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Scope
The goal is to introduce basic concepts in stochastic homogenization for
linear, uniformly elliptic equations of the form
-v-(@*(x)Vuf(x))=0 inUcRY >0, d>2,

where a°(x) := a(%) and the diffusion matrix a(-) satisfies

€17 <a(x)¢ - € < Agf?
for some A > 1 and for all £ e RY and for almost every x € R9.
If you are not familiar with the following concepts, please go through
Appendixes from the course book. You should recall

e Basic knowledge about Sobolev spaces

e Knowledge about basic a priori estimates for elliptic equations is
useful, but | will also discuss them during the course



Homogenization: Paradigm

Homogenization means that, in an appropriate way, the original equation
-V (a°(x)Vuf(x))=0 inUcRY >0, d>2,
homogenizes to an effective equation
-v-(avo) =0
with constant coefficients a such that “u° is close to u"

Two basic questions are:

e When can one expect homogenization? (Qualitative theory)
e How fast is homogenization happening? (Quantitative theory)



When can one expect homogenization?

Model assumptions for coefficients are that a is
e periodic
e quasi-periodic
e almost periodic

e stationary random fields.

Let us first take a look of the easiest case, namely the periodic setting.
We assume that

a(x+z)=a(x) forevery xeZ and a.e. x e RY.




Periodic 1D

Let e = 1, k€N, and solve an ODE

{ - (@ ()W) (x) =0
uF(0)=0, u°(1)=1.

The unique solution is

11 -1 x 1
u(x):([0 (D) dt) fo mdt,

which can equivalently be written as

1 -1 xJe—|x/e] 1
ua(x):x+(f0 a(lt)dt) 5[0 (a(lt)_/o a(lt)dt) dt




Periodic 1D

Set now, for x € R,

11 -1 x—| x| 1 11
= —_— dt [ - [ dt dt
0= ([ s B (a4 )
The solution u® can be written by means of ¢ as
u(x) :X+£¢(§).

Observe that u has two parts. Homogeneous solution T(x) = x and the
small wiggles a—:gb(é) coming from the anisotropic nature of the problem



Correctors

Following the analogue suggested by 1D-example, we define in the
periodic first-order corrector. Denote the the periodic Sobolev space as

H;er([O, 119) = {ue HE (RY) = u(x+2z) = u(x) for ze Z9 and a.e x € Rd}.

One can identify this space as the completion of smooth Z-periodic
functions w.r.t. to the norm of H*([0,1]%). This space is actually a
Hilbert space.

First-order corrector ¢, € Hrl,er([O, 1]%), e € 8By, is the unique weak
solution satisfying f[0.1]d ¢e(x) dx =0 to the equation

-V -(a(x) (e + Ve(x))) =0 in[0,1]7.

Notice that since a(-) is assumed to be Z9-periodic, the above equation
is actually satisfied in the whole space.

Exercise. Prove that there exists a unique solution ¢, € H},.([0,1]7)
modulo a constant satisfying the above equation.

Hint: One way is to find a suitable version of Lax-Millgram Lemma from
the literature, state it, prove it, and apply it to obtain the existence.



Two-scale expansion

Let ¢ € Hy..([0,1]9), j € {1,...,d}, be the solution of

-V (a(Ve;+e))=0 in[0,1]%, f[OI]dcbj(X)dx:O,

where e; is the unit vector parallel to xj-axis, and choose the constant so
that ¢; has zero mean.

Denote by ¢* and V¢ the vector and the matrix, respectively, having the
components, for i,je{1,...,d},

(0°(x))j =9 (£) and (Vo (x))j =i (%).

We can test the equation of ¢; by itself, using the periodicity, and obtain
by the Poincaré inequality that

197l 20,170y < C IVl 12([0,170) < C-



Two-scale expansion

Suppose that we have the heterogenous solution u. € H(U) and
homogenized solution u e W2 (U) solving

{—v-(a(;)wf):f in U, {—v-(aw):f in U,

u“=g on OU, u=g on OU.

The very basic two-scale expansion around u is defined as

\ Wo(x) = u(x) +£¢° (x) - Vu(x) \

We will show that using this it is possible to deduce estimates how close
uf and u are in L2, and u€ and w® in H!



Two-scale expansion: The basic computation

We still want to tinker the definition of the two-scale expansion. Namely,
we choose a smooth cut-off function ° € C5°(U) so that n* =1 in ¢
away from 9U and | V7| ;=(yy < Ce™'. Then w* and u have the same
boundary values. Set

d
wo(x) = u(x) +en(x)9°(x) - Vu(x) = u(x) +en(x) kz_:lsbi (%) 0x,u(x)

Our goal is to show that

IV (@ (W = V6) |y < Ce lulwemqoy - |

Since uf — w® € H}(U), this, in turn, implies

(I UH;—/I(u) + [V - vw® HHl(u) < Celul W2.e (U) *




Two-scale expansion: The basic computation
Having

d
wE = uten ¢t - Vu=u+en(x) ), opdyu,
k=1

compute

d
vwe = Z (ex + Vi) Ox u + G*,
k=1

where ; ;
G =(n°-1) Z Voioy u+e Z OeV (n°0x u)
k=1 k=1
and then, using the equation of ¢,
=0

d
V- (@ Vw®) = Y O uV-(a® (ex + Voy))
k=1

d
+ 3 a (ex + Vo) - Vo, u+ V- (a°GY).
k=1



Two-scale expansion: The basic computation
We have thus found the following formula:

d
V- (a°vw®) = Z a® (ex+ Vi) Vo u+V-(a°G®).
k=1
and

[a°G" | 2 vy < Celulwe(u)

This suggests to define the effective matrix as

a:= [[0,1]d a(x) (Iy + Vo(x)) dx

so that the above formula can be rewritten as
d
V- (a*vw® -avu) = ) (a° (ex + V¢y) — aex) - VO, u+V-(aG).
k=1

Notice, indeed, that since a is a constant matrix,
V-avu(x) =a:V2u(x). Recall that

G = (1" —1)V¢ Vu +eV (1°Vu) ¢°.



Two-scale expansion: The basic computation

The formula
V- (a°vw® —avu) = (a° (Ig + Vo°) —a): V2u+ V- (a°G?),

tells now two sources of errors. Since [a°G*[ 2y < Ce||u 2.y, We
have that
1V - (@G| ysqu) < Cellul we.= vy -

We are thus left to establish

|@* (Lo + V™) —a): V2ul 0 ) < Celltlwee ) -



Two-scale expansion: The basic computation

Set now
Fe(x) :=a(x) (e + Vge(x)) - ae

By the equation of ¢, Fe is solenoidal (that is, vV - F. = 0), Z9-periodic,
and it has a zero mean. Therefore, one finds the following Helmholtz
projection for F.:

F.(x)=V-Se,

and the matrix S, is Zd—periodic, zero mean, and skew-symmetric:
S j = —Se,ji- Moreover, by Poincaré’s inequality,

HSEHLZ([O’l]d) <C HVSeHB([O,l]d) <C.



Two-scale expansion: The basic computation

Using this computation, notice that
d
(a° (Iy + V¢7) -8): Viu= ) F - Vigu
k=1
d d
=3 eV-S; VOgu=cy, V- (S Vixu)
k=1 k=1
Here we used the following consequence of the skew-symmetry of S.:

VS5, VOt = Y0y (S¢,),; g = 2. O ((sgk),.j Dy )3 (S5,), Bt
IN) 1)

1J

=0



Example: Periodic setting

We have now found the formula

d
V- (a°vw® -avu)=V- (5 > S, VO u+ aEGE) ,
k=1

and .
£> S Vo,u+a"G* < Celu|we=(uy-
k= L)
Since
AV (5VU) =V- (aEVuE) 7
this yields

HV . (aE(VWE - VUE)HH—1(U) < CEHU”WLN(U)’

as desired.



Scope: Towards stochastic homogenization

Before we were taking a look of periodic setting. However,

Real applications are more accurately modelled by random models




Scope: Towards stochastic homogenization

Virus surface Solar cell structure



Assumptions on coefficients
Reasonable assumptions for coefficients are as follows.

e Q:={a : a symmetric matrix R4 \(a) c [1,A]}, A>1.
e For UcRY Fy denotes the o-algebra generated by

ar [ a(x)o(x)dx, ¢ e C°(U). Write F = F(R?).
e P is a probability measure on (Q, Fra)
e Assumptions on P.

(P1) Stationarity

‘Po T, =P for ze Z?, where T, is a translation T.f(x)=f(x+z) ‘

(P2) Unit range dependency

‘ If dist(U, V) > 1, then Fy and Fy are P—independent‘

We denote the expectation with respect to P by E. That is, if X: Q2 - R
is an F-measurable random variable, we write

E[X]:= fQX(a) dP(a)



In practice
The probability distribution can be obtained by analyzing the material.

Virus surface Solar cell structure



Another concrete example

A piece of the “random checkerboard”. The conductivity matrix equals
identity matrix / in the white region, and 4/ in the black region.

Probability measure P is a product measure so that at each cube a fair
coin is tossed to decide the value / or 4/.

e |t can be shown by so-called Dykhne formula that a = 2/.

o Notice that P[a = 4/ in macroscopic cube] = 2-#(small cubes),



Correctors
It turns out that so-called correctors play a central role in the theory.
First-order corrector ¢ € HL (R?), e e RY, is the unique weak solution,
modulo an additive constant, to the equation

-V - (a(x) (e + Vope(x,a(-)))) =0 in RY.

Observe that ¢, depends on coefficients in the whole space.

Now, whenever we are referring to a solution, it is actually a function of
both x and a. This is to say that in reality the solution lives possibly in an
infinite dimensional space. However, it is usually convenient to suppress a
from the notation for u since the PDE is cast in the physical space.

Following the reasoning from the periodic setting, one can show that the
effective (homogenized) elliptic, symmetric and deterministic matrix a is

defined via
de-F [f
[0,1

)

]da(x)(e+v¢e(x))dx] Ve eRY.




Two-scale expansion

Suppose that we have the heterogenous solution u. and homogenized
solution U

{—V(a(;)VUE):f in U, {—v-(aw):f in U,

Uu. =g on OU, u=g on QU.

Then, defining so-called two-scale expansion

[w.(x) = (x) + £6° () - V()

one of the main goals is to prove that

lu. - UHL2(U) < Xe,
HVUE - Vw, HLZ(U) < X&‘%

with a stochastic constant X.



Back to the checkerboard example

As noticed before, IP[a = 4/ in macroscopic cube] = 2-#(small cubes)

a =2/. Consider thus the problem from before in this very unlikely event
that a=4/ in B;. We have

-4Auf =1 in By, -2Au=1 in By,
u.=0 on 0By, u=0 on 0B;.

We can find an explicit solutions 2u®(x) = u(x) = %(1 ~|x|?) and thus
we have that

1
Hua - UHLZ(Bl) = B HUHLz(Bl) = C(d) > C(d)E

This shows that the stochastic constant X’ in the error estimate is

necessary, and the task is then to show that it is integrable in probability

space stemming to P [a = 4/ in macroscopic cube] = 2-#(small cubes)



Correctors

Let us now go back to correctors, which satisfy the equation

-V-(a(x)(e+Ve)) =0 inR?.

How do the correctors look like, for example, in the case of checkerboard?



Corrector

Approximation of the graph of ¢, solving —div(a(x)(ey + Ve, (x))) =0
in R?



Corrector

Approximation of the graph of ¢, solving —div(a(x)(ex + Ve, (x))) =0
in R?



