EXERCISE SET 3 PARTIAL DIFFERENTIAL EQUATIONS 2 2023

Return the exercises to jarkko.siltakoski@jyu.fi or to my box in the ware room (opposite to MaD356).

1. Let $a_{ij}, b_i, c \in L^{\infty}(\Omega), f \in L^2(\Omega)$ and $u \in W^{1,2}(\Omega)$ be a weak solution to Lu = fin Ω . Show that for any $\Omega' \subseteq \Omega$ we have

$$\int_{\Omega'} |Du|^2 \, dx \le C \int_{\Omega} (u^2 + f^2) \, dx,$$

where C is independent of u. (Use $v := \eta^2 u$ as a test function, where η is a suitable cut-off function).

2. Let $f \in L^2(\Omega)$, $g \in W^{1,2}(\Omega)$ and $u \in W^{1,2}(\Omega)$ be a weak solution to $\Delta u = f$ such that $u - g \in W_0^{1,2}(\Omega)$. Show that

$$||u||_{W^{1,2}(\Omega)} \le C(||g||_{W^{1,2}(\Omega)} + ||f||_{L^{2}(\Omega)}).$$

3. Let $u \in W^{1,2}_{loc}(\Omega)$ be a weak subsolution to $\Delta u = 0$, i.e.

$$\int_{\Omega} Du \cdot D\varphi \, dx \le 0 \quad \text{for all non-negative } \varphi \in C_0^{\infty}(\Omega). \tag{1}$$

Let $0 < r < R < \infty$ be such that $B(x_0, R) \subset \Omega$ and consider a cut-off function $\eta \in C_0^{\infty}(B(x_0, R))$ such that $0 \le \eta \le 1$, $\eta = 1$ in $B(x_0, r)$ and $|D\eta| \le C/(R - r)$. Show that

$$\int_{B(x_0,R)} \eta^2 |D(u-k)_+|^2 \, dx \le \left(\frac{C}{R-r}\right)^2 \int_{B(x_0,R)} |(u-k)_+|^2 \, dx,$$

where $k \in \mathbb{R}$ and $u_{+} = \max\{u, 0\}$.

4. Does the ess-sup estimate

$$\operatorname{ess\,sup}_{B(x_0,r/2)} u \le k_0 + C \left(\int_{B(x_0,r)} |(u-k_0)_+|^2 \, dx \right)^{1/2}$$

hold for a subsolution to $\Delta u = 0$?

- 5. Let n > 2, $u : \mathbb{R}^n \to (0, \infty]$ be the function defined by $u(x) = |x|^{2-n}$ and k > 0. Show that $\min\{u, k\}$ is a weak *supersolution* to $\Delta u = 0$, i.e. that (1) holds with $" \geq "$.
- 6. Show by a counter example that the ess-sup estimate in Exercise 4 does not hold in the case of a supersolution.