EXERCISE SET 4 PARTIAL DIFFERENTIAL EQUATIONS 2 2023

Return the exercises to jarkko.siltakoski@jyu.fi or to my box in the ware room (opposite to MaD356).

1. Provide the definition of weak sub- and supersolutions to $\partial_{t} u+L u=f$ in Ω_{T}.
2. Show that the step function

$$
u(x, t)= \begin{cases}0, & t \leq \frac{1}{2} \\ 1, & t>\frac{1}{2}\end{cases}
$$

is a weak supersolution to $\partial_{t} u-\Delta u \geq 0$ in $\Omega \times(0,1)$. Observe that u has no time derivative in the weak sense.
3. Let $u, g \in C\left([0, T] ; L^{2}(\Omega)\right)$. Show that the following three initial conditions are equivalent

$$
\begin{gathered}
\frac{1}{h} \int_{\Omega_{h}}|u(x, t)-g(x, t)|^{2} d x d t \rightarrow 0 \quad \text { as } h \rightarrow 0 \\
\int_{\Omega}|u(x, t)-g(x, 0)|^{2} d x \rightarrow 0 \quad \text { as } t \rightarrow 0
\end{gathered}
$$

and

$$
\int_{\Omega} u(x, 0) \varphi(x) d x=\int_{\Omega} g(x, 0) \varphi(x) d x \quad \text { for all } \varphi \in C_{0}^{\infty}(\Omega)
$$

4. Let u be a weak solution with zero boundary condition and an initial data g to the equation $\partial_{t} u-\Delta u=f$, where $f \in L^{2}\left(\Omega_{T}\right)$ and $g \in W_{0}^{1,2}(\Omega)$. Prove the following energy estimate

$$
\sup _{t \in[0, T]} \int_{\Omega} u^{2} d x+\int_{\Omega_{T}}|D u|^{2} d x d t \leq C\|g\|_{L^{2}(\Omega)}^{2}+C\|f\|_{L^{2}\left(\Omega_{T}\right)}^{2}
$$

5. Under the assumptions of the previous exercise, prove the estimate

$$
\left\|\partial_{t} u\right\|_{L^{2}(\Omega)} \leq C\|D g\|_{L^{2}(\Omega)}+C\|f\|_{L^{2}\left(\Omega_{T}\right)}
$$

(Hint: uniqueness + existence proof in section 4.1)

