EXERCISE SET 4 PARTIAL DIFFERENTIAL EQUATIONS 2 2023

Return the exercises to jarkko.siltakoski@jyu.fi or to my box in the ware room (opposite to MaD356).

1. Let $k \in \mathbb{R}$ and define $A(k, r)=B\left(x_{0}, r\right) \cap\{x \in \Omega: u(x)>k\}$ and $k_{0}=(m(2 r)+$ $M(2 r)) / r$. The measure decay lemma in the De Giorgi's method states that if u is a weak solution to $\Delta u=0$ and

$$
\left|A\left(k_{0}, r\right)\right| \leq \gamma\left|B\left(x_{0}, r\right)\right|, \quad 0<\gamma<1,
$$

then

$$
\lim _{k \uparrow M(2 r)}|A(k, r)|=0 .
$$

Is this still true if we just assume u to be a weak subsolution?
2. Let $n>2, u: \mathbb{R}^{n} \rightarrow(0, \infty]$ be the function defined by $u(x)=|x|^{2-n}$ and $k>0$. Show that $\min \{u, k\}$ does not satisfy the measure decay lemma.
3. Fill the gap in the proof of Hölder continuity: Let $\operatorname{osc}_{B\left(x_{0}, 2 r\right)} u=M(2 r)-m(2 r)$. Assume that u satisfies

$$
\operatorname{osc}_{B\left(x_{0}, r / 4\right)} u \leq \gamma \operatorname{osc}_{B\left(x_{0}, r\right)} u
$$

for some $\gamma \in(0,1)$. Show that there exists a constant $C>0$ and $\alpha \in(0,1)$ such that

$$
\operatorname{osc}_{B\left(x_{0}, r / 4\right)} u \leq C\left(\frac{r}{R}\right)^{\alpha} \operatorname{osc}_{B\left(x_{0}, R\right)} u
$$

for every $R \geq r$. (Hint: Choose $j \in \mathbb{N}$ such that $4^{j-1} r \leq R<4^{j} r$ and iterate)
4. Does Hölder continuity hold for subsolutions of $\Delta u=0$?
5. Formulate and prove a weak max principle for $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$,

$$
L u=-\sum_{i=1}^{n} a_{i i}(x) D_{i i} u(x)+\sum_{i=1}^{n} b_{i}(x) D_{i} u(x) \leq 0
$$

with $a_{i i}, b_{i} \in C(\bar{\Omega})$ and uniform ellipticity. Tips: Suppose that there is a point violating the weak max principle. What do we know about $D u$ and $D^{2} u$ at that point? Modify the solution to get strict inequalities and arrive at a contradiction.

