EXERCISE SET 3 PARTIAL DIFFERENTIAL EQUATIONS 2 2023

Return the exercises to jarkko.siltakoski@jyu.fi or to my box in the ware room (opposite to MaD356).

1. Let $a_{i j}, b_{i}, c \in L^{\infty}(\Omega), f \in L^{2}(\Omega)$ and $u \in W^{1,2}(\Omega)$ be a weak solution to $L u=f$ in Ω. Show that for any $\Omega^{\prime} \Subset \Omega$ we have

$$
\int_{\Omega^{\prime}}|D u|^{2} d x \leq C \int_{\Omega}\left(u^{2}+f^{2}\right) d x
$$

where C is independent of u. (Use $v:=\eta^{2} u$ as a test function, where η is a suitable cut-off function).
2. Let $f \in L^{2}(\Omega), g \in W^{1,2}(\Omega)$ and $u \in W^{1,2}(\Omega)$ be a weak solution to $\Delta u=f$ such that $u-g \in W_{0}^{1,2}(\Omega)$. Show that

$$
\|u\|_{W^{1,2}(\Omega)} \leq C\left(\|g\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right)
$$

3. Let $u \in W_{\text {loc }}^{1,2}(\Omega)$ be a weak subsolution to $\Delta u=0$, i.e.

$$
\begin{equation*}
\int_{\Omega} D u \cdot D \varphi d x \leq 0 \quad \text { for all non-negative } \varphi \in C_{0}^{\infty}(\Omega) \tag{1}
\end{equation*}
$$

Let $0<r<R<\infty$ be such that $B\left(x_{0}, R\right) \subset \Omega$ and consider a cut-off function $\eta \in C_{0}^{\infty}\left(B\left(x_{0}, R\right)\right)$ such that $0 \leq \eta \leq 1, \eta=1$ in $B\left(x_{0}, r\right)$ and $|D \eta| \leq C /(R-r)$. Show that

$$
\int_{B\left(x_{0}, R\right)} \eta^{2}\left|D(u-k)_{+}\right|^{2} d x \leq\left(\frac{C}{R-r}\right)^{2} \int_{B\left(x_{0}, R\right)}\left|(u-k)_{+}\right|^{2} d x
$$

where $k \in \mathbb{R}$ and $u_{+}=\max \{u, 0\}$.
4. Does the ess-sup estimate

$$
\underset{B\left(x_{0}, r / 2\right)}{\operatorname{ess} \sup _{2}} u \leq k_{0}+C\left(f_{B\left(x_{0}, r\right)}\left|\left(u-k_{0}\right)_{+}\right|^{2} d x\right)^{1 / 2}
$$

hold for a subsolution to $\Delta u=0$?
5. Let $n>2, u: \mathbb{R}^{n} \rightarrow(0, \infty]$ be the function defined by $u(x)=|x|^{2-n}$ and $k>0$. Show that $\min \{u, k\}$ is a weak supersolution to $\Delta u=0$, i.e. that (1) holds with $" \geq "$.
6. Show by a counter example that the ess-sup estimate in Exercise 4 does not hold in the case of a supersolution.

