Stochastic homogenization ${ }^{1}$

Tuomo Kuusi
University of Oulu

August 13-17, 2018 - Jyväskylä Summer School
${ }^{1}$ Course material: S. Armstrong \& T. Kuusi \& J.-C. Mourrat: Quantitative stochastic homogenization and large-scale regularity, arXiv:1705.05300

Scope

The goal is to introduce basic concepts in stochastic homogenization for linear, uniformly elliptic equations of the form

$$
-\nabla \cdot\left(\mathbf{a}^{\varepsilon}(x) \nabla u^{\varepsilon}(x)\right)=0 \quad \text { in } U \subseteq \mathbb{R}^{d}, \varepsilon>0, d \geq 2,
$$

where $\mathbf{a}^{\varepsilon}(x):=\mathbf{a}\left(\frac{x}{\varepsilon}\right)$ and the diffusion matrix $\mathbf{a}(\cdot)$ satisfies

$$
|\xi|^{2} \leq \mathbf{a}(x) \xi \cdot \xi \leq \Lambda|\xi|^{2}
$$

for some $\Lambda \geq 1$ and for all $\xi \in \mathbb{R}^{d}$ and for almost every $x \in \mathbb{R}^{d}$.
If you are not familiar with the following concepts, please go through Appendixes from the course book. You should recall

- Basic knowledge about Sobolev spaces
- Knowledge about basic a priori estimates for elliptic equations is useful, but I will also discuss them during the course

Homogenization: Paradigm

Homogenization means that, in an appropriate way, the original equation

$$
-\nabla \cdot\left(\mathbf{a}^{\varepsilon}(x) \nabla u^{\varepsilon}(x)\right)=0 \quad \text { in } U \subseteq \mathbb{R}^{d}, \varepsilon>0, d \geq 2
$$

homogenizes to an effective equation

$$
-\nabla \cdot(\overline{\mathbf{a}} \nabla \bar{u})=0
$$

with constant coefficients $\overline{\mathbf{a}}$ such that " u^{ε} is close to \bar{u} "
Two basic questions are:

- When can one expect homogenization? (Qualitative theory)
- How fast is homogenization happening? (Quantitative theory)

When can one expect homogenization?

Model assumptions for coefficients are that \mathbf{a} is

- periodic
- quasi-periodic
- almost periodic
- stationary random fields.

Let us first take a look of the easiest case, namely the periodic setting. We assume that

$$
\mathbf{a}(x+z)=\mathbf{a}(x) \text { for every } x \in \mathbb{Z}^{d} \text { and a.e. } x \in \mathbb{R}^{d} .
$$

Periodic 1D

Let $\varepsilon=\frac{1}{k}, k \in \mathbb{N}$, and solve an ODE

$$
\left\{\begin{array}{l}
-\left(\mathbf{a}^{\varepsilon}(x)\left(u^{\varepsilon}\right)^{\prime}(x)\right)^{\prime}=0 \\
u^{\varepsilon}(0)=0, \quad u^{\varepsilon}(1)=1 .
\end{array}\right.
$$

The unique solution is

$$
u(x)=\left(\int_{0}^{1} \frac{1}{\mathbf{a}^{\varepsilon}(t)} d t\right)^{-1} \int_{0}^{x} \frac{1}{\mathbf{a}^{\varepsilon}(t)} d t
$$

which can equivalently be written as

$$
u^{\varepsilon}(x)=x+\left(\int_{0}^{1} \frac{1}{\mathbf{a}(t)} d t\right)^{-1} \varepsilon \int_{0}^{x \mid \varepsilon-\lfloor x \mid \varepsilon\rfloor}\left(\frac{1}{\mathbf{a}(t)}-\int_{0}^{1} \frac{1}{\mathbf{a}(t)} d t\right) d t
$$

Periodic 1D

Set now, for $x \in \mathbb{R}$,

$$
\phi(x):=\left(\int_{0}^{1} \frac{1}{\mathbf{a}(t)} d t\right)^{-1} \int_{0}^{x-\lfloor x\rfloor}\left(\frac{1}{\mathbf{a}(t)}-\int_{0}^{1} \frac{1}{\mathbf{a}(t)} d t\right) d t
$$

The solution u^{ε} can be written by means of ϕ as

$$
u(x)=x+\varepsilon \phi\left(\frac{x}{\varepsilon}\right) .
$$

Observe that u has two parts. Homogeneous solution $\bar{u}(x)=x$ and the small wiggles $\varepsilon \phi(\dot{\bar{\varepsilon}})$ coming from the anisotropic nature of the problem

Correctors

Following the analogue suggested by 1D-example, we define in the periodic first-order corrector. Denote the the periodic Sobolev space as $H_{\mathrm{per}}^{1}\left([0,1]^{d}\right):=\left\{u \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right): u(x+z)=u(x)\right.$ for $z \in \mathbb{Z}^{d}$ and a.e $\left.x \in \mathbb{R}^{d}\right\}$.

One can identify this space as the completion of smooth \mathbb{Z}^{d}-periodic functions w.r.t. to the norm of $H^{1}\left([0,1]^{d}\right)$. This space is actually a Hilbert space.

First-order corrector $\phi_{e} \in H_{\text {per }}^{1}\left([0,1]^{d}\right), e \in \partial B_{1}$, is the unique weak solution satisfying $\int_{[0,1]^{d}} \phi_{e}(x) d x=0$ to the equation

$$
-\nabla \cdot\left(\mathbf{a}(x)\left(e+\nabla \phi_{e}(x)\right)\right)=0 \quad \text { in }[0,1]^{d}
$$

Notice that since $\mathbf{a}(\cdot)$ is assumed to be \mathbb{Z}^{d}-periodic, the above equation is actually satisfied in the whole space.

Exercise. Prove that there exists a unique solution $\phi_{e} \in H_{\text {per }}^{1}\left([0,1]^{d}\right)$ modulo a constant satisfying the above equation. Hint: One way is to find a suitable version of Lax-Millgram Lemma from the literature, state it, prove it, and apply it to obtain the existence.

Two-scale expansion

Let $\phi_{j} \in H_{\text {per }}^{1}\left([0,1]^{d}\right), j \in\{1, \ldots, d\}$, be the solution of

$$
-\nabla \cdot\left(\mathbf{a}\left(\nabla \phi_{j}+\mathbf{e}_{j}\right)\right)=0 \quad \text { in }[0,1]^{d}, \quad \int_{[0,1]^{d}} \phi_{j}(x) d x=0
$$

where \mathbf{e}_{j} is the unit vector parallel to x_{j}-axis, and choose the constant so that ϕ_{j} has zero mean.

Denote by ϕ^{ε} and $\nabla \phi^{\varepsilon}$ the vector and the matrix, respectively, having the components, for $i, j \in\{1, \ldots, d\}$,

$$
\left(\phi^{\varepsilon}(x)\right)_{j}:=\phi_{j}\left(\frac{x}{\varepsilon}\right) \quad \text { and } \quad\left(\nabla \phi^{\varepsilon}(x)\right)_{i j}:=\partial_{x_{i}} \phi_{j}\left(\frac{x}{\varepsilon}\right) .
$$

We can test the equation of ϕ_{j} by itself, using the periodicity, and obtain by the Poincaré inequality that

$$
\left\|\phi_{j}\right\|_{L^{2}\left([0,1]^{d}\right)} \leq C\left\|\nabla \phi_{j}\right\|_{L^{2}\left([0,1]^{d}\right)} \leq C .
$$

Two-scale expansion

Suppose that we have the heterogenous solution $u_{\varepsilon} \in H^{1}(U)$ and homogenized solution $u \in W^{2, \infty}(U)$ solving

The very basic two-scale expansion around u is defined as

$$
\widetilde{w}_{\varepsilon}(x):=u(x)+\varepsilon \phi^{\varepsilon}(x) \cdot \nabla u(x)
$$

We will show that using this it is possible to deduce estimates how close u^{ε} and u are in L^{2}, and u^{ε} and w^{ε} in H^{1}

Two-scale expansion: The basic computation

We still want to tinker the definition of the two-scale expansion. Namely, we choose a smooth cut-off function $\eta^{\varepsilon} \in C_{0}^{\infty}(U)$ so that $\eta^{\varepsilon}=1$ in ε away from ∂U and $\left\|\nabla \eta^{\varepsilon}\right\|_{L^{\infty}(U)} \leq C \varepsilon^{-1}$. Then w^{ε} and u have the same boundary values. Set

$$
w^{\varepsilon}(x):=u(x)+\varepsilon \eta^{\varepsilon}(x) \phi^{\varepsilon}(x) \cdot \nabla u(x)=u(x)+\varepsilon \eta^{\varepsilon}(x) \sum_{k=1}^{d} \phi_{k}^{\varepsilon}\left(\frac{x}{\varepsilon}\right) \partial_{x_{k}} u(x)
$$

Our goal is to show that

$$
\| \nabla \cdot\left(\mathbf{a}^{\varepsilon}\left(\nabla w^{\varepsilon}-\nabla u^{\varepsilon}\right)\left\|_{H^{-1}(U)} \leq C \varepsilon\right\| u \|_{W^{2, \infty}(U)}\right.
$$

Since $u^{\varepsilon}-w^{\varepsilon} \in H_{0}^{1}(U)$, this, in turn, implies

$$
\left\|u^{\varepsilon}-u\right\|_{H^{1}(U)}+\left\|\nabla u^{\varepsilon}-\nabla w^{\varepsilon}\right\|_{H^{1}(U)} \leq C \varepsilon\|u\|_{W^{2, \infty}(U)}
$$

Two-scale expansion: The basic computation

Having

$$
w^{\varepsilon}:=u+\varepsilon \eta^{\varepsilon} \phi^{\varepsilon} \cdot \nabla u=u+\varepsilon \eta^{\varepsilon}(x) \sum_{k=1}^{d} \phi_{k}^{\varepsilon} \partial_{x_{k}} u
$$

compute

$$
\nabla w^{\varepsilon}=\sum_{k=1}^{d}\left(\mathbf{e}_{k}+\nabla \phi_{k}^{\varepsilon}\right) \partial_{x_{k}} u+\mathbf{G}^{\varepsilon}
$$

where

$$
\mathbf{G}^{\varepsilon}:=\left(\eta^{\varepsilon}-1\right) \sum_{k=1}^{d} \nabla \phi_{k}^{\varepsilon} \partial_{x_{k}} u+\varepsilon \sum_{k=1}^{d} \phi_{k}^{\varepsilon} \nabla\left(\eta^{\varepsilon} \partial_{x_{k}} u\right)
$$

and then, using the equation of ϕ_{k},

$$
\begin{aligned}
\nabla \cdot\left(\mathbf{a}^{\varepsilon} \nabla w^{\varepsilon}\right)=\sum_{k=1}^{d} \partial_{x_{k}} u & \overbrace{\nabla \cdot\left(\mathbf{a}^{\varepsilon}\left(\mathbf{e}_{k}+\nabla \phi_{k}^{\varepsilon}\right)\right)}^{=0} \\
& \quad+\sum_{k=1}^{d} \mathbf{a}^{\varepsilon}\left(\mathbf{e}_{k}+\nabla \phi_{k}^{\varepsilon}\right) \cdot \nabla \partial_{x_{k}} u+\nabla \cdot\left(\mathbf{a}^{\varepsilon} \mathbf{G}^{\varepsilon}\right) .
\end{aligned}
$$

Two-scale expansion: The basic computation

We have thus found the following formula:

$$
\nabla \cdot\left(\mathbf{a}^{\varepsilon} \nabla w^{\varepsilon}\right)=\sum_{k=1}^{d} \mathbf{a}^{\varepsilon}\left(\mathbf{e}_{k}+\nabla \phi_{k}^{\varepsilon}\right) \cdot \nabla \partial_{x_{k}} u+\nabla \cdot\left(\mathbf{a}^{\varepsilon} \mathbf{G}^{\varepsilon}\right) .
$$

and

$$
\left\|\mathbf{a}^{\varepsilon} \mathbf{G}^{\varepsilon}\right\|_{L^{2}(U)} \leq C \varepsilon\|u\|_{W^{2, \infty}(U)}
$$

This suggests to define the effective matrix as

$$
\mathbf{a}:=\int_{[0,1]^{d}} \mathbf{a}(x)\left(\mathrm{I}_{d}+\nabla \phi(x)\right) d x
$$

so that the above formula can be rewritten as

$$
\nabla \cdot\left(\mathbf{a}^{\varepsilon} \nabla w^{\varepsilon}-\overline{\mathbf{a}} \nabla u\right)=\sum_{k=1}^{d}\left(\mathbf{a}^{\varepsilon}\left(\mathbf{e}_{k}+\nabla \phi_{k}^{\varepsilon}\right)-\overline{\mathbf{a}} \mathbf{e}_{k}\right) \cdot \nabla \partial_{x_{k}} u+\nabla \cdot\left(\mathbf{a}^{\varepsilon} \mathbf{G}^{\varepsilon}\right)
$$

Notice, indeed, that since $\overline{\mathbf{a}}$ is a constant matrix, $\nabla \cdot \overline{\mathbf{a}} \nabla u(x)=\overline{\mathbf{a}}: \nabla^{2} u(x)$. Recall that

$$
\mathbf{G}^{\varepsilon}:=\left(\eta^{\varepsilon}-1\right) \nabla \phi^{\varepsilon} \nabla u+\varepsilon \nabla\left(\eta^{\varepsilon} \nabla u\right) \phi^{\varepsilon} .
$$

Two-scale expansion: The basic computation

The formula

$$
\nabla \cdot\left(\mathbf{a}^{\varepsilon} \nabla w^{\varepsilon}-\overline{\mathbf{a}} \nabla u\right)=\left(\mathbf{a}^{\varepsilon}\left(\mathrm{I}_{d}+\nabla \phi^{\varepsilon}\right)-\overline{\mathbf{a}}\right): \nabla^{2} u+\nabla \cdot\left(\mathbf{a}^{\varepsilon} \mathbf{G}^{\varepsilon}\right),
$$

tells now two sources of errors. Since $\left\|\mathbf{a}^{\varepsilon} \mathbf{G}^{\varepsilon}\right\|_{L^{2}(U)} \leq C \varepsilon\|u\|_{W^{2, \infty}(U)}$, we have that

$$
\left\|\nabla \cdot\left(\mathbf{a}^{\varepsilon} \mathbf{G}^{\varepsilon}\right)\right\|_{H^{-1}(U)} \leq C \varepsilon\|u\|_{W^{2, \infty}(U)} .
$$

We are thus left to establish

$$
\left\|\left(\mathbf{a}^{\varepsilon}\left(\mathrm{I}_{d}+\nabla \phi^{\varepsilon}\right)-\overline{\mathbf{a}}\right): \nabla^{2} u\right\|_{H^{-1}(U)} \leq C \varepsilon\|u\|_{W^{2, \infty}(U)} .
$$

Two-scale expansion: The basic computation

Set now

$$
\mathbf{F}_{e}(x):=\mathbf{a}(x)\left(e+\nabla \phi_{e}(x)\right)-\overline{\mathbf{a}} e
$$

By the equation of ϕ_{e}, \mathbf{F}_{e} is solenoidal (that is, $\nabla \cdot \mathbf{F}_{e}=0$), \mathbb{Z}^{d}-periodic, and it has a zero mean. Therefore, one finds the following Helmholtz projection for \mathbf{F}_{e} :

$$
\mathbf{F}_{e}(x)=\nabla \cdot \mathbf{S}_{e},
$$

and the matrix \mathbf{S}_{e} is \mathbb{Z}^{d}-periodic, zero mean, and skew-symmetric: $\mathbf{S}_{e, i j}=-\mathbf{S}_{e, j i}$. Moreover, by Poincaré's inequality,

$$
\left\|\mathbf{S}_{e}\right\|_{L^{2}\left([0,1]^{d}\right)} \leq C\left\|\nabla \mathbf{S}_{e}\right\|_{L^{2}\left([0,1]^{d}\right)} \leq C .
$$

Two-scale expansion: The basic computation

Using this computation, notice that

$$
\begin{aligned}
\left(\mathbf{a}^{\varepsilon}\left(\mathrm{I}_{d}+\nabla \phi^{\varepsilon}\right)-\overline{\mathbf{a}}\right): \nabla^{2} u & =\sum_{k=1}^{d} \mathbf{F}_{\mathbf{e}_{k}}^{\varepsilon} \cdot \nabla \partial_{x_{k}} u \\
& =\sum_{k=1}^{d} \varepsilon \nabla \cdot \mathbf{S}_{\mathbf{e}_{k}}^{\varepsilon} \cdot \nabla \partial_{x_{k}} u=\varepsilon \sum_{k=1}^{d} \nabla \cdot\left(\mathbf{S}_{\mathbf{e}_{k}}^{\varepsilon} \nabla \partial_{x_{k}} u\right)
\end{aligned}
$$

Here we used the following consequence of the skew-symmetry of \mathbf{S}_{e} :

$$
\nabla \cdot \mathbf{S}_{\mathbf{e}_{k}}^{\varepsilon} \cdot \nabla \partial_{x_{k}} u=\sum_{i, j} \partial_{x_{i}}\left(\mathbf{S}_{\mathbf{e}_{k}}^{\varepsilon}\right)_{i j} \partial_{x_{j} x_{k}} u=\sum_{i, j} \partial_{x_{i}}\left(\left(\mathbf{S}_{\mathbf{e}_{k}}^{\varepsilon}\right)_{i j} \partial_{x_{x_{j}} x_{k}} u\right)-\underbrace{\sum_{i, j}\left(\mathbf{S}_{\mathbf{e}_{k}}^{\varepsilon}\right)_{i j} \partial_{x_{i} x_{j} x_{k}} u}_{=0}
$$

Example: Periodic setting

We have now found the formula

$$
\nabla \cdot\left(\mathbf{a}^{\varepsilon} \nabla w^{\varepsilon}-\overline{\mathbf{a}} \nabla u\right)=\nabla \cdot\left(\varepsilon \sum_{k=1}^{d} \mathbf{S}_{\mathbf{e}_{k}}^{\varepsilon} \nabla \partial_{x_{k}} u+\mathbf{a}^{\varepsilon} \mathbf{G}^{\varepsilon}\right),
$$

and

$$
\left\|\varepsilon \sum_{k=1}^{d} \mathbf{S}_{\mathbf{e}_{k}}^{\varepsilon} \nabla \partial_{x_{k}} u+\mathbf{a}^{\varepsilon} \mathbf{G}^{\varepsilon}\right\|_{L^{2}(U)} \leq C \varepsilon\|u\|_{W^{2, \infty}(U)} .
$$

Since

$$
\nabla \cdot(\overline{\mathbf{a}} \nabla u)=\nabla \cdot\left(\mathbf{a}^{\varepsilon} \nabla u^{\varepsilon}\right),
$$

this yields

$$
\| \nabla \cdot\left(\mathbf{a}^{\varepsilon}\left(\nabla w^{\varepsilon}-\nabla u^{\varepsilon}\right)\left\|_{H^{-1}(U)} \leq C \varepsilon\right\| u \|_{W^{2, \infty}(U)},\right.
$$

as desired.

Scope: Towards stochastic homogenization

Before we were taking a look of periodic setting. However,
Real applications are more accurately modelled by random models

Scope: Towards stochastic homogenization

Microprocessor (scale 180nm)

Virus surface

Battery structure

Solar cell structure

Assumptions on coefficients

Reasonable assumptions for coefficients are as follows.

- $\Omega:=\left\{\mathbf{a}: \mathbf{a}\right.$ symmetric matrix $\left.\mathbb{R}^{d \times d}, \lambda(\mathbf{a}) \subseteq[1, \wedge]\right\}, \wedge \geq 1$.
- For $U \subseteq \mathbb{R}^{d}, \mathcal{F}_{U}$ denotes the σ-algebra generated by $\mathbf{a} \mapsto \int_{U} \mathbf{a}(x) \phi(x) d x, \phi \in C_{c}^{\infty}(U)$. Write $\mathcal{F}=\mathcal{F}\left(\mathbb{R}^{d}\right)$.
- \mathbb{P} is a probability measure on $\left(\Omega, \mathcal{F}_{\mathbb{R}^{d}}\right)$
- Assumptions on \mathbb{P}.
(P1) Stationarity

$$
\mathbb{P} \circ T_{z}=\mathbb{P} \text { for } z \in \mathbb{Z}^{d} \text {, where } T_{z} \text { is a translation } T_{z} f(x)=f(x+z)
$$

(P2) Unit range dependency

$$
\text { If } \operatorname{dist}(U, V) \geq 1 \text {, then } \mathcal{F}_{U} \text { and } \mathcal{F}_{V} \text { are } \mathbb{P} \text {-independent }
$$

We denote the expectation with respect to \mathbb{P} by \mathbb{E}. That is, if $X: \Omega \rightarrow \mathbb{R}$ is an \mathcal{F}-measurable random variable, we write

$$
\mathbb{E}[X]:=\int_{\Omega} X(\mathbf{a}) d \mathbb{P}(\mathbf{a})
$$

In practice

The probability distribution can be obtained by analyzing the material.

Microprocessor (scale 180nm)

Virus surface

Battery structure

Solar cell structure

Another concrete example

A piece of the "random checkerboard". The conductivity matrix equals identity matrix I in the white region, and $4 /$ in the black region.
Probability measure \mathbb{P} is a product measure so that at each cube a fair coin is tossed to decide the value $/$ or $4 /$.

- It can be shown by so-called Dykhne formula that $\overline{\mathbf{a}}=21$.
- Notice that $\mathbb{P}[\mathbf{a} \equiv 4 l$ in macroscopic cube $]=2^{-\#(\text { small cubes })}$.

Correctors

It turns out that so-called correctors play a central role in the theory. First-order corrector $\phi_{e} \in H_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$, $e \in \mathbb{R}^{d}$, is the unique weak solution, modulo an additive constant, to the equation

$$
-\nabla \cdot\left(\mathbf{a}(x)\left(e+\nabla \phi_{e}(x, \mathbf{a}(\cdot))\right)\right)=0 \quad \text { in } \mathbb{R}^{d}
$$

Observe that ϕ_{e} depends on coefficients in the whole space.
Now, whenever we are referring to a solution, it is actually a function of both x and \mathbf{a}. This is to say that in reality the solution lives possibly in an infinite dimensional space. However, it is usually convenient to suppress a from the notation for u since the PDE is cast in the physical space.

Following the reasoning from the periodic setting, one can show that the effective (homogenized) elliptic, symmetric and deterministic matrix $\overline{\mathbf{a}}$ is defined via

$$
\mathbf{a} e=\mathbb{E}\left[\int_{[0,1]^{d}} \mathbf{a}(x)\left(e+\nabla \phi_{e}(x)\right) d x\right] \quad \forall e \in \mathbb{R}^{d}
$$

Two-scale expansion

Suppose that we have the heterogenous solution u_{ε} and homogenized solution \bar{u}

$$
\left\{\begin{array} { l l }
{ - \nabla \cdot (\mathbf { a } (\frac { x } { \varepsilon }) \nabla u _ { \varepsilon }) = f } & { \text { in } U , } \\
{ u _ { \varepsilon } = g } & { \text { on } \partial U , }
\end{array} \quad \left\{\begin{array}{ll}
-\nabla \cdot(\overline{\mathbf{a}} \nabla \bar{u})=f & \text { in } U, \\
\bar{u}=g & \text { on } \partial U .
\end{array}\right.\right.
$$

Then, defining so-called two-scale expansion

$$
w_{\varepsilon}(x):=\bar{u}(x)+\varepsilon \phi^{\varepsilon}(x) \cdot \nabla \bar{u}(x)
$$

one of the main goals is to prove that

$$
\left\{\begin{array}{l}
\left\|u_{\varepsilon}-u\right\|_{L^{2}(U)} \leq \mathcal{X} \varepsilon \\
\left\|\nabla u_{\varepsilon}-\nabla w_{\varepsilon}\right\|_{L^{2}(U)} \leq \mathcal{X} \varepsilon^{\frac{1}{2}}
\end{array}\right.
$$

with a stochastic constant \mathcal{X}.

Back to the checkerboard example

As noticed before, $\mathbb{P}[\mathbf{a} \equiv 4 /$ in macroscopic cube $]=2^{-\#(\text { small cubes })}$ and $\overline{\mathbf{a}}=2 I$. Consider thus the problem from before in this very unlikely event that $\mathbf{a} \equiv 4 /$ in B_{1}. We have

$$
\begin{cases}-4 \Delta u^{\varepsilon}=1 & \text { in } B_{1}, \\
u_{\varepsilon}=0 & \text { on } \partial B_{1}, \quad\left\{\begin{array}{ll}
-2 \Delta u=1 & \text { in } B_{1} \\
u=0 & \text { on } \partial B_{1}
\end{array} . . . ~\right.\end{cases}
$$

We can find an explicit solutions $2 u^{\varepsilon}(x)=u(x)=\frac{1}{2 d}\left(1-|x|^{2}\right)$ and thus we have that

$$
\left\|u_{\varepsilon}-u\right\|_{L^{2}\left(B_{1}\right)}=\frac{1}{4 d}\|u\|_{L^{2}\left(B_{1}\right)}=c(d) \gg C(d) \varepsilon .
$$

This shows that the stochastic constant \mathcal{X} in the error estimate is necessary, and the task is then to show that it is integrable in probability space stemming to $\mathbb{P}[\mathbf{a} \equiv 4 /$ in macroscopic cube $]=2^{-\# \text { (small cubes) }}$.

Correctors

Let us now go back to correctors, which satisfy the equation

$$
-\nabla \cdot\left(\mathbf{a}(x)\left(e+\nabla \phi_{e}\right)\right)=0 \quad \text { in } \mathbb{R}^{d} .
$$

How do the correctors look like, for example, in the case of checkerboard?

Corrector

Approximation of the graph of $\phi_{e_{1}}$ solving $-\operatorname{div}\left(\mathbf{a}(x)\left(e_{1}+\nabla \phi_{e_{1}}(x)\right)\right)=0$ in \mathbb{R}^{2}

Corrector

Approximation of the graph of $\phi_{e_{2}}$ solving $-\operatorname{div}\left(\mathbf{a}(x)\left(e_{2}+\nabla \phi_{e_{2}}(x)\right)\right)=0$ in \mathbb{R}^{2}

