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Scope

The goal is to introduce basic concepts in stochastic homogenization for
linear, uniformly elliptic equations of the form

−∇ ⋅ (aε(x)∇uε(x)) = 0 in U ⊆ Rd , ε > 0, d ≥ 2,

where aε(x) ∶= a( x
ε
) and the diffusion matrix a(⋅) satisfies

∣ξ∣2 ≤ a(x)ξ ⋅ ξ ≤ Λ∣ξ∣2

for some Λ ≥ 1 and for all ξ ∈ Rd and for almost every x ∈ Rd .

If you are not familiar with the following concepts, please go through
Appendixes from the course book. You should recall

• Basic knowledge about Sobolev spaces

• Knowledge about basic a priori estimates for elliptic equations is
useful, but I will also discuss them during the course



Homogenization: Paradigm

Homogenization means that, in an appropriate way, the original equation

−∇ ⋅ (aε(x)∇uε(x)) = 0 in U ⊆ Rd , ε > 0, d ≥ 2,

homogenizes to an effective equation

−∇ ⋅ (a∇u) = 0

with constant coefficients a such that “uε is close to u ”

Two basic questions are:

• When can one expect homogenization? (Qualitative theory)

• How fast is homogenization happening? (Quantitative theory)



When can one expect homogenization?

Model assumptions for coefficients are that a is

• periodic

• quasi-periodic

• almost periodic

• stationary random fields.

Let us first take a look of the easiest case, namely the periodic setting.
We assume that

a(x + z) = a(x) for every x ∈ Zd and a.e. x ∈ Rd .



Periodic 1D

Let ε = 1
k

, k ∈ N, and solve an ODE

{
− (aε(x)(uε)′(x))

′

= 0

uε(0) = 0, uε(1) = 1.

The unique solution is

u(x) = (∫

1

0

1

aε(t)
dt)

−1

∫

x

0

1

aε(t)
dt,

which can equivalently be written as

uε(x) = x + (∫

1

0

1

a(t)
dt)

−1

ε∫
x/ε−⌊x/ε⌋

0
(

1

a(t)
− ∫

1

0

1

a(t)
dt) dt



Periodic 1D

Set now, for x ∈ R,

φ(x) ∶= (∫

1

0

1

a(t)
dt)

−1

∫

x−⌊x⌋

0
(

1

a(t)
− ∫

1

0

1

a(t)
dt) dt

The solution uε can be written by means of φ as

u(x) = x + εφ ( x
ε
) .

Observe that u has two parts. Homogeneous solution u(x) = x and the
small wiggles εφ ( ⋅

ε
) coming from the anisotropic nature of the problem



Correctors
Following the analogue suggested by 1D-example, we define in the
periodic first-order corrector. Denote the the periodic Sobolev space as

H1
per([0,1]

d
) ∶= {u ∈ H1

loc(R
d
) ∶ u(x + z) = u(x) for z ∈ Zd and a.e x ∈ Rd} .

One can identify this space as the completion of smooth Zd -periodic
functions w.r.t. to the norm of H1([0,1]d). This space is actually a
Hilbert space.

First-order corrector φe ∈ H
1
per([0,1]

d), e ∈ ∂B1, is the unique weak
solution satisfying ∫[0,1]d φe(x)dx = 0 to the equation

−∇ ⋅ (a(x) (e +∇φe(x))) = 0 in [0,1]d .

Notice that since a(⋅) is assumed to be Zd -periodic, the above equation
is actually satisfied in the whole space.

Exercise. Prove that there exists a unique solution φe ∈ H
1
per([0,1]

d)

modulo a constant satisfying the above equation.
Hint: One way is to find a suitable version of Lax-Millgram Lemma from
the literature, state it, prove it, and apply it to obtain the existence.



Two-scale expansion

Let φj ∈ H
1
per([0,1]

d), j ∈ {1, . . . ,d}, be the solution of

−∇ ⋅ (a (∇φj + ej)) = 0 in [0,1]d , ∫
[0,1]d

φj(x)dx = 0,

where ej is the unit vector parallel to xj -axis, and choose the constant so
that φj has zero mean.

Denote by φε and ∇φε the vector and the matrix, respectively, having the
components, for i , j ∈ {1, . . . ,d},

(φε(x))j ∶= φj (
x
ε
) and (∇φε(x))ij ∶= ∂xiφj (

x
ε
) .

We can test the equation of φj by itself, using the periodicity, and obtain
by the Poincaré inequality that

∥φj∥L2([0,1]d) ≤ C ∥∇φj∥L2([0,1]d) ≤ C .



Two-scale expansion

Suppose that we have the heterogenous solution uε ∈ H
1(U) and

homogenized solution u ∈W 2,∞(U) solving

⎧⎪⎪
⎨
⎪⎪⎩

−∇ ⋅ (a ( x
ε
)∇uε) = f in U,

uε = g on ∂U,
{
−∇ ⋅ (a∇u) = f in U,

u = g on ∂U.

The very basic two-scale expansion around u is defined as

w̃ε(x) ∶= u(x) + εφε (x) ⋅ ∇u(x)

We will show that using this it is possible to deduce estimates how close
uε and u are in L2, and uε and wε in H1



Two-scale expansion: The basic computation

We still want to tinker the definition of the two-scale expansion. Namely,
we choose a smooth cut-off function ηε ∈ C∞

0 (U) so that ηε = 1 in ε
away from ∂U and ∥∇ηε∥L∞(U) ≤ Cε−1. Then wε and u have the same
boundary values. Set

wε
(x) ∶= u(x) + εηε(x)φε(x) ⋅ ∇u(x) = u(x) + εηε(x)

d

∑
k=1

φεk ( x
ε
)∂xku(x)

Our goal is to show that

∥∇ ⋅ (aε(∇wε
−∇uε)∥H−1(U)

≤ Cε ∥u∥W 2,∞(U)
.

Since uε −wε ∈ H1
0(U), this, in turn, implies

∥uε − u∥H1(U)
+ ∥∇uε −∇wε

∥H1(U)
≤ Cε ∥u∥W 2,∞(U)

.



Two-scale expansion: The basic computation
Having

wε
∶= u + εηεφε ⋅ ∇u = u + εηε(x)

d

∑
k=1

φεk∂xku,

compute

∇wε
=

d

∑
k=1

(ek +∇φ
ε
k)∂xku +Gε,

where

Gε
∶= (ηε − 1)

d

∑
k=1

∇φεk∂xku + ε
d

∑
k=1

φεk∇ (ηε∂xku)

and then, using the equation of φk ,

∇ ⋅ (aε∇wε
) =

d

∑
k=1

∂xku

=0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∇ ⋅ (aε (ek +∇φ
ε
k))

+
d

∑
k=1

aε (ek +∇φ
ε
k) ⋅ ∇∂xku +∇ ⋅ (aεGε

) .



Two-scale expansion: The basic computation
We have thus found the following formula:

∇ ⋅ (aε∇wε
) =

d

∑
k=1

aε (ek +∇φ
ε
k) ⋅ ∇∂xku +∇ ⋅ (aεGε

) .

and
∥aεGε

∥L2(U)
≤ Cε ∥u∥W 2,∞(U)

This suggests to define the effective matrix as

a ∶= ∫
[0,1]d

a(x) (Id +∇φ(x)) dx

so that the above formula can be rewritten as

∇ ⋅ (aε∇wε
− a∇u) =

d

∑
k=1

(aε (ek +∇φ
ε
k) − aek) ⋅ ∇∂xku +∇ ⋅ (aεGε

) .

Notice, indeed, that since a is a constant matrix,
∇ ⋅ a∇u(x) = a ∶ ∇2u(x). Recall that

Gε
∶= (ηε − 1)∇φε∇u + ε∇ (ηε∇u)φε.



Two-scale expansion: The basic computation

The formula

∇ ⋅ (aε∇wε
− a∇u) = (aε (Id +∇φ

ε
) − a) ∶ ∇2u +∇ ⋅ (aεGε

) ,

tells now two sources of errors. Since ∥aεGε∥L2(U)
≤ Cε ∥u∥W 2,∞(U)

, we
have that

∥∇ ⋅ (aεGε
)∥H−1(U)

≤ Cε ∥u∥W 2,∞(U)
.

We are thus left to establish

∥(aε (Id +∇φ
ε
) − a) ∶ ∇2u∥

H−1(U)
≤ Cε ∥u∥W 2,∞(U)

.



Two-scale expansion: The basic computation

Set now
Fe(x) ∶= a(x) (e +∇φe(x)) − ae

By the equation of φe , Fe is solenoidal (that is, ∇ ⋅ Fe = 0), Zd -periodic,
and it has a zero mean. Therefore, one finds the following Helmholtz
projection for Fe :

Fe(x) = ∇ ⋅ Se ,

and the matrix Se is Zd -periodic, zero mean, and skew-symmetric:
Se,ij = −Se,ji . Moreover, by Poincaré’s inequality,

∥Se∥L2([0,1]d) ≤ C ∥∇Se∥L2([0,1]d) ≤ C .



Two-scale expansion: The basic computation

Using this computation, notice that

(aε (Id +∇φ
ε
) − a) ∶ ∇2u =

d

∑
k=1

Fε
ek ⋅ ∇∂xku

=
d

∑
k=1

ε∇ ⋅ Sε
ek ⋅ ∇∂xku = ε

d

∑
k=1

∇ ⋅ (Sε
ek∇∂xku)

Here we used the following consequence of the skew-symmetry of Se :

∇⋅Sε
ek ⋅∇∂xku =∑

i,j

∂xi (S
ε
ek
)
ij
∂xjxku =∑

i,j

∂xi ((S
ε
ek
)
ij
∂xjxku)−∑

i,j

(Sε
ek
)
ij
∂xixjxku

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0



Example: Periodic setting

We have now found the formula

∇ ⋅ (aε∇wε
− a∇u) = ∇ ⋅ (ε

d

∑
k=1

Sε
ek∇∂xku + aεGε

) ,

and

∥ε
d

∑
k=1

Sε
ek∇∂xku + aεGε

∥

L2(U)

≤ Cε∥u∥W 2,∞(U).

Since
∇ ⋅ (a∇u) = ∇ ⋅ (aε∇uε) ,

this yields

∥∇ ⋅ (aε(∇wε
−∇uε)∥H−1(U)

≤ Cε∥u∥W 2,∞(U),

as desired.



Scope: Towards stochastic homogenization

Before we were taking a look of periodic setting. However,

Real applications are more accurately modelled by random models



Scope: Towards stochastic homogenization

Microprocessor (scale 180nm)! Battery structure!

Virus surface! Solar cell structure!



Assumptions on coefficients
Reasonable assumptions for coefficients are as follows.

• Ω ∶= {a ∶ a symmetric matrix Rd×d , λ(a) ⊆ [1,Λ]}, Λ ≥ 1.

• For U ⊆ Rd , FU denotes the σ-algebra generated by
a↦ ∫U a(x)φ(x)dx , φ ∈ C∞

c (U). Write F = F(Rd).

• P is a probability measure on (Ω,FRd )

• Assumptions on P.

(P1) Stationarity

P ○Tz = P for z ∈ Zd , where Tz is a translation Tz f (x) = f (x + z)

(P2) Unit range dependency

If dist(U,V ) ≥ 1, then FU and FV are P-independent

We denote the expectation with respect to P by E. That is, if X ∶ Ω→ R
is an F-measurable random variable, we write

E[X ] ∶= ∫
Ω
X (a)dP(a)



In practice
The probability distribution can be obtained by analyzing the material.

Microprocessor (scale 180nm)! Battery structure!

Virus surface! Solar cell structure!



Another concrete example

A piece of the “random checkerboard”. The conductivity matrix equals
identity matrix I in the white region, and 4I in the black region.
Probability measure P is a product measure so that at each cube a fair
coin is tossed to decide the value I or 4I .

• It can be shown by so-called Dykhne formula that a = 2I .

• Notice that P [a ≡ 4I in macroscopic cube] = 2−#(small cubes).



Correctors
It turns out that so-called correctors play a central role in the theory.
First-order corrector φe ∈ H

1
loc(Rd), e ∈ Rd , is the unique weak solution,

modulo an additive constant, to the equation

−∇ ⋅ (a(x) (e +∇φe(x ,a(⋅)))) = 0 in Rd .

Observe that φe depends on coefficients in the whole space.

Now, whenever we are referring to a solution, it is actually a function of
both x and a. This is to say that in reality the solution lives possibly in an
infinite dimensional space. However, it is usually convenient to suppress a
from the notation for u since the PDE is cast in the physical space.

Following the reasoning from the periodic setting, one can show that the
effective (homogenized) elliptic, symmetric and deterministic matrix a is
defined via

ae = E [∫
[0,1]d

a(x) (e +∇φe(x)) dx] ∀e ∈ Rd .



Two-scale expansion

Suppose that we have the heterogenous solution uε and homogenized
solution u

⎧⎪⎪
⎨
⎪⎪⎩

−∇ ⋅ (a ( x
ε
)∇uε) = f in U,

uε = g on ∂U,
{
−∇ ⋅ (a∇u) = f in U,

u = g on ∂U.

Then, defining so-called two-scale expansion

wε(x) ∶= u(x) + εφε (x) ⋅ ∇u(x),

one of the main goals is to prove that

⎧⎪⎪
⎨
⎪⎪⎩

∥uε − u∥L2(U)
≤ X ε,

∥∇uε −∇wε∥L2(U)
≤ X ε

1
2

with a stochastic constant X .



Back to the checkerboard example

As noticed before, P [a ≡ 4I in macroscopic cube] = 2−#(small cubes) and
a = 2I . Consider thus the problem from before in this very unlikely event
that a ≡ 4I in B1. We have

{
− 4∆uε = 1 in B1,

uε = 0 on ∂B1,
{
− 2∆u = 1 in B1,

u = 0 on ∂B1.

We can find an explicit solutions 2uε(x) = u(x) = 1
2d

(1 − ∣x ∣2) and thus
we have that

∥uε − u∥L2(B1)
=

1

4d
∥u∥L2(B1)

= c(d) ≫ C(d)ε.

This shows that the stochastic constant X in the error estimate is
necessary, and the task is then to show that it is integrable in probability

space stemming to P [a ≡ 4I in macroscopic cube] = 2−#(small cubes).



Correctors

Let us now go back to correctors, which satisfy the equation

−∇ ⋅ (a(x) (e +∇φe)) = 0 in Rd .

How do the correctors look like, for example, in the case of checkerboard?



Corrector

Approximation of the graph of φe1 solving −div(a(x)(e1 +∇φe1(x))) = 0
in R2



Corrector

Approximation of the graph of φe2 solving −div(a(x)(e2 +∇φe2(x))) = 0
in R2


