analytical continuation of b (f~) is accomplished in the Appendix. Close 
to the critical temperature To, the problem can be solved in a much simpler 
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way. Putting A = 0 in b(ll), we obtain 

r3+r~176176176 w'=oJ - I I  (62) 
bo(1"1) = 2rrT ~ (Io, I + 1o,'1)=(Io, I + 1o,'1 + ~)' 

This can be rewritten in the form (I~ = 2rrmT) 

1 ~ ro + r3 
bo(a) = 7 T  f--0 (2n + m + 1)=Iv + 2~rT(2n + m + 1)] 

( t o -  r3)(1 - a m ,  0) 
rn 1> 0 (63) 

2rcmT(v  + 2~'mT) '  

The function bo should be analytical in the upper half-space. A function 
satisfying this condition is 

1 oo ro + r3 

bo(w) = ~ ,~o (2n + 1 - ioJ/2rrT)2[1 + (2rrT/v)(2n + 1 - ioJ/2rrT)] 

iw (to - r3) (64) 
a~(aJ + i3,)(v - io~ ) 

where 3' is an infinitesimal positive quantity (see the Appendix). At  frequen- 
cies such that 

oJ << Tc (65) 

which will be supposed to be the case in the coefficient of the k 2 term, Eq. 
(64) becomes 

bo(oJ) [(rr /4VT)o(2rrT/v)  0 ] (66) 
2/[w (oJ + iv)a 

Here, 

82 ~ 1 2rrT 1 
aS(x) = --rr n=o (2n + 1)211 + (2n + 1)x]' x = - - , v  v = -r 

X(x)-+ 1, x << 1 (dirty limit) (67) 

-+ 7((3) 
X(x) 2 - 7 ~ r '  x >> 1 (clean limit) 

is the Gorkov function ~6 introduced in the theory of superconducting alloys. 
A plot of this function is given in Fig. 2. 

In the opposite limiting case, near T = 0, the expansion of the analytical 
function b(oJ) in powers of o~ corresponds to the expansion of b(12) in I1 (in 
the sense that the coefficients of both expansions coincide). Putting O = 0 
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1.2- 

x 0 . 8  
0,4 85s 

/ 
G i i t i 
0 1 2 3 4 

• 

Fig. 2. The Gorkov impurity function ~(x), Eq. (67). At large 
x, the asymptotic value of X is 7((3)/~r x. 

in Eq. (61), we obtain 

b(0) = 1 I ?  do) (wz+A2)[(wz+Az)t/z+v/2][10 00] (68) 

The integral is proportional to the density of superelectrons ns. We set 

1 ns (~'o + ~3) (69) 
b(0) = 4A 2 n 

where nsln ~ 1, 2At >> 1 (clean limit), and nJn -~ 7rAlu = irA~-, 2At<< 1 
(dirty limit). 

Finally, we estimate the next term in the expansion (59) for the limit 
T ~ To The fourth-power term in k is 

,2,2,, ,~,.. 9/5+v/(R+R') (A2+O)O) t iAII +r3)  (70) 
- ( ( k ' v F )  ) ~Tr--L ( R - - ~ - ~ + - ~ 5 + v ) 3  \ RR' ~'~ 

Consider first the dirty limit. Close to To the contribution to the matrix 
qB(k, to) from (50) is 

T 2 ,~, 2 z,zr7~(3)/2(27r v) 
vF' k 0 2/22v = ] (71) 

Comparing this with the second-order term, Eq. (66), we see that the 
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fourth-order term is much smaller than the second-order one if the condi- 
tion Dk2<< T holds (D 1 2 =~vv~). This holds even for "high" values of k, 
corresponding now to Dk2>~A, considered in the next section. In the 
extreme clean limit (v ---0), and at the vicinity of To, the fourth-order term 
becomes 

1 . 2  2 , 2  181"(4~T)-4Y.~=o (n + 1/2) -5 0 4 
~x Vv) T [  0 -1~to ] 

The corresponding second-order term is [see Eqs. (66) and (67)] 

(72) 

�89162176 1/0to 2] (73) 

If we compare (73) term by term with (72), we see the 11 terms are in the 
approximate ratio k2vZF/T2 while the 22 terms are in the ratio k2v2/to 2. We 
work in the regime where to << T, so only the 22 term in the fourth order 
needs to be examined. A calculation of the CG dispersion relation (see next 
section) in the extreme clean limit shows that the corrections due to this term 

2 2 2 enter the equation in the form a(A/T)2/(1 + k VF/to ), where a is a number 
of order unity. Anticipating the results of the next section, we put k2v2/to 2 
T/A, so that the correction term (near Tc) enters as a (A/T) 3 and therefore 
can be neglected. 

5. FREQUENCIES OF THE COLLECTIVE MODES 

The formal results of the previous sections will now be applied to derive 
the frequency-wave vector dependence of the AB and CG modes. We shall 
exhibit results, for simplicity, at zero temperature and at temperatures close 
to To, but we stress again that our calculation holds over the full temperature 
range. 

Collecting the results (17), (19), (37), (39), and (59), we obtain at all 
temperatures 

2 
X ' 2  + to 

8r ( t o - r 3 ) +  v~,k2b(to) = 0  (74) 

where I(to) is given by Eq. (40). The matrix b(to) is given by Eq. (66) for T 
close to Tc and by Eq. (68) for zero temperature. Equation (74) is our central 
result and now will be analyzed in the two temperature regimes. 
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5.1. Zero Temperature 

The function I(to) in this limit is denoted by Io(to) and is [see Eq. (40)], 

fo Io(to) = d~ee[e2_(to/2 + iS)2 ] 

1 __ Z2)1/2 to +i8  
= i z ( 1 - z 2 )  1/2 In [(1 + iz], z = 2----~ (75) 

where Io(to) ~ 1 for to << 2A. 
We consider first the AB mode, which pertains to a neutral superfluid. 

In this case we need only the 22 matrix element of (74). Making use of Eqs. 
(68) and (69) for the matrix b, we find 

1 2 1 2 2 -~to Io(to) + gk VFns/n = 0 (76) 

In the limit to << 2A, the dispersion law of the collective mode becomes 12'13 

to = ck, c = (vF/x/3)(ns/n) 1/2 '(77) 

Using E~. (69), we see that the velocity of the AB mode at T = 0 reduces 
to VF/43 in the clean limit (AT >> 1) and to 

c = (~'DA) 1/2 (78) 

1 2 in the dirty limit (At << 1). Here  D is the diffusion coefficient, D = ~VF~', 
where ~" = 1/v .  It is curious to note that in the dirty limit the T = 0 velocity 
of the AB mode for a neutral Fermi gas is [with the replacement of 7r in 
Eq. (78) by 2] the same as for the CG mode appropriate to a charged Fermi 
gas near To. 

We investigate next the CG mode at T = 0. We require that the 
determinant of the full matrix in Eq. (74) vanishes (rather than just the 11 
term for the AB mode). Investigation of this determinant shows that without 
the Coulomb term -k2(~ 'o  --/'3)/8,'/T e2N(0) [compare Eq. (17) to Eq. (21)] 
this requirement  can be satisfied only at k -- 0. Including the Coulomb term, 
we find, using the approximation Io(to) = 1 valid for to << 2A, 

to n~ n2 v~k 2 
2 ~ = 0 (79) 

top n 2n 3top 

where cop is the plasma frequency, toE = 4r e2/m.  In the limit k-~ 0, this 
gives 

to = (47rnse2/m) 1/2= top(n~/n ) 1/2 (80) 

Our limit to << 2A puts a severe limitation on the applicability of this result. 
For a dirty superconductor (attempting to get as small a ratio n J n  as 
possible), this limit requires top(~'/T)I/2< 1,' or very dirty systems indeed. 
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It is conceivable that this condition may be satisfied in some granular 
superconductors. 

5.2. Temperatures Close to Tc 

At this range of temperatures, the function I(to), from Eq. (40), 
becomes 

A2 I o  d~ 
I(oJ) = ~--~ e Z _ ( w / 2 + i 6 ) 2  

,riA 2 
- 2 T ( w 2 _ 4 A 2 ) ~ / 2 ,  Im (to2-4A2)l/2 > 0 (81) 

The limiting values of I(w) are 

_ ~ 7rA/4T,  to << 2A 
I(to) - | , r iA2/2wT,  to >> 2A (82) 

The equation for the AB mode [the 22 matrix element of Eq. (74)] is 
2 

03 "//" 2 2 

- 2A 2 I(to) + 1--2~vT X(2~T'r )k  vv = 0 (83) 

where X is given by Eq. (67). The small-frequency limit of I(to) results in 

to = ck, c = (2ADx)  1/2 (84) 

Solving (83) for arbitrary to, we obtain the following dispersion relation: 
2 to = - �89  2x) 2 + �89 2x[(Dk 2x)2 + 16A2] 1/2 (85) 

The frequency of the mode changes linearly at small k, whereas at large k 
(such that D k 2 x  >~ 4A) it saturates at 2A. This behavior is depicted in Fig. 3. 

1,0 

0.8 
<3 

0.6 

0,4 

0,2 

0 I I 
0 1.5 2,0 

w = ck--.._.~ / 

I I 
0,5 1.0 

(DkZX/4A)l/2 
Fig. 3. The dependence of the frequency of the Anderson- 
Bogoliubov mode on the wave vector. 
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We now turn to the CG model In this case we may neglect the Coulomb 
term -k2(~-o - r3)/8"n'e2N(O) because of the lack of net charge associated 
with this mode (see the discussion in Section 2). The matrix in Eq. (74) 
becomes 

0 
k[-~ i (~~176  (86) 

where the functions I(oo) and X(27rT/v)  are given by Eqs. (67) and (81), 
respectively. The requirement that the determinant of (86) vanishes leads 
to the dispersion relation for the CG mode at arbitrary frequencies and 
impurity concentrations. We investigate the solution for small frequencies, 
such that oJ < 2A and o)r < 1. In this regime we obtain 

2 rriAZx 
w + oJ - 2 A D k 2 x  = 0 (87) 

2 T  
which yields 

1riAzx+ 7rAZ 2 71/2 
6O 

At k = 0, we have a relaxation mode, 

w = - i F ,  r = (~rAZ/2T)x(2"r, 'Tx) (89) 

The relaxation rate (i.e., the damping of the mode) is 

(~A2 4~3 T ) -~--  7--~) (To - ), T~ << 1 (dirty limit) 

F = [ 7 ( ( 3 ) A  _ z  2 "T T" (90) 
L ~ - - ~ r t  c -  ), Tr>>l (clean limit) 

The relaxation time F -1 diverges as 1 ~ ( T o - T ) ,  as observed experi- 
mentally. 27 For 2 A D x k  z >> 2F z, we obtain from (88) a soundlike propagating 
mode ,  with a velocity c given by 

c = [2ADx(27rT'r)] 1/2 (91) 

which coincides with the velocity of the AB mode near To, Eq. (84). 
Equation (91) reduces to the result of Schmid and Sch6n 14 in the dirty limit, 
where [see Eq. (67)] 

c = (2AD) ~/2 (92) 

In the clean limit, it yields the result of Artemenko and Volkov 17 

VF[7((3) 1/2 
c =  1_~-~3 -~] (93) 



612 I .O.  Kulik, Ora Entin-Wohlman, and R. Orbach 

1,2 

0.8 

OA 

f 
.2,71(rT) u2 

C I 
0 0.5 

I I I 
1,0 1,5 2,0 

r T  

Fig. 4. The dependence of the velocity of the propagating mode 
on the scattering rate v = ~.-1 

The velocity of the mode as a function of the scattering rate v is exhibited 
in Fig. 4. It is seen that the velocity is smaller as the superconductor becomes 
dirtier. 

From Eqs. (88), (89), and (91) we see that the condition for propagation 
is 

F << ck (94) 

In the dirty limit this becomes 

7rA2/2 T < (2AD)I/2k 

In the clean limit 

o r  

or taT > A 2 (dirty limit) 

7((3)A 2 r7((3)  A]  1/2 
4~r2T2 r < V F [ ~ 3  k 

vvT'k > (A/T)  3Ix (c lean  l imit) .  

The last results mean that lk must be greater than (A/T)  3/2, w h i c h  is small 
in the vicinity of Tc (l is the mean free path). The clean-limit requirement 
can also be written in the form 

taT" > A 2 / T  2 

These condffions agree with those of Ar temenko and V o l k o v .  17 In deriving 
(87) we have assumed tar < 1 and to < 2A. Therefore,  those two conditions 
must be added to the condition (94). We stress, however, that one can solve 
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for the dispersion relation of the CG mode of T close to Tc for arbitrary 
frequencies by using the full expression (86). 

Keeping only the assumption to~-< 1, and using in (86) the result (81) 
for I(oJ), we obtain 

ko 
~'~ ---- (092-  4A2)1/2 (W Jr-iF) (95) 

where F is given by Eq. (89) and 

fZ = D k  Zx(2rrTr)  (96) 

The right-hand side of Eq. (95) is plotted in Fig. 5 as a function of w. There 
exists a solution of (95) corresponding to oJ less than 2A with a small 
imaginary part due to F. There is no solution, real or imaginary, for larger 
values of oJ. 

For frequencies much higher than F (the damping rate) one can solve 
(95) by first dropping F and then including it as a small perturbation. The 
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1,0 

X 

/ 
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/ 
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/ / 
I / 
\ / 

0,/j 

0[ ( 
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1 I 

Fig. 5. Graphic representation of the dispersion 
relation of the Carlson-Goldman mode, Eq. (95), 
for F=0.1,  and F=~-Ax/4T. Solid line 
Re (Dk2~(/4A), dashed line Im (Dk2x/4A). 
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Fig. 6. Frequency (solid line) and damping (dashed line) of the 
Carlson-Goldman mode as a function of the wave vector k, for 
a = ~ A x / 4 T  = 0.1. 

,04 
<1 (M 

resulting frequency-wave vector dependence is 

ro = o o ( k  ) - i y ( k  ) 

where 

(97) 

o) (k) -- [ - �89 + �89 + 16A 2) 1/211/2 (98) 

1 -- r 2 
~,(k) = F 2 -  o ) 2 ( k ) / 4 A  2 (99) 

The dependence of the frequency and damping of the CO mode on the 
wave vector is depicted in Fig. 6. 

6. DISCUSSION AND SUMMARY 

We have presented a linear response approach to the problem of a 
superconductor subjected to small perturbations. Our treatment allows a 
direct calculation of the pair-field susceptibilities (the longitudinal suscepti- 
bility, related to changes in the magnitude of the order parameter,  and the 
transverse susceptibility, related to the coupled changes in the phase of the 
order parameter  and the scalar potential). The main advantage of the 
procedure is its applicability to the full range of frequencies, temperatures,  
and impurity concentration. 

We can summarize the range of validity of our results by putting the 
AB and CG mode equations in the following form: 

A + B k  2 = 0 (100) 



Pair Susceptibility and Mode Propagation in Superconductors 615 

The impurity scattering rate enters only in B. We have found the function 
A for arbitrary frequencies and temperatures. As for the function B, we 
have calculated it explicitly for an arbitrary scattering rate in two different 
temperature regimes: (i) at T close to To, where we have assumed that 
o) >> Tc; and (ii) at T = 0, where we set w = 0. We point out in the Appendix 
how B can be calculated in the dirty limit for any value of frequency and 
temperature. It should be stressed that the limits on the validity of our results 
affect only the k 2 term, and that at temperatures close to Tc the only 
limitation is that w << To. Our results are not limited to the dirty or clean 
limit, and may therefore be appropriate to experiments which are conducted 
in the intermediate regime where no applicable theory is available in the 
literature. 

The calculation presented here has not included electron-phonon 
inelastic scattering or pair-breaking effects (e.g., magnetic impurity scatter- 
ing, constant supercurrent). The electron-phonon scattering is a crucial 
factor for low-frequency phenomena, e.g., relaxation of branch imbalance. 
It is clearly necessary to take the next step and calculate its influence using 
the approach we have presented in this paper. In fact, we can obtain some 
results even at this stage by resorting to a well-known trick. Consider, for 
example, the characteristic penetration length for an electric field inside a 
superconductor (the so-called Waldram length2Z'28). 

Were we to have included electron-phonon scattering, it would have 
entered our formalism in two ways: (i) In the equilibrium Green's functions. 
The expression (41) would be modified because of the inclusion of self- 
energy terms arising from the electron-phonon interaction (see, for 
example, Ref. 18). (ii) In the vertex corrections. They will appear in the 
linear response function O [Eq. (42)]. With these conditions in mind we 
return to Eq. (74), obtaining the following set of equations valid in the 
vicinity of T~: 

iw(ecb+ " ~ A2)+xDk2A2=O, =X(27rTr) 
(lOl) 

~T(ed)+i~-~& A2) +Dk2(8~re 2-1DN (0) + o) + i i ' y )e&=0 

We have used Eqs. (64), (66), and (82) to derive (101). 
We investigate the first equation in (101). From our definition of A2 

[see Eq. (11)] we have 2Xz = - A 0 ,  where 0 is the phase of the order 
parameter. The combination 

.o~ 100 
eO + l ~-~ A2 = e& - ~ 3t 
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is just the gauge-invariant form of the scalar potential. On the other hand, 

xDk 2A2 = xDAV2qb - - -  
2T 1 
rrA eN(O) 

- -  ( - V .  j , )  ( 102 )  

where js is the supercurrent density. Therefore, the first equation of (101) 
reads 

rcA ~t [eN (O)(ecb _1  00)] 
V ' j , = 2 T  

(103) 

This equation has been derived, of course, in the absence of electron- 
phonon inelastic scattering. However, it is known (see Refs. 29, 30) that 
when electron-phonon inelastic scattering is included, one should change 
O/~t + O/Ot + i/r~, where rE denotes the electron-phonon inelastic scattering 
time. This replacement enters in the first partial time derivative in (103), 
but not in O0/at. The latter is part of the gauge-invariant form of the scalar 
potenti~ and remains inviolate in the presence of pair-breakers. 

Next, consider the second equation of (101). The combination of to + i3, 
appears explicitly. In our formalism, y is a small, positive quantity. Physical 
considerations suggest we replace 3' with 1/r~. 

We make the changes discussed above in Eqs. (101). When we do this, 
and neglect 1/8rreZDN(O) = 1/2toUr compared to 1/oo + iN (top is the plasma 
frequency), we find 

[Dk2+4_~zA (1_ 2T .to A2)= 0 (104) itor~)(1--~r-z~-xito)](e&+t-~-~ 

This equation is our final expression "corrected" for inelastic electron- 
phonon scattering. It generates the frequency-dependent Waldram length: 

,n.A 1 (1--itoze)(1 2T . 
A ~-a 4Tr~ D -~--A-~-g tto) (105) 

In the dirty limit, where x o l ,  Eq. (105) reduces to the well-known 
result. 23'3~ In the clean limit, from Eq. (67), X ~ 1/Tr. As a result, the term 
in the second parentheses become more prominent as the superconductor 
becomes cleaner. In both limits, As diverges as (To - T) -1/4 as T approaches 
To. This has been verified experimentally. 31 Our expression for the Waldram 
length, Eq. (105), is valid over the full impurity concentration regime, and 
is not restricted to the dirty limit. 
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A P P E N D I X :  A N A L Y T I C A L  C O N T I N U A T I O N  OF EQ.  (59) 

We first consider the analytical continuation of a(~) ,  Eqs. (59) and 
(60). To this end, we use the identities 

where 

I )  dE 1 r 
oo ( r162 R R '  R + R '  

i ;  r dE rr 
(r + R2)(r + R'2) - R  + R '  (A1) 

R = (A2 + to2) 1/2, R ' =  (A2 + R'2) 1/2, tO ' =  to --f~ (A2) 

With these identities, the function a(f~) is 

I to ) r2+r  r3 a ( t ) ) = - 2 T ~  d e  ( A 2 + t o w ' ) r ~  ' 2 
(r + A2 + to 2)(r + A2 + to,2) (A3) 

The summation over the frequencies to must be accomplished prior to the 
integration over r as discussed by Abrikosov et  al. 24 We first decompose 
the integrand in (A3) as follows: 

1 a (~~) T 
J I (e - i to)(e + ito') 

t t  I s  ) r o - ( 2 a l e ) ~ 2 + ( r  I s  )r3 +(1+. 2 2 2 2 

(e + ito)(e - ito') 
(A4) 

+ ~ (r3 - ro) 
e (e + ito)(e + ito') ~- (e - i to)(e - ito') 

e = (r + AI)I/2 

The summation over w is carried out using the identities 

1 tanh (sl2T) 
T 

(e - i to)(e + ito') - 2 s  - i1~ 
(AS) 

I 1 
T ~ (e - i to)(e - ito') = 4T  cosh 2 ( e / 2 T )  &~,o 

The analytical continuation of the quantity i / ( 2e - i l~ )  is achieved by 
simply putting i1~ = to + i& 6 = +0, where now to is the physical (real) 
frequency. Obviously, 1/(2e - t o  - i 6 )  is an analytical function in the upper 
half-space, Im to > 0, which coincides at the points to = iI'2 = 2 z r i m T  with 
I / (2s  - i~). The analytical continuation of the delta function 6a,o = 6m,o is 
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obtained as the limit 

iy 
lim - -  
~,-,+o to + iy 

This quantity equals 1 at to = 0, and equals 0 at to --- 2~rirnT, m # O. At the 
same time, it is an analytic function in the half-plane Im to > 0. From 
physical considerations, one may regard y as a finite (but small) positive 
quantity, as discussed in Section 6. At a finite frequency, much larger than 
y, the term coming from 6~.o may be dropped. Then, using Eq. (30), we 
obtain the result (39), which was derived by a different method in Section 3. 

The analytic continuation of b (12) [Eqs. (59) and (61)] is more compli- 
cated. For simplicity, we consider the dirty limit, in which 

b(l"~) 27rTy, 1 (A2 +toto ' iA(to-to') ) 
= v ~ ( R + R , ) 2 \  )~--~ to+ R R '  "/ '2+r3 (A6) 

This expression differs from the expression for a(lq) [Eq. (60)] in that 
(R + R')-I is replaced by (R + R')-2. Unfortunately, there are no identities 
analogous to (A1) for this type of expression. The analytic continuation of 
(A6) may be achieved by rewriting it in the form of a double integral: 

Z r 
b(f~) = ~ [ d~:l [ d~2 

7"/'/,' to d d 

(~2 ..[_ ~72)[(A2..1_ toto,)To_[_ i A ( t  O _ to , )T2]  .+. 2~:1~2T322 

x ( ~ + t o ~ ) ( ~ = + t o , ~ ) ( ~  ~ +to )(~2 +to,2) (A7) 

The order of summation and integration is irrelevant here, unlike in (A3), 
because of the convergence properties of this expression. The next step is 
to present the integrand of (A7) as a sum of simple fractions, 1/(~1 + ito) • 
(e2+ito) . . . .  and to perform the summation over to using a generalized 
version of (A5): 

,os=lto+iAs s = l m ~ s  m - - A s  

where n (a) = 1/(e x/T ..[_ 1).  The analytic continuation of the fraction 1/(As - 
Am), which reduces to 1/(el  + e2 + if~), is achieved by putting if~ = to + i6, as 
discussed above. 

This procedure is in principle elementary, but practically results in an 
extremely complicated expression. We shall not present the result, b_ecause- 
of its length. It is worthwhile to mention, however, that the procedure 
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ou t l i ned  a b o v e  enab le s  one  to e x t e n d  the  ca lcula t ions ,  at leas t  in the  d i r ty  
l imit ,  to  a rb i t r a ry  t e m p e r a t u r e s .  
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