EXERCISE SET 5
 PARTIAL DIFFERENTIAL EQUATIONS 2, 2019 EXERCISES ON TUESDAY 10.15-12, MAA204

1. Let $k \in \mathbb{R}$ and define $A(k, r)=B\left(x_{0}, r\right) \cap\{x \in \Omega: u(x)>k\}$ and $k_{0}=(m(2 r)+M(2 r)) / 2$. The measure decay lemma in the De Giorgi's method states that if u is a weak solution to $\Delta u=0$ and

$$
\left|A\left(k_{0}, r\right)\right| \leq \gamma\left|B\left(x_{0}, r\right)\right|, \quad 0<\gamma<1,
$$

then

$$
\lim _{k \not M(2 r)}|A(k, r)|=0 .
$$

Is this result still true if we just assume u to be a weak subsolution?
2. Let $n>2, u: \mathbb{R}^{n} \rightarrow(0, \infty]$ be the function defined by $u(x)=|x|^{2-n}$ and $k>0$. Show that $\min \{u, k\}$ is a weak supersolution to $\Delta u=0$ that does not satisfy the measure decay lemma.
3. Let $\underset{B\left(x_{0}, 2 r\right)}{\text { Osc }} u=M(2 r)-m(2 r)$. Assume that u satisfies

$$
\begin{equation*}
\underset{B\left(x_{0}, r / 4\right)}{\mathrm{OSC}} \leq \gamma \underset{B\left(x_{0}, r\right)}{\mathrm{OSC}} u \tag{*}
\end{equation*}
$$

for some $\gamma \in(0,1)$. Show that there exist constants $C>0$ and $\alpha \in(0,1)$ such that

$$
\operatorname{osc}_{B\left(x_{0}, r / 4\right)}^{\operatorname{osc}} u \leq C\left(\frac{r}{R}\right)^{\alpha} \operatorname{osc}_{B\left(x_{0}, R\right)}^{\operatorname{osc}} u
$$

for every $R \geq r$. (Hint: choose $j \in \mathbb{N}$ such that $4^{j-1} r \leq R<4^{j} r$ and iterate inequality ($*$) j times).
4. Let $u: \Omega \rightarrow \mathbb{R}$ be a function satisfying (*) with $\gamma=\frac{1}{2}$ and assume that $|u|$ is bounded in $B(0,1) \subset \Omega$. Show that there exist $C>0$ and $\alpha \in(0,1)$ such that

$$
|u(x)-u(y)| \leq C|x-y|^{\alpha}
$$

for every $x, y \in B\left(0, \frac{1}{8}\right)$. What is the value of α ? (Hint: assume that $x \neq y$, choose $\frac{r}{4}=|x-y|, x_{0}=(x+y) / 2$ and apply the inequality obtained in the previous exercise).
5. Does Hölder continuity hold for subsolutions of $\Delta u=0$?

