# EXERCISE SET 1 PARTIAL DIFFERENTIAL EQUATIONS 2 2023 

Return the exercises to jarkko.siltakoski@jyu.fi or to my box in the ware room (opposite to MaD356).

1. Consider the equation

$$
\Delta u(x)+\operatorname{div}(b(x) u(x))=f(x) \quad \text { in } B_{1}(0)
$$

where $f: B(0,1) \rightarrow \mathbb{R}$ and $b: B(0,1) \rightarrow \mathbb{R}^{n}$ are given. Give a physical justification for each of the terms.
2. Let $u(x)=|x|^{\alpha}, x \in \mathbb{R}^{n} \backslash\{0\}$, where $\alpha \in \mathbb{R}$. Calculate $\Delta u(x):=\operatorname{div}(D u(x))$ and find $\alpha$ so that $\Delta u(x)=0$ in the classical sense.
3. Prove the $\varepsilon$-version of Young's inequality (as stated in the lecture note on page 6).
4. Find a weak derivative (and show that it is a weak derivative) of

$$
u:(-1,1) \rightarrow \mathbb{R}, \quad u(x)= \begin{cases}0, & -1<x \leq 0 \\ \sqrt{x}, & 0<x<1\end{cases}
$$

5. Let $p>0$. Show that there exists a constant $C \geq 1$, depending only on $p$, such that

$$
\frac{1}{C}\left(a^{p}+b^{p}\right) \leq(a+b)^{p} \leq C\left(a^{p}+b^{p}\right)
$$

for all $a, b \geq 0$. Use this to prove that $\|u\|_{W^{k, p}(\Omega)}$ is equivalent with the norm

$$
\sum_{|\alpha| \leq k}\left(\int_{\Omega}\left|D^{\alpha} u\right|^{p} d x\right)^{1 / p} \quad \text { if } 1<p<\infty
$$

6. Let $\Omega=(0,2), f=1, b=0=c$,

$$
a(x)= \begin{cases}1, & x \in(0,1] \\ 2, & x \in(1,2)\end{cases}
$$

Consider the problem

$$
\begin{cases}L u=f, & x \in \Omega \\ u(0)=0=u(2)\end{cases}
$$

Show that

$$
u(x)= \begin{cases}-\frac{x^{2}}{2}+\frac{5}{6} x, & x \in[0,1] \\ -\frac{x^{2}}{4}+\frac{5}{12} x+\frac{1}{6}, & x \in(1,2]\end{cases}
$$

is a weak solution to the above problem.
7. Consider $\Omega=(0,2), c=0=b, f=1$ and

$$
a(x)= \begin{cases}x, & x \in(0,1] \\ 1, & x \in(1,2)\end{cases}
$$

and a problem

$$
\begin{cases}L u=f, & x \in \Omega \\ u(0)=0=u(2)\end{cases}
$$

Show that

$$
u(x)= \begin{cases}-x, & x \in(0,1] \\ -\frac{1}{2} x^{2}+2.5 x-3, & x \in(1,2)\end{cases}
$$

is not a weak solution. What is the problem with this PDE?
8. Same data as in the previous exercise except

$$
a(x)= \begin{cases}1+x, & x \in(0,1] \\ 2, & x \in(1,2)\end{cases}
$$

Find a weak solution and show that your function is a weak solution.
9. Let $\alpha \in(0,1)$ and

$$
\mathcal{A}=\left[\begin{array}{cc}
\frac{x_{1}^{2}+\alpha^{2} x_{2}^{2}}{|x|^{2}} & \left(1-\alpha^{2}\right) \frac{x_{1} x_{2}}{|x|^{2}} \\
\left(1-\alpha^{2}\right) \frac{x_{1} x_{2}}{|x|^{2}} & \frac{\alpha^{2} x_{1}^{2}+x_{2}^{2}}{|x|^{2}}
\end{array}\right] .
$$

Show that

$$
\alpha^{2}|\xi|^{2} \leq \sum_{i, j=1}^{2} a_{i j}(x) \xi_{i} \xi_{j} \leq|\xi|^{2} \quad \text { for all } \xi \in \mathbb{R}^{2}
$$

10. Let $\alpha \in(0,1)$. Show that

$$
u: B(0,1) \rightarrow \mathbb{R}, \quad u(x)=|x|^{\alpha-1} x_{1}
$$

is in $W^{1,2}(B(0,1))$
11. Show that $u$ as defined in the exercise 10 is a weak solution to

$$
\operatorname{div}(\mathcal{A}(x) D u)=0 \quad \text { in } B(0,1)
$$

where $\mathcal{A}$ is as in exercise 9 . You may take for granted that $\operatorname{div}(\mathcal{A}(x) D u)=0$ pointwise in the set where $u$ is classically differentiable.

