EXERCISE SET 1
 PARTIAL DIFFERENTIAL EQUATIONS 2, 2019 EXERCISES ON 17.1.2019 AT 10.15 IN MAD380

1. Consider the equation $\Delta u(x)+\operatorname{div}(b(x) u(x))=f(x)$ in $B(0,1)$, where $f: B(0,1) \rightarrow \mathbb{R}$ and $b: B(0,1) \rightarrow \mathbb{R}^{n}$ are given. Give a physical meaning for each of the terms along with a justification.
2. Let $u(x)=|x|^{\alpha}, x \in \mathbb{R}^{n}, x \neq 0$, where $\alpha \in \mathbb{R}$. Calculate $\Delta u(x)$ and find α so that $\Delta u(x)=0$ in the classical sense.
3. Let $x \in \mathbb{R}^{n}, t>0$, and

$$
u(x, t)=\frac{1}{(4 \pi t)^{n / 2}} e^{-\frac{|x|^{2}}{4 t}} .
$$

Show that $u_{t}(x, t)=\Delta u(x, t)$ i.e. u solves the heat equation in the classical sense.
4. Find a weak derivative (and show that it is a weak derivative) of

$$
u:(-1,1) \rightarrow \mathbb{R}, \quad u(x)= \begin{cases}0, & -1<x \leq 0 \\ \sqrt{x}, & 0<x<1\end{cases}
$$

5. (a) Show that $\int_{\mathbb{R}} u \varphi^{\prime} d x=\varphi(0)$ for every $\varphi \in C_{0}^{\infty}(\mathbb{R})$, where

$$
u: \mathbb{R} \rightarrow \mathbb{R}, \quad u(x)= \begin{cases}1 & x \leq 0 \\ 0 & x>0\end{cases}
$$

(b) Show that $u \notin W_{\text {loc }}^{1,1}(\mathbb{R})$
6. (a) Show that for $a, b \geq 0$ it holds that $(a+b)^{p} \leq C_{1}\left(a^{p}+b^{p}\right)$ and $a^{p}+b^{p} \leq C_{2}(a+b)^{p}$ for $p>0$ where C_{1}, C_{2} are independent of a, b.
(b) Show that $\|u\|_{W^{1, p}(\Omega)}$ is equivalent with the norm

$$
\sum_{|\alpha| \leq 1}\left(\int_{\Omega}\left|D^{\alpha} u\right|^{p} d x\right)^{1 / p} \quad \text { if } 1 \leq p<\infty .
$$

