EXERCISE SET 4 PARTIAL DIFFERENTIAL EQUATIONS 2, 2019 EXERCISES ON TUESDAY 10.15-12, MAA203

1. Let $a_{ij}, b_i, c \in L^{\infty}(\Omega), f \in L^2(\Omega)$ and $u \in W^{1,2}(\Omega)$ be a weak solution to Lu = f in Ω . Show that, for any $\Omega' \Subset \Omega$,

$$\int_{\Omega'} |Du|^2 \, dx \le C \int_{\Omega} (u^2 + f^2) \, dx.$$

(Use $v = \eta^2 u$ as test function, where η is a suitable cut-off function).

2. Let $f \in L^2(\Omega)$, $g \in W^{1,2}(\Omega)$ and $u \in W^{1,2}(\Omega)$ be a weak solution to $\Delta u = f$ such that $u - g \in W_0^{1,2}(\Omega)$. Show that

 $||u||_{W^{1,2}(\Omega)} \le C(||g||_{W^{1,2}(\Omega)} + ||f||_{L^2(\Omega)}).$

3. Let $u \in W^{1,2}_{\text{loc}}(\Omega)$ be a weak subsolution¹ to $\Delta u = 0$ in Ω . Let $0 < r < R < \infty$ such that $B(x_0, R) \subset \Omega$ and consider a cut-off function $\eta \in C^{\infty}(B(x_0, R))$ such that $0 \leq \eta \leq 1$, $\eta = 1$ in $B(x_0, r)$ and $|D\eta| \leq C/(R-r)$. Show

$$\int_{B(x_0,R)} \eta^2 \left| D(u-k)_+ \right|^2 \, dx \le \left(\frac{C}{R-r}\right)^2 \int_{B(x_0,R)} \left| (u-k)_+ \right|^2 \, dx,$$

where $k \in \mathbb{R}$ and $u_+ = \max\{u, 0\}$.

4. Does the ess sup-estimate

$$\operatorname{ess\,sup}_{B(x_0,r/2)} u \le k_0 + C \Big(\int_{B(x_0,r)} |(u-k_0)_+|^2 \, dx \Big)^{1/2}$$

hold for a subsolution to $\Delta u = 0$?

- 5. Let n > 2, $u : \mathbb{R}^n \to (0, \infty]$ be the function defined by $u(x) = |x|^{2-n}$ and k > 0. Show that $\min\{u, k\}$ is a weak supersolution to $\Delta u = 0$.
- 6. Show by a counterexample that the esssup-estimate in Exercise 4 does not hold in the case of a supersolution.

¹A function $u \in W^{1,2}_{loc}(\Omega)$ is a weak subsolution (supersolution) to $\Delta u = 0$ if

$$\int_{\Omega} Du \cdot D\varphi \, dx \le (\ge) \, 0$$

for every nonnegative $\varphi \in C_0^{\infty}(\Omega)$.