EXERCISE SET 6 PARTIAL DIFFERENTIAL EQUATIONS 2, 2019 EXERCISES ON TUESDAY 10.15-12, MAA203

1. Consider the elliptic equation

$$Lu = -\sum_{i,j=1}^{n} D_i(a_{ij}D_ju) + cu = 0$$
 (*)

whit $c \geq 0$. Does the weak maximum principle hold for weak subsolutions to (*)? And for supersolutions? Provide an explanation or a counterexample in each case.

- 2. Formulate and prove the weak minimum principle for weak solutions (*) to.
- 3. Combine the weak maximum principle and the weak minimum principle to show that

$$\operatorname{ess\,sup}_{\Omega}|u| \le \sup_{\partial \Omega}|u|$$

 $\operatorname*{ess\,sup}_{\Omega}|u|\leq\operatorname*{sup}_{\partial\Omega}|u|$ for every $u\in W^{1,2}(\Omega)$ weak solution to (*). Does this inequality hold for subsolutions or supersolutions?

- 4. Give a counterexample to the weak maximum principle for (*) if we drop the assumption $c \geq 0$.
- 5. Give a counterexample to the weak maximum principle for (*) if we replace $\sup u_+$ by $\sup u$.
- 6. Give an example showing that the Hopf lemma does not hold if we drop the interior ball condition. (Hint: consider the harmonic function u(x,y)defined as the real part of the complex function $f(z) = z^{\alpha}$ and choose $\alpha > 0$ and $\Omega \subset \mathbb{R}^2$).