EXERCISE SET 2

PARTIAL DIFFERENTIAL EQUATIONS 2, 2019
EXERCISES ON TUESDAY 10-12, MAA203

1. Let $(0,2)=\Omega, f=1, b=0=c$,

$$
a(x)= \begin{cases}1, & x \in(0,1] \\ 2, & x \in(1,2) .\end{cases}
$$

Consider the problem

$$
\left\{\begin{array}{l}
L u=f, \\
u(0)=0=u(2) .
\end{array}\right.
$$

Show that

$$
u(x)= \begin{cases}-\frac{x^{2}}{2}+\frac{5}{6} x & x \in[0,1] \\ -\frac{x^{2}}{4}+\frac{5}{12} x+\frac{1}{6}, & x \in(1,2] .\end{cases}
$$

is a weak solution to the above problem.
2. Consider $\Omega=(0,2), c=0=b, f=1$ and

$$
a(x)= \begin{cases}x & x \in(0,1] \\ 1 & x \in(1,2)\end{cases}
$$

and a problem

$$
\begin{cases}L u=f, & x \in \Omega \\ u(0)=0=u(2) .\end{cases}
$$

Show that

$$
u(x)= \begin{cases}-x, & x \in(0,1] \\ -\frac{1}{2} x^{2}+2.5 x-3, & x \in(1,2)\end{cases}
$$

is not a weak solution.
3. Same data as in the previous exercise except

$$
a(x)= \begin{cases}1+x & x \in(0,1] \\ 2 & x \in(1,2)\end{cases}
$$

Find a weak solution and show that your function is a weak solution.
4. Consider a slight variant of the example in the lectures. Let $\alpha \in(0,1)$

$$
\mathcal{A}=\left[\begin{array}{cc}
\frac{(1+a) x_{1}^{2}+x_{2}^{2}}{|x|^{2}} & a \frac{x_{1} x_{2}}{|x|^{2}} \\
a \frac{x_{1} x_{2}}{|x|^{2}} & \frac{x_{1}^{2}+(1+a) x_{2}^{2}}{|x|^{2}}
\end{array}\right]
$$

where

$$
a=\frac{\alpha(2-\alpha)}{(1-\alpha)^{2}} .
$$

Show that

$$
|\xi|^{2} \leq \sum_{i, j=1}^{2} a_{i j}(x) \xi_{i} \xi_{j} \leq(1+a)|\xi|^{2}
$$

and that the $a_{i j}$ are bounded.
5. Show that

$$
u: B(0,1) \rightarrow \mathbb{R}, \quad u(x)=|x|^{-\alpha} x_{1}
$$

with $x=\left(x_{1}, x_{2}\right)$ is in $W^{1,2}(B(0,1))$.
6. ${ }^{1}$ Show that u in the previous exercise satisfies the weak formulation of the PDE, i.e. combining this with the previous exercise show that u is a weak solution.

[^0]
[^0]: ${ }^{1}$ You may take for granted that u is a classical solution to $\operatorname{div}(\mathcal{A}(x) D u(x))=0$ when $x \neq 0$.

