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1. INTRODUCTION

This lecture note contains a sketch of the lectures. More illustrations
and examples are presented during the lectures.

Partial differential equations (PDEs) have a great variety of applica-
tions to mechanics, electrostatics, quantum mechanics and many other
fields of physics as well as to finance.

In addition, PDEs have a rich mathematical theory. In the ICM
at 1900, a German mathematician David Hilbert published part of a
nowadays legendary list of 23 mathematical problems that have been
very influential for 20th century mathematics. We are interested in
particular with the problems:

(1) 20th problem: Has not every regular variational problem a solu-
tion provided certain assumptions regarding the given boundary
conditions, and provided that, if needed, the notion of solutions
shall be suitably extended?

(2) 19 th problem: Are the solutions of regular problems in the
calculus of variations always necessarily analytic?

Comments:

e Variational problems and PDEs have a tight connection. We
will return to this later.

e As Hilbert suggested, in most of the cases we will have to relax
the definition of the solution to PDEs to obtain existence of a
solution. Still we would like to preserve the uniqueness and to
some extend regularity and stability. These are the question
we will deal with in this course.

2. SOBOLEV SPACES
2.1. Notations.

DOM = Lebesgue’s dominated convergence theorem,

Q CR" open set, bounded unless otherwise stated

|z| = \/2?+ ...+ 22 for z € R",

m(FE) = |E| = a Lebesgue measure of a set £

1
]{9(0,5) 1B(0,€)| /B,
f:Q—=R a function

spt f ={x € Q : f(x) # 0} = the support of f
C(Q) ={f : f continuous in Q}
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Co(Q) ={f € C() : spt f is compact subset of Q}

C*(Q) ={f €C(Q) : fis k times continuously differentiable}
CE(©) = CH(Q) N Co(©)

C™ () = N2, C*(Q2) = smooth functions

CP () = C™(Q2) N Cy(2) = compactly supported smooth functions
Remark 2.1. Recall that
u e CHQ) <= D€ ()

for multi-index o = (aq,...,a,) € N* and |o| := a1 + ... + o, <k,
where
o o

D% = . )
Oz Oxon

Example 2.2 (Warning). It is not always the case that spt f C Q.
Example 2.3. (1)
22 x>0
'R =R, = ’ -
/ 1) {—x2, r <0
feci )\ Cc*(9)
(2)

el/(‘x|2_l) ‘x| < ]_
:R" —» R, xr) = ’
@ () {0’ 2] > 1.

¢ € C(Q),sptp C B(0,1)
FEzxercise.

2.2. Reminders (from the Measure and Integration). Let E be
Lebesgue measurable, 1 < p < oo, and f : E — [—00, 00| a Lebesgue
measurable function. Then we define

1
[ (Sulsrdn)” p<oo
1 ey =
esssupg |f],  p=oo.

where

esssup |f| :=inf{M : |f| < M a.e.in E}.
E
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Then we define LP(FE) to be a a linear space of all Lebesgue measur-
able functions f : £ — [—00, 00| for which

||f||Lp(E) < 0.

If we identify functions that coincide a.e., then this will be a Banach
space with the norm defined above.
We also recall

LY (B) :={f:E —[-00,00] : f € LP(F) for each ' € EY},

where € means that F' is a compact subset of E.
Remark 2.4. There is usually no inclusions between LP spaces:
» ¢ L9 Lt ¢ [P
This can be seen by recalling that
7 € L'((0,1)) <= a> -1
7€ L'((1,0)) <= a< —1.
Thus if we let 1 < p < q < oo and choose 5 > 0 such that
1l
q p
we have
e % e LP((0,1)), but =% ¢ LI((0,1))
e ¢ LP((1,00)), but =% € LI((1, 0)).
Nonetheless, Holder’s inequality is often a useful tool:

Fgll e < 1A 9l o s

that is

folde < ([ 1f17dz)" ([ 19" dz)"",
ZEE| /

where 1 < p,q < oo are Holder-conjugates that is

1 1
S+ =1
q p

This implies, in particular, for 1 < p' < ¢ < oo and for a set |E| < oo
that

felf(E)= felL’(E)
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because (1 —p'/q" = (¢' =) /')
/ P da < ( / 19/ =1) ) @ / 1 da)”?
E E E

< ’El(q 0 Hf”iq’(E) :
Also the following inequalities are worth recalling. Young’s inequality:
foreache > 0,1 <p,qg<oo,1/p+1/qg=1 and a,b> 0 it holds

ab < ea? + Ob?,

where C' = C(e,p,q) (meaning that C' depends on the quantities in the

parenthesis). Minkowski’s inequality: for 1 < p < oo and f,g € LP(F)
it holds that

||f+g||LP(E) < ||f||LP(E) + ||g||LP(E)'

2.3. Weak derivatives. Let u € C'(Q2) and ¢ € C5°(2). Then by
integrating by parts

0 0
Auade:—La;¢dx, fori=1,...,n.

Observe that ¢ vanishes at the boundary and thus there is no boundary
term above.
More generally for multi-index «, |a] < k, and u € C*(€), we have

/uDo‘gpcM:(—l)'“/Do‘ugodx.
Q 0

Remark 2.5. Observe that the left hand side does not require u to be
continuously differentiable. This will be our starting point for defining
weak derivatives for functions that are not continuous differentiable.

Definition 2.6. Let u,v € L} (Q) and o a multi-indez. Then v is ath

loc
weak partial derivative of u if

/uDagpdx: (—1)0‘|/vg0dx,
Q Q

for every test function p € C§°(Q2). We denote

D%y := 0.

We denote weak partial derivatives with the familiar notation
ou
al’i .

We also use

ou ou
Du:<8_g;1”(‘)_mn)
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for the weak gradient.

Example 2.7.

z, O0<zx<1
u:(0,2) = R, u(x):{1 w9

We claim that a weak derivative is
u'(r) = v(x) = {

This is in Lj,, so by definition, the task is to show that

/ vpdr = —1/ uy' dx.
(0,2) (0,2)

To see this, we calculate using the integration by parts

/ ug' dz "2 lim </ wp' dw + / ug' da:)
(0,2) 20N J(0,1-¢) (14¢,2)

= u(L)p(1) = u(0)p(0) +u(2)e(2) —u(l)p(1)

- o gpda:—/ v pdr
/(0,1) Y 12)

1 0

= —/ pdx
(0,1)

= —/ vpdz.
(0,2)

Note that above u ¢ C((0,2)) and v’ ¢ C((0,2)). Also observe that
weak derivatives are only defined a.e. and thus it is irrelevant what is
the point value for example at 1.

1, 0<z<1
0, I<zx<?2

We found one weak derivative but could there be several? Answer:
No, weak derivatives are unique up to a set of measure zero.

Theorem 2.8. A weak ath derivate of u is uniquely defined up to a
set of measure zero.

Proof. Suppose that v,v € LL (Q) satisfy

loc

/uDacpdx:(—l)o‘|/vapdx
Q Q



8 PDE 2

for all ¢ € C3°(Q2). It follows that
/(v —U)pdr =0
Q

for every ¢ € C§°(£2). This implies that v = T a.e. by the following
reason:

Let ' €  and observe that C5°(£)') is dense in L'()'). Indeed, then
there exists

@i € Co (), wi <2
such that
; — sign(v — ) a.e. inQ,

(more about approximations later) where

1 x>0
sign(z) =<0 x=0
-1 x<0.

Then

=lim [ (v—"7)p;dx
3 1Y

DOM, below / lim((v — 7)) da
Q

Y

= /,(U — ) sign(v —7) dx

:/ lv — o] dz,

where the use of DOM is based on |(v — v)p;| < 2(|v| + [9]) € L' ().
This implies that v = 7 a.e. in , for any ' € €2, and thus a.e. in
Q. O

The above proof also yields a useful result.

Lemma 2.9 (Fundamental lemma in calc var). If f € Ll (Q), and

loc
/ fodr =0
Q

for every ¢ € C3°(R2), then f =0 a.e.
Example 2.10.

r O0<z<l1
u:(0,2) = R, u(a:):{Q <z
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This time u' does not exist even in the weak sense.
Counterproposition: Suppose that there is v € Lj, () such that

/ up dr = —1/ vpdr,
(0,2) (0,2)

for every test function p € C§°(2). Then

/ vpdr = / up' dx

(0,2 (0,2)

/ up' dx —/ up' dr
(0,1) (12)

20" dx

o

2o dr —
1)

=

,2)

O

(

= cpl)+2<p +/ pdz
(0,1)

= (1) +/ pdz.
(0,1)

Then we can choose a sequence @; € C§°(S2), |pi| < 2 such that ¢;(1) =
1 and pi(x) — 0 if © # 1. We obtain the desired contradiction by

calculating
Ozlim(/ vgpidx—/ gpidx—goi(l))
v (0,2) (0,1)

DgM(/ vlimcpida:—/ lim p; dz — 1)
(0,2) (0,1) *

)

—0-0—1=-1.

The Sobolev spaces are named after a Soviet mathematician S.L.
Sobolev for his significant contributions to the theory starting 1930’s.

Definition 2.11 (Sobolev space). Let 1 < p < oo and k € N. A
function u : Q — [—00,00] belongs to a Sobolev space WHP(Q) if u €
LP(Q) and its weak derivatives D*u, || < k exist and belong to LP(Q).

The function u belongs to the local Sobolev space W, loc ,ifu € Whr(Q))
for each €0 € Q.

Remark 2.12. (1) Sobolev functions are only defined up to a mea-
sure zero similarly as LP functions.
(2) Notation H* := W*2 as well as some further variants are en-
countered in the literature
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Example 2.13. For the function in Ezample 2.7, it holds
u € WHP((0,2)) for everyp > 1
and
w ¢ WHP((0,2))  for any k > 2.
Example 2.14.
w: B(0,1) = [0,00], u(z)=l|z| ",z eR"S>0,n>2

will be in a Sobolev space for a suitable f.  When x # 0

ou

P e o B A S
as well as
xXr

We aim at showing that this function satisfies the definition of the weak
derivative but we will have to be careful with the singularity. Therefore
let o € C§°(B(0,1)) and use Gauss’ theorem

0
/ (usp) dr = / upy; dS
BO\B(0e) 0% a((BO.\B(0.e))

where v = (11, ...,V,) is the outer unit normal vector of the boundary.
Recalling that ¢ = 0 on 0B(0,1) we get

0 0
/ ugodm:—/ u ('Ddx+/ wpy; dS
BO,)\B(0,¢) 0% BO\B(0e) Oi B(0,)
(2.1)

If we can pass to the limit e — 0 and to show that faB(o o) UPYi dS — 0,
we are done. To establish this we estimate

/ upv; dS‘ < ||S0||Loo(3(o,1))/ e ds
9B(0,¢) 0B(0,¢)

< el gm0,y Wn1E" 7 = 0
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ase — 0, ifn—1— 3 >0. Next we calculate

= dx
/B(o,l) Ox; B(0,1) ﬁ|£E|6Jr2
=
<o/
B(0,1) |:1:]6+2
= 5/ —d:r
B(0,1) |96|ﬁ+1
= 5/ / dep
aB(0

=0 / wn_lp"‘z‘ﬁ dp
0
n—1—p3

Loy
= PWn— 5 <0,
puo 1/on—l—ﬁ >

whenever n — 1 — 8 > 0. Thus, we have integrable upper bound for
XB(OJ)\E(()’E)% and we have

lim Ou dx "2V / lim Ou dx
e—0 B(0, 1)\B (0,¢) axZ()O B(0,1) e—0 XB(O 1 \B(O,E) axl v

ou
= pdx
/B(o,l) Ox;

Similarly as in (2.2), we see that

1
/ jul de = / 1 p"1 dp
B(0,1) 0

1 =B
::ahgl// a < 00,

on—p»
whenever n — B > 0. Thus we can again pass to the limit
8 0
lim Ly / 2 da.
e—0 B(0, D\B(0,¢) 8IZ 8%

Recalling (2.1), passing to the limit € — 0 and combining the above
estimates, we deduce

ou 8(,0
pdr = —/ dz 40
/B(O,l) Ox; B(0,1) awz

for all p € C°(Q2).
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By modifying calculation (2.2), we have

a _
4 €’ = n—p(f+1) >0 ﬁ<u
8xi p

and

uelP(Q) <= n—ps>0 < %>ﬁ.

As a conclusion
we WW(B(0,1) «— <2

Observe: If p > n, then uw ¢ W'?(B(0,1)) for all 8 > 0. Actually,
we will later see that when p > n, Sobolev functions have a Holder
continuous representative.

Example 2.15. A Sobolev function can be rather singular! Indeed, let
¢; be a set of points with rational coordinates in B(0,1) C R™. Then

for

o0

1
. B(0,1 => —|r—ql”
u (07 ) - [0700]7 u(x) v 21|ZL’ q |
holds
1 n—p
ueWHP(B(0,1)) <— p< -

Observe: u explodes at every rational point!

Example 2.16. Without a proof, we state that Cantor function is not
in W10, 1).

Theorem 2.17 (Calculation rules). Let u,v € W*P(Q) and |a| < k.
Then

(1) D*u € Wk=lalp(Q).
(2) DY(DPu) = DP(D*u) for all multi-indexes with |a| + |3] < k.
(3) Let \,u € R. Then Mu+ pv € WHP(Q) and

D*(Au+ pv) = AD% + pD.
(4) If € € C2(2), then Eu € WHP(Q) and
D (eu) =Y (Z) DP¢ DBy

BLa
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and B < a means 5; < «y; for eachi=1,...,n.

Proof. (1) Clear.
(2) Let ¢ € C§°(2). By the first statement, the weak derivatives
exist and

(_1)6/D5Daug0d$¢sn20th (_1)|al/uD5Da¢dm
Q Q
def (_1)|a|(_1)a|+5|/(pDO‘Dﬁudx
Q

= (=18 / ©D*DPu dz.
Q
(3) Clear.
(4) When |a| = 1, then (4) says
D (éu) = uD“E + €D

which follows from the definition by observing
/ suD%pdr = / uDY(Ep) — upDE dx
Q Q
= —/fDaugodx — / u(D*E)p dx
Q Q
=— / (ED%u + uD*E)p du.
Q

The rest follows by induction, but details are omitted.

Remark 2.18 (Reminder). Vector space with the norm satisfying
(1) 0 < [ul| < oo
(2) |lul| =0 <= u=0
(3) ||cul| = || ||u]|  for each c € R
(4) lu+ o[ < [|u]] + o]
15 a normed vector space. If, in addition, the space is complete, it

s called Banach space. Completeness means that all of its Cauchy
sequences converge.

Definition 2.19 (Sobo norm). If u € W"?(Q), we define its norm to
be

1/p
(ngk fQ |Dau|pdx> 1<p<oo

||U|‘Wk,p(g) = N
o<k €SS SUPq [ Dyl p = 0.
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Remark 2.20. The norm ||ul[ynq) is equivalent with the norm

> (/ |Dau\pdq;)1/p if1<p< .
Q

o] <k
Further in the case p = oo the norm ||ullyyr.eq 18 equivalent with

D%l = D* .
max ess sup | D%u| = max [|D%ul| 1o (q)

Definition 2.21. Let u;,u € W*P(Q). We say that u; converges to u
in W*P(Q) denoted by

w; —u in WHP(Q),

Zlggo |u — ui||W’w¢(Q) =0.

Let ug,u € WEP(Q). We say that u; converges to u locally in WFP(€)
denoted by

w —u i WEP(Q),

loc

Zliglo |Ju — ui||Wk»P(Q’) =0

for every Q' € Q.

The space C''(Q) is not complete with respect to the Sobolev norm:
to see this approximate in Example 2.7 the weak derivative by a smooth
function v; in LP. Then by integrating v;, we obtain u; € C1((0,2)) so
that

u; — u  in WH((0,2)),
but clearly u ¢ C*((0,2)). However, the Sobolev space "fixes’ this issue.
Theorem 2.22. The Sobolev space W*P(Q) is a Banach space.

Proof. First we check that [[ul|n, ) 18 a norm.

(1) ||U||Wk,p(Q) =0 <= u=0a.e. in
2 :”
|[l[yrn(y = O implies that [|ul],q) = 0 and this implies by
Chebysev’s inequality (see Measure and integration 1) that u =
0 a.e. in €.
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2 <:77
Suppose that © = 0 a.e. in €2. Then

Oz/uDagodx:(—l)|a/O<pdx
Q Q

for every p € C§°(Q), i.e. D*u = 0.
(2) ||/\u||wkp Q) = = |A| ||UHWkp Q) is clear.
(3) Let (1 < p < oo, if p = 0o a similar proof applies). Then

1/p
a4+ llwiny < (2 11D"u+ D0llq )
lo| <k
Minkowski o o 1/p
<X (D%l ey + 1001 )5, )
|| <K

Minkowski for ||

< (D ule) T (S ID ) )

la|<k la|<k
Next we show that if u; is a Cauchy sequence in W*P?(Q), then it
converges in W*P(Q) i.e. W*P(Q) is complete. To this end, let u; be a
Cauchy sequence in W*P(Q).
Claim: D%u; is a Cauchy sequence in LP(Q2) for each a, |a| < k.
Proof: This follows by fixing € > 0 and observing that

1D%u; — D[ 1oy < llui = sl <€

whenever i, j are large enough, since u; is a Cauchy sequence in W*?(Q).///
The space L? is complete and thus there exists u, € LP(£2) such that

D%u; — go in LP(Q).
In particular for o = 0
w —u in LP(Q).

Claim: g, is the weak derivative D“u
Proof: Let ¢ € C§°(£2)

1
_+_:]—7 p7qzl
q

and observe that

/(u —u;))D%p dx
0

Hbger(/ |u—ui|pdat)1/p(/ |D“gp|qd:x)1/q—>0
0 0

(2.3)
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by LP convergence. Thus
/uDo‘goda: (22 lim/uiDo‘godx
Q tJa

=lim(—1)! / D%u;pdx
E Q

sim to (2.3)

=) [ g e

This completes the proof of the auxiliary claim.///
We have shown that D%u := g, € LP(f2) exists and

D%u; — go = D%u in LP(Q)
as desired. O

Remark 2.23 (Warning). The Sobolev space W*P(Q) is not compact
in the sense that from

||illyrngy < C <00 (2.4)

it does not follow that there would be u € W*P(Q) and a subsequence
such that

w; — uin WHP(Q).

If this were true some existence results would be much easier. For
example, the functions

0 O<r<l1
ui:(0,2) = R, w(z)=< (z—1)i 1<z<1+1/i (2.5)
1 1+1/i<ax<?2

are in WH1((0,2)) and furthermore

||UiHW1vl((0,2)) <2

However, there is no in WH((0,2)) convergent subsequence. If there
was a limit, it should be (to have even L' convergence)

u(z) =

0 O0<z<1
1 I1<ax<?2

but this is not in WH((0,2)).
Whenp > 1, WFP(Q) is a reflezive Banach space and thus from (2.4)
it follows that there is weakly convergent subsequence u; (consequence
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of Banach-Alaoglu’s theorem). Especially, there is the weak limit u €
WkP(Q) such that

||U|IW’€7P < limiinf ||ul||Wkp .

We omit the details here but observe that (2.5) shows that this fails in
the case p = 1. By modifying the example to be

0 O<z<l1
ui(r) = (x—1)Vi 1<x<1+1/i
1/Vi 1+1/i<z<?2,

we have u; € W2((0,2)), |[uillyr2(2 < C and
u; — u  weakly in WH*(Q),

where uw = 0. It clearly holds that

0= HUHWLQ((O,Q)) < limiinf Huinlﬂ((o,z)) :
Observe carefully that strong convergence does not hold

u; = u in W5((0,2)).
2.4. Approximations. Below we denote
Q. ={ze€Q: dist(z,00) > e}

which is an open set by continuity of dist(z, 0€).
Definition 2.24 (Standard mollifier). Let

Cel/lal’-1) |z| <1
:R" - R, =
Ul n(z) {0 2> 1

where C is chosen so that
/ ndr = 1.

n(e) = o %)

Then we set for e > 0

which s called a standard mollifier.
Remark 2.25. Observe that
n- € C°(R™), sptn. C B(0,¢)
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and

1
E)d:v
£

[ @ [
pmele L = de / n(y)dy = 1.
Definition 2.26 (Standard mollification). Let
f:Q = [-00,00],  f € L(Q).
Then we define the standard mollification for f by
e Qe =R, for=mnex f,
where n. x f = [ ne(x —y) f(y) dy denotes the convolution for x € Q..

Theorem 2.27. The standard mollification has the following properties
(f € Ll (Q) unless otherwise specified)

loc

(1)
Df. = fx D). in ),
and
fe € C(Q).
(2) Let f € LP(Q). Then
fe— f ae in .
(3) If f € C(Q2), then

fe = f,  uniformly in compact subsets of €.

(4) If f € L¥ (Q) for 1 < p < oo, then for O € Q" € Q

loc
12l ey < 1l
for small enough € > 0, and for 1 <p < oo
fe—f in LY ().

Warning: The convergence does not hold for p = oc.
(5) If f € WEP(Q) for 1 <p < oo, k€N, then

loc
Df. =n.xD*f in ..
(6) If f € WEP(Q), for 1 <p < oo, k €N, then
fo= f in WEP(Q).

loc
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Proof. (1) Let

ith

and h > 0 such that = + he; € ).. Intuitive idea is

R e

To make this rigorous we would like to deduce

g_ﬁ (@) = lim felw + he}i) — [(x)
= 11“%( / el +hes —y)f(y) dy — / (= y)f(y) dy)
porteow 2 [ tim 3 () - () ) d
= / , —anagxi_ Y 1) dy
“or

(2.6)

where B(x + he;,e) U B(z,e) C @ € Q. For this we need
to calculate the limit inside the integral and to look for an
integrable upper bound to be able to use DOM:

Claim 1:
1/ x+he —y x—y 10n,z—y
E(U( £ )= 5 ))%g&v( 5 )

Proof: This can be seen to hold by setting

r—y
() = n( )
€
and the limit is
oY _1on,x—y
@ =Yy
Claim 2: +(n(¥He=¥) — p(2=¥))f(y) has an integrable upper
bound in 2.

Proof:



20

%(n(

(2)

|[fe(@) = f2)] =

PDE 2

h

U(x + he;)) —Y(z) = %1/)@ + te;) dt

0
h
0
Thus
(2 + hei) = p(x)| < h[|IDY] oo o

and

x+ he; —y x

=) DN < 1Dl L1 € Q@) 1)

Thus the use of DOM in (2.6) was correct and the proof is
complete. A similar argument shows that for every multi-index
a, D*f. exists and

D®f. =D * f.

Moreover, the convolution on the RHS is continuous (ex). Now,
repeating the argument for the higher derivatives of f. € C'*(£,)
implies the result.

Let z € ' & Q so that the convolution below is well defined
for a small enough ¢, recall [, 7. dy = 1, and estimate

/Q ne(e — 9)f(y) dy — (o)

[ e =00 - 1) dy‘
“ (2.7)

1
<l 35 [, 150) = 1@y

< Clllymey £ 106) = S@)]dy 0

B(0,e)
a.e. in €2, where at * we used Lebesgue’s differentiation theo-
!
rem. Above fB(O,E) o dy = o fB(O,z—:) ... dy.

Let Q' € Q" € Q). Then f is uniformly continuous on a compact

subset . Let £ > 0 be small enough so that for z € € we
have B(z,e) C ©”. By uniform continuity, for any § > 0, there
exists € > 0 such that

[z —yl <e=|flz) - fly)l <0
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for any x,y € ", Then by this and (2.7), we have

£.0) = F@] < Cllllymer § 1) = Sl dy

B(z,e)

< ey £, 01
z,e
< Cnll poogny 0

independent of x € Q' for all small enough ¢.

(4) Let 1 < p < oo (bound in the case p = oo is straightforward)
and v € ¥ € Q" € Q0. Then

|fs(x)| =

/ =) dy]

< / e =) e )V )y
B(z,e

Holder

< </B(I ! Ne(z — y) dy) v (/B(m ! ne(x —y)If(y)I" dy>1/p-

/

~
1

We apply this estimate together with Fubini’s/Tonelli’s theorem
(R*" measurability ok). Thus, whenever £ > 0 is small enough,

[wrars [ [ ne-piswr

:/,/,,nf(x—yﬂf(yﬂpdydx
Fugni/,,/,”e(x—y)lf(y)!”dxdy

= [ 1@ [ e =)o dy

Q//

< [ 1@ [ e -y)ds dy

Q//

-

1
= [ f)lFdy.
QII

It remains to show that f. — f in L} (€). Recall (not
proven here) that C(Q") is dense in LP(Q2”) ie. for any f €
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LP(2") and 6 > 0, there exists g € C(€”) such that

(/m f —glPdy)"? < 6/3.

From this and the beginning of the proof, we deduce

(-
Minlgwski( i \f _ g|p dx)l/p + ( 5 ]g . g€|p dx)l/p + ( o |gs - fs|p dx)l/p
<3§/3+ (/Q, 9= g.I" dz) """ + (/Q,, 9= 1 dz)"”

<o/ ( [ lo— gl )"+ 53
Q/
<0/3+d/3+9/3,

where the last inequality follows from fact we proved earlier:
for continuous functions the convergence is uniform and thus

1 1
([ 19— gl de)"" < suplg—g.||"" < 6/3
% zeQy
for small enough ¢.

(5) Exercise.
(6) Exercise.
U

2.5. Global approximation in Sobolev space. We already stated
in Theorem 2.27 (6) that Sobolev functions can be estimated locally
by mollifying. At the vicinity of the boundary this does not hold as
such since we need some space to mollify. To establish a global approx-
imation the idea is to take smaller and smaller € when approaching the
boundary so that B(z,e(z)) C € always holds.

Theorem 2.28. Let u € W*P(Q) for some 1 < p < oco. Then there is
a sequence u; € C®(Q) N WHEP(Q) of functions such that

w; —uin WEP(Q).
Proof. We define

Qoz®
;= {x e Q : dist(z,00) > 1/i} N B(0,1)
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and observe that €2; are bounded sets such that Qy € Q) € ... € Q
and

Q= Ej Q;.
i=1

Claim: There are & € C5°(Qi12 \ 1) such that

0<¢& <1, Zé}zlinQ.

=1

This is called partition of unity. 3 _
Proof: Clearly we can choose functions & € C§°(£2;42\£2;_1) such that

Ogélgl, and ézzllnﬁHl\Qz
We set

Z?il &(x) 7

Observe that for any fixed x € €2, only three terms in the sum will be
nonzero. Similarly &; is nonzero at the most for three indices. Then by

Yoo Gilx) =500, % =1 the claim follows.///
We continue with the original proof. By Theorem 2.17 (4) &u €

WHFP(Q) and

§i(z) =

i=1,...

spt(&u) C Qiga \ Qs
Hence for small enough ¢;
e, * (&u) € CF° (it \ﬁi—l)
and
)
||f'7& * (&U) - giunk,p(Q) S E
We define

v = Zn&' * (51“)
i=1
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Then it holds that v € C°°(2) because at each point x € ) there are
at the most three smooth functions that are nonzero in the sum. Then

Z ne, * (Siu Z Siu
=1

v = ullyrs@
Wk.p(Q)
< Z 7e, * (&u) — Gullyyra o)
< i é ) O
—_— : 2 *

Corollary 2.29 (Approximation characterization of the Sobolev space).

u € WH(Q)
if and only if there exists a sequence u; € C*°()) such that
u; — u in WHP(Q).

Proof. 7="": This follows from the previous theorem.
"<": u; is a Cauchy sequence, and since W*?(QQ) is a Banach space
by Theorem 2.22 it follows that u € WHP(Q). O

In other words: W#P(Q) can be characterized as a completion of
C>=(Q) (or (C=(), ]| Wk,p(Q)) to be more precise).

2.6. Sobolev spaces with zero boundary values: Wé‘:’p(Q). Above,
we showed that W*?(Q)) can be characterized as a completion of C*°(€2).
By following this idea, we define Sobolev spaces with zero boundary
values as a completion of C§°(€2).

Definition 2.30. u € WP(Q) if there exists a sequence u; € C3°(Q)
such that

u; —u in WEP(Q).

Remark 2.31 (Purpose). u € WJ"P(Q) has "zero boundary values in
the Sobolev sense”. Later, we want to set boundary values for weak
solutions of PDEs: given v € W?(Q), we say that u takes boundary
values v in the "Sobolev sense” if

u—veWy?(Q).

Remark 2.32 (Warning). The regularity of 2 affect the outcome,
and Wol’p(Q) functions do not always look what one might intuitively
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expect by thinking smooth functions with zero boundary values. Set
Q= B(0,1)\ {0}. Then for

u:Q— R, wu(zr)=dist(z,0B(0,1)) =1— |z

it holds that u € W, *(Q) whenever p < n.

Reason (with omitting some details): Choose a cut-off function & €
C(B(0,1)), 0 <& <1 such that {(x) =1 in B(0,¢) and in B(0,1)\
B(0,1—¢), & =0 in B(0,1 —2¢) \ B(0,2¢) and |DE.| < CJe. Then
(1—-¢&)ue CP(Q) and

(1—&u—u in WH(Q)

as € — 0, whenever p < n. Indeed, by MON (=Lebesque’s monotone
convergence thm) (1 — &) )u — u in LP(Q)) and we may concentrate on
showing that %((1 —&)u) — g—; in LP(Q2). To see this, we calculate
using Theorem 2.17

0 ou |?
1 —
o= - 52| ds
B OE, ou  Oul’
p p
< C/ Oc. derC'/ Ok (1 — |x|)Pdx
B(0,2¢) Ox; B(0,1)\B(0,1—2¢) Ox;
p
+C/ & Ou dx
Q Ox;

<C [ IDePdr+ 4 C|Dul e [ 161
B(O,2E) W_/ Q
=1

< Ce™[feP + Ce + C(2e + (2¢)") — 0,

when ¢ — 0 and p < n.

The problem in this example is that {0} is too small to be “seen”
by WHP(Q) function when p < n. Let us also remark that Lebesgue
measure is not the most accurate gauge to measure smallness of sets in
the Sobolev theory. In a sense right gauge is so called p-capacity.

The following lemma shows that when considering Sobolev spaces

over the whole R™, W, #(R") coincides with W1?(R™).
Lemma 2.33. W, ”(R") = WhP(R").
Proof. Exercise. U
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2.7. Properties of W'?(Q), 1 < p < co.
Lemma 2.34 (Chain rule). Let f € C'(R), ||f'|| @ < o0, and
ue Wh(Q). Then

of(u) ., | Ou
oz, _f(u)ﬁ_xj’

j=1...,n

. F) . .
a.e. in €2, and where %, # denotes the weak derivative.
J J

Proof. We have proven that we can choose u; € C*(2) NW'P(Q) such
that

u; — u  in WhHP(Q).

Claim: For any ¢ € C§°(Q2)
8@ B dp
/ f(u dm lim / f(uz)a—x] dx.

Proof: Let 1 < p < oo (the case p = 1 is similar). Then since 1/p +
(p—1)/p =1, we have

&p dp
W52 dn | st o

&/v F(us)| D] de
Holder
/’f ul ’pdx /P /|Dgp‘p/p 1) dl’)(p 1/p

- ~1)/
< ||f/HLoo(R)(/Q|U—ui|pdx) /p(/Q|Dg0|P/p 1) dx)(p p_>07

where * follows from | f(u) — f(u;)| =

£)dt] < F| ey s = l.///

/f( )8g0 der = lim | f(u;))=—— 0 dx

0z i—»00 [ 0x;

calc for smooth functions auz
—lim [ f'(u)

a /ng f (ul)ax-

/f —s@dl’

1—00 Q ﬁwj
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Since the LHS above is as in the definition of the weak derivative of
8f (u) , the proof is complete. At * we used

LG - g yeds

J

(7 >§— P ) S ) S ) S da

J J J

— 0.

() — () o
Lj Lj
The first term converges because of Holder’s inequality and the second
by the fact that since u; — w in LP we can choose a.e. converging
subsequence to u. Moreover, as f’ is continuous, also f'(u;) — f'(u)
a.e., and the conditions of DOM are satisfied.

Theorem 2.35. If u € WHP(Q), then recalling uy = max(u,0) and
u_ = —min(u,0), we have uy,u_,|u| € W(Q) and

Du a.e. in{x € : u(z)> 0}
DU+ = .
0 aein{ze: ulx) <0}

—Du a.e. in{reQ : ulx) <0}
Du_ = .
0 a.e. in{r € : ulx) >0}

and
Du  ae in{reQ : u(x)>0}
Dlu| =<0 a.e. in{x € : uz)=0}
—Du  a.e. in{xeQ : u(r) <0}
Proof. We aim at using the previous theorem for a suitable f. Let
Vs2+e2—e s>0
fels) = {o s <0.

It holds that f. € C'(R) and lim._q f-(s) = f(s), where

s >0
f(s):{o s <0.

Also observe that
] ooy < 00
Thus by Lemma 2.34

/fs /f —sodx



28 PDE 2

for every ¢ € C§°(£2). Observe that

lim f.(u) = uy  in

e—0

and

1 in{ze: ulx) >0}
0 inf{reQ:u(z) <0}

prev. lemma I;
f —w dx
E*)O

DOM,|floe<C /hmf( )@wdﬂf
Q

= —/ —pdz.
{z€Q:u(z)>0} ax]

This proves the first part of the claim. The second and the third follow
by observing

u_=(—u)y and |u|=us+u_. O
Corollary 2.36. Let u,v € WH(Q) and A € R. Then
min(u, v), max(u,v) € WH(Q),
and if 2 bounded
min(u, \) € WH(Q)
and

Du a.e.in{x € Q : u(z) <A}

D min(u, \) = {0 a.e. in{x € Q : ulr) > A}
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Proof.
max(u,v) = u, {r e u(r)=>wv(r)}
7 v, {xe:ulr)<v(x)}
_ {%(u+v+(u—v)), {r e : ulx)>v(x)}
%(u+v— (u—w0)), {z€Q: ulz)<v(x)}
1
=5t vt fu—vl)
and

1
min(u,v) = é(u +v—|u—0|).
Corollary 2.37. Let u € WH(Q) and X\ > 0. Then for

A {r e :ulx) >N}
uy = min(max(u, —A),A\)) =<qu  {reQ: \<ulr) <)}
A {xeQ:ur) <A}

we have
uy —u in WH(Q)
when A — 00.

Proof. Exercise.

29

O

Theorem 2.38. If u,v € WhP(Q) N L>(Q), then wv € WP(Q) N

L>(Q), and
81‘]‘ N 6xj a{L‘j

almost everywhere in €.

Proof. Exercise: The derivatives in the statement denote weak deriva-
tives, so start from the integral definition and use similar techniques

as in Lemma 2.34.

2.8. Difference quotient characterization of Sobolev spaces.

Definition 2.39. Letu € L} () and Y C Q ande; = (0,...,_1

loc
ith
Then difference quotient of u to direction e; is
u(x + he;) — u(x)

D" —
Fu(a) ;

7\ )

O
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for x € Q' and |h| < dist(Y, 09). Further, we denote

D"y = (D!, ..., D).

n

Theorem 2.40. Let u € W'P(Q) for 1 < p < oo. Then there exists
C = C(n,p) > 0 such that

} ‘Dhu| ‘LP(Q/) <C ||Du| |LP(Q)
for every ¥ @ Q and |h| < dist(SY,09Q). Here HDhuHLp(Q,) = ||| D"l HLP(Q,)

Proof. Let first u € C=(Q) N W?(Q). Then

|u(z + he;) —u(x)| = / ETi u(x + te;) dt’

= / Du(z + te;) eidt'

te;
:/ x+edt‘

t
/ ou( x—i— ez it
Thus
‘Dzhu(:v)‘ _ u(z + he;) — u(x)
h
|A] .
Si/ Ou(x + te;) "
|h| 0 €T
Holder + 1 (1" | Qu(z 4 te;) [P \1/p
< [— — 4t
ie.
1 " ou(z + te;)|P
D)’ < - / Jutw te:) | gy
D@l =g ) oz,
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Using this

/}Dh dx<m/l/|h|
=

t
ou(x + ez dtda:

Ou( x+s|h|e,~) s d

S NP
Fugml// ou(zx + s|h|e;) de ds
0 !
NP

< sup/ Ou(z + s|hle;) d

s€[0,1] J ox;

p

S/ ou(x) de.

Q Ox;

Then we deduce the result for the full gradient

P u 2\ P/2

N |Dhu(x)‘ dr = /Q/ (; }Dfu(m” ) dz
< C’/li ’D?u(x)‘pdx
= Ci N ‘Dfu(x)}p dx

prev10us

axz

/Q<z as;?

=1
:c/ \Du(z)P dz.
Q

We assumed u € WHP(Q2) N C*(Q), but we can extend the result for
WhP(Q) by approximation. O

p/2
) dx

Theorem 2.41. Let Q € Q. Ifu € LP(Q), 1 < p < oo and if there
exists a uniform constant

HDhuHLP(Q’) <C (2.8)
for all |h| < dist(QY,00), then u € WHP(QY) and
1Dul| gy < C
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for the same constant C.

Proof. Let ¢ € C°(€Y'). Then

o(z + he;) — @(x)
/ ()T iz

=%/u(> (« + hey) dg;——/ u(z)p(x
:+hez}11// uly — he:)y %/Q,u

_ // u(z) — u}Ex — hei)g@(ﬂ:) de

_ _/ u(z — he;) — u(x)

— o(z)dx

for |h| so small that spt ¢(- + he;) C €. Then

/ uD!p dx = —/ (D;"u)p d, (2.9)

"integration by parts for difference quotients”. From the assumption
(2.8) it follows that

—h
sup D" N < 00,
0<|h|<dist(€,09) | | ’Lp(g )
and because LP(Q2'), p > 1 is reflexive, there exist v; € LP(2') and a
subsequence h; — 0 such that (see Remark 2.42)

D; My — v weakly in LP(€Y).

1

Next we check that this weak limit is a weak derivative. Recalling (2.9),
it follows that

’ 8:132

hj—>0 0

weak convergence
= — [ v dx.
Q
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As a conclusion v; = g;‘_ in a weak sense, and thus u € WhP().
Moreover, for weakly convergent sequence, we have
ou o h
il oy = H ghmmeDi hﬂu‘ <C
Ox; LP(QY) h;j—0 Lr(Q)

Remark 2.42 (Reminder).
fi = [ weakly in LP(Y)

figdr = | fgdx
o o

for every g € L' (), where 1/p+1/p =1, 1 < p < co. If space is
reflexive, it is weakly sequentially compact: every bounded (in the norm
of the space) sequence has a weakly convergent subsequence. Moreover
for this sequence

1/ 1]y < Himinf [ /5] g -

2.9. Sobolev type inequalities. Study of Sobolev type inequalities
is divided in three intervals of exponents:

(1) 1 <p < n, Gagliardo-Nirenberg-Sobolev inequality

(2) p=n
(3) n < p < oo, Morrey’s inequality

. 1 _
Also recall the notation 57— fB(az,r) ody = fB(I’T) c.ody.

2.9.1. Gagliardo-Nirenberg-Sobolev inequality, 1 < p < n. We define a
Sobolev conjugate

i
or in other words
1 1
ponpr

Motivation for this form of the Sobolev conjugate is as follows: We
want to prove that an inequality of the form

(/ |u]qu)1/q§0(/ \Du]pdx)l/p,
n R’ﬂ
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for every u € C§°(R"™) and constant independent of u. Then it should
also hold for

ur(z) = u(Ax) € CFE(R™), A > 0.

For this function

=x 1
ua)*de "= [ puty)ldy
RTL

R’I’L

and

/ |Du,\(:v)|pdx:/ |IADu(Ax)|” dx
n Rn

y=re 1 p
= 55 [ Iputay,

Thus we would have

<% /]R |u(y)‘qdy>1/q = <)\n1p [ IDuy)l dy>1/p

and constant would be independent of A only if

)\n/q+1fn/p — )\O

that is

Y

S|

1
q

D=

*

ie. qg=rp"

Next theorem shows that any function in W?(R") can be controlled
by its gradient. Later we will see that this holds in general for W, ?(Q)-
functions (recall that Wy”(R") = WP(R")). Also observe that the
constant below does not depend on the function u itself.

Theorem 2.43 (Sobolev’s inequality, 1 < p < n, R"). Let 1 < p < n.
Then there exists C = C(n,p) such that

([ |uf” dx)l/p* <C( | |Duff d:v)l/p.
Rn Rn

for any u € WHP(R™).

Proof. By approximation argument, as shown at the end of the proof,
we may again assume that u € C§°(R"). Then

i O0u
u(xl,...,m,...,x):/ — (@1, ..ty ) dE
j n . 9z, j n) at;
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implying
x)]S/|Du(x1,...,xj,...,xn)\dmj.
R

Multiplying we obtain

n n— u 1/(n—1)
ju(@) e < ] /RyDu(:cl,...,xj,...,xn)\d;cj)
Jj=1

and further

1/(n—1) n 1/(n—1)
R R ]Rj:2 R

1/(n— 1) /(n—1)
/|Du|d;p1 //|Du|dx] dx1> ,

in * we used generalized Holder’s inequality, Lemma 2.45, with powers

Z;:ll ﬁ = 1. We repeat the argument for x,:

[ [u@re o as,
1/( —1) 1/(n=1)
/ /\Du!d:cl //|Du|dx] da:1> dzxs
=
1/<n—1>
< <//\Du]dx2dx1)
R JR
1/(n—1) 42 1/(n—1)
/ (/]Du|dx1> H(//|Du|d:cj dxl) dzs
R NJR i3 VJRIR
gen Holder 1/(n—1) 1/(n—1)
//|Du|dw1 da:2> (//|Du|d$1dx2>
R JR
- 1/(n—1)
5 “JrRJRJR

J

Repeating the argument n times, we finally obtain

n/(n—1)
/ . / lu(2)[" "V dey das . .. da, < (/ . / |Du| dzy dxs . . . dxn) :
R Jr R Jr

This is the claim for p = 1.
When 1 < p < n, we apply the estimate for

v=lul’
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where 7 is to be selected. The above result yields

(n—1)/n
(/ |u|m/(n—1)dx>

< / Dlul’| dz
_ / | D] d

Holder (p—1)/ 1/
< 7( |u|(7—1)p/(p—l) dm) P p( | Dul? dx) b
R™ R”
Solving for v so that on both sided u has a same power i.e.
ny/(n—1) = (v = 1p/(p—1)
= mp-1)=0@-Dr-1)p
< Y(m—n—np+p)=—(n—1)p
p(n—1)
n—p

= =
Using this v we have

.\ (=1)/n —1
([ i) < M( u
R" Rn

n—p
and since

. (r—1)/p 1/p
P dx) ( | Dul? dx)
Rn

we are done for C§°(R").
We complete the proof by justifying the smoothness assumption. Let
u € WHP(R™) and u; a smooth sequence such that

u; — u  in WHP(R™).
We can also (not proven here) take a further subsequence so that

Uu; — U a.e.

This wu; is a Cauchy sequence in LP" (R"), since for any € > 0

u; — u; € C§°(R™)
i = 5] o gy < 1D (s = )| o my < €

for all large enough i,j. LP (R") is complete and thus there exists
u € LP"(R™) (more details at the end of the proof) such that

w; —u in LP(R™). (2.10)
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Thus

[l | Lo (g
Minkowski
< | — ul] o ®n) T [l | o (Rn)

< Jus = | e gy + C | D[ 1o ny
< fui = u||LP*(R") + C||Du; — Du||LP(R”) +C HDUHLP(R")
_>0+O+CHDUHLP(R”)7

which completes the proof, in case, we can show the following: We
omitted one point above; why should L?"-limit also be u?

Claim: LP" limit in (2.10) must be u.

Reason: Assume the contrary:

u; — g in LP"(R™).
Choose a further subsequence
U — ¢

pointwise a.e. and by our earlier choices

U; — U a.e.,
a contradiction. U
Corollary 2.44.

u € WY (R") = u € LP(R™) N LP" (R™).

Lemma 2.45 (Generalized Holder). Let

1 1
—+ ... +—=1
b1 Pm

and suppose that u; € LP(Q), ... uy € LP™(Q). Then

i . 1/ps
/Q]ul.....um|da:§g(/{l‘uimdx) .

Theorem 2.46 (Sobolev’s inequality, 1 < p < n, Q). Let 1 < p < n.
Then there exists C' = C(n,p) such that

(/ juf?” dz)"" < c(/ |Duf? dz)"”?
Q Q

for any u € WP ().
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Proof. Idea. Similarly as before, we can concentrate on u € C§°(2)
and then obtain the general case by approximation. Now, u can be
extended by zero to have u € C§°(R™). Then we can apply Theorem
2.43 to obtain the result. U

Remark 2.47 (Warning). The above theorem does not hold without

. 1 .
assumption u € Wy () on zero boundary values: consider a constant
function.

Corollary 2.48. Let 1 < p < n. Then there exists C = C(n,p) such
that

(][ ]u\p* dy)l/p* < Cr(][ |Du\pdy)1/p.
B(z,r) B(z,r)

for any uw € Wy (B(x,7)).

Theorem 2.49 (Sobolev’s inequality, n < p < 0o, Q). Let n < p < o0
and || < oo. Then there ezists C = C(n,p) such that

1/
ess sup [u] < C|Q|<P—">/P"(/ Dul? )"
Q Q

for any u € W, P ().

Proof. This result is proven later in the section of Morrey’s inequality.
O

Corollary 2.50. Let n < p < oco. Then there exists C' = C(n,p) such
that

1/p
esssup |u| < C’r(”_”)/”</ | Dul? dy)
B(z,r)

B(z,r)
1/p
< C"r’(][ |Du\pdy> :
B(z,r)

for any u € Wy *(B(x,7)).
Corollary 2.51. Let n < p < oco. Then there exists C' = C(n,p) such

that
1/q 1/p
(/ ]u\‘%ly) < C’rln/p+"/q(/ | Dul? dy)
B(z,r) B(z,r)

1/q 1/p
<][ |u|qdy) < C’r(][ | Dul? dy>
B(z,r) B(z,r)

for any q € (0,00] and v € Wy?(B(z,7)).

1.€.
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The previous three results also extend to the case p = co.

Theorem 2.52. Let p=n > 1. Then for any q € (0,00) there exists
C =C(n,q) such that

1/ 1/
(/ |u|qdy> ! < CTp/q</ | Dul? dy> 5
B(z,r) B(z,r)
1/ 1/
(][ uftdy) §C’r<][ Dul? dy) "
B(z,r) B(x,r)

foru € Wy (B(z,r)).
Proof. Exercise. O

1.e.

2.9.2. Poincare’s inequalities. We denote up(y ) = fB(x " udy.
Observe in particular that the constant in the next estimate is inde-
pendent of p.

Theorem 2.53. Let (2 C R™ be an open bounded set, and 1 < p < oo.
Then there is a constant C' = C(n) such that

/ lul” doz < CP diam(Q)p/ | Dul? dz,
Q Q

for every u € W, 7(Q).

Proof. By approximation, we may assume u € C§°(Q2). Set/choose
r = diam((2)
y= (Y- ¥) €,

QC H —7r,y; + 7]
Similarly as in the proof of Theorem 2.43

y1+r
()| < / Dulty, z, ... 20| dbs
Yy

1—T

Hélder yitr 1/p
<" e ([* putan P )
Yy

1—7T
so that
y1+7r

@) < )0 [* Dutar, .. m) e

yi—r
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Using this

Yn+T y1+r
/|u\pd:1:§/ lul’ dxy ... dz,
Q Yn—T Y-

Yn+T y1+r
< (2r)p/ / |Dul? dxy ... dx,
Yn—T Yyi—r

< (27")1”/ | Dul? dz.
Q

The case u € VVO1 () again by approximation. O
For simplicity, we next work in cubes:
Q =la1,bi] X ... X [an, b)) CR", (b —a1) =...= (bp — an),
[(Q) = (by — a1) = side length of the cube,
and
Qz,)) ={y eR" : |y; — x| < %,z’ =1,...,n}.

Observe that |Q| = (" and diam(Q) = /n .
Theorem 2.54 (1 < p < o0). Let 1 < p < oo, Q CR" and u €

WLP(Q). Then
/ lu — ugl” dz < lpnp/ | Du|” dz.
Q Q

Proof. By approximation argument, we may again concentrate on u €
C*(R"™). Let x,y € @ and approximate

lu(r) —u(y)| < Ju(z) —u(zy, .. vp 1, y)| + - 4 (@, vo, - Yn) — u(y)]

n by
SZ/ |\ Du(zy, ..., i1, Yig1, - - -, Y| dt.
i=1 v

Thus
u(z) — u(y)”
n b; »
S <Z/ |Du(x17"'7$i—17t7yi+17"'ayn|dt)
i=1 v %
Holder / bi 1/p\ P
Oée (Z(bz _ai)(p—l)/p</ |DU(£L'1,...7$i_1,t,yi+17...,yn)|pdt> )

i=1 @i

* n bl
S Z/ |Du(...)|" dt
i=1 v ai
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convexit;
where at * we used (c1 + ... +¢,)P = (Zc1 + ... + 2¢,)P < ’
2 i (nei)? /.
Now
P
/ lu — ugl” de = u(x) —][ u(y) dy| dx
Q Q
P
/ ‘][ y)dy| dx

S / . @)~ up dy o
p—1jp—1
r l //Z/ |Du(...)|" dt dy dx

Fub+recall (...) np_ll B 1 /
e —l”+ | Du(z)|” dz
Q) Z Q

< nplp/ | Du(2)|P dz.
Q

The general case u € W1?(Q) again follows by approximation. O

Theorem 2.55 (1 < p<n). Let 1 < p < n and u € W'?(B(x,7)).
Then there ezists a constant C = C(n,p) > 0 such that

P 1/p* » 1/p
B(z,r) B(z,r)
p* 1/p*
< ][ ‘U — UB(z,r) d?/) < Cr ( ][
B(z,r) B(

Similarly to the above it holds that

» 1/p » 1/p
( ‘u - uB(x,r)‘ dy) < Cr( | D dy) ,
B(z,r) B(z,r)

for 1 < p < o0.
We do not prove the result in this form, but prove a weaker result
in cubes with a bigger cube on the right hand side:

Theorem 2.56 (1 < p < n). Let u € W'P(2Q), Q = Q(z,]) C R"
and 2Q) := Q(z,2l). Then there exists a constant C = C(n,p) > 0 such

that
(/Q s — uQ|p* dy> 1/p* < C</2Q Duf? dy) 1/p

1.€.

1/
| Dul|? dy) g

:B?/r')
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1.€.

*

2 dy)l/p < Ol( ][ | Dul? dy)l/p.
2Q

Proof. Let n € C§°(R™) be a cut-off function such that

and

1 re@
10 =90 1 er\ 20

Then (u — ug)n € W,*(2Q) and

. 1/p*
(/\u—uQ\p d:z:) '
Q

spt C2Q « 1/p*
" / (g dz)
Sobome 1/
’ / D((u — ug)m)P dz) "
< C’(/ p|Du|pdx) —|—C / |D77|pu—uQ|pd:E> "
1/p
/ | Dul|” dx / lu — ugl” dx .

N
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Further we may change ug to uyg as

v
(/ |u—uQ|pdx> '
2Q
1/p
= (/ |u — ug + usg — u2Q|pdx>
2Q
1/p 1/p
SC’(/ |u—u2Q|pdx> +C</ |u2Q—uQ|pd$>
2Q 2Q
1/p LN ¥/
SC’(/ |u—u2Q|pd:L’> —i—C(/ uQQ—][ udy d:c)
2Q 2Q Q

Poincaré 1/p
< cz(/ \Duy”dx> v
2Q

Holder 1/ 1/
< Cl(/ |Du|pda:> p—i—C’(/ ][ |u—uQQ|pdyd:B> "
2Q 2Q J2Q
Poincaré 1/
< C’l(/ |Du|pdx> p,
2Q

where we used the facts that f, < C' f,, and [,, 1dz = |2Q)|. Combin-
ing the above estimates, [ will cancel out, and we obtain the claim. [J

Remark 2.57 (Warning). The global version

/ lu — ug|” dy < C/ | Dul? dy.
Q Q

does not (in contrast with Sobolev’s inequality) hold without regularity
assumptions on 2. FExercise.

2.9.3. Morrey’s inequality, p > n.

Theorem 2.58. Let u € WI'P(R™), p > n.  Then there exists C =
C(n,p) such that

u(z) — u(y)| < Clz — y|* " || Dul| oy
for almost every x,y € R™.

Proof. Let u € C*(R") N W' (R") and x,y € Q := Q(xo,!). Again

/Ol%wt(w—y»dt\

u(z) = uly)] =

< /01 Du((1 = t)y + tz) - (z — y) dt‘.
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uly) — ][Q wde
< ][Q [uly) — ()| da

By using this

[u(y) — ugl =

1
/ Du((1 —t)y +tz) - (x — y) dt| dx
defofgrad 1 gt d
// S (1= thy+ 1) |(x— W)l dt do
(1 - .
< 12/ /w) 8,2@ )y + tz)| dx dt

Then we change variables z = (1 — t)y + tx i.e. zg = (1 — t)y + tz and
dz =t"dz

= 12/ /xol) azz
= ln n—1 Z/ / Q(z0,t0) 822
Holder

= [n—1 Z/ / Q(z0,10)

QL =ty +tzo, 1) C Qzo,1) 7 1 -
i W__1||Du||LP(Q(xOJ)/ t—nIQ(:co,l)l(p )P gt
0

(1 —=t)y+tx)|dedt

)| dz dt

ou
7%, (2)

p 1/
dz) "1z, t)| PP gt

1
1
< i Dy | gelt 7

1
<l | D gy [
0

where we also used n(p—1)/p—n+1= (np—n—np+p)/p= (p—n)/p
and n(p—1)/p—n = (np—n—np)/p = —n/p. Since, and here we use
the fact n < p,

[ = -2 =/
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we get by combining the estimates that

P 1(p—n)/p
— nl HDUHLP(Q(

[u(y) — ug| < z0.0))

np

1-n/p
< nl HDUHLP(

=z
To establish the final estimate, we write
u(z) — u(y)| < Ju(z) —ugl| + |ug — u(y)|
2np 1-n/p
< ml DUl oo -
for every x,y € Q). Hence, as for every x,y € R™ there is Q (¢, () such
that | = 2|z —y| and z,y € Q(z0,!), we finally have

[u(x) = u(y)| < Cla =y || Dul| 1y )

for u € C°(R™) N WP(R").
We extend this result to u € W'P(R") by approximation: Let u. be
a standard mollification of u. Then by the above

1—n
Jue(z) — ue(y)| < Clo — y|"™ || Ducl| 1y g, -

Qzo,0)) -

By passing to the limit ¢ — 0 and using the results, proved for approx-
imations, we get for almost every z,y € R™ (at Lebesgue points of u
to be more precise)

[u(x) = u(y)| < Cla =y || Dul| 1y ) - D

Remark 2.59. By Morrey’s inequality every u € WHP(R™) can be
redefined in a set of measure zero to be Holder-continuous.

Remark 2.60. Let p > n. In the open set €2 the above only holds
locally in the sense that

uw € W(Q) = ue P ().

loc

Ex: Find an example showing that global implication is false.
2.9.4. Lipschitz functions and W1,

Theorem 2.61. A function u : R™ — R has a Lipschitz continuous
representative if and only if u € WH>(R"™) .

Proof. <7 Let u € WH*(R") and sptu is compact (if not, we may
multiply by a cut-off function). By our results for approximations

ue € C5°(R™)
u. — u a.e R

[[tell o ny < Nl oo geny »
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(the third one immediately follows from the def of mollification.) Thus

we may estimate

e () — ue(y)| = / Ducly +t(z —y)) - (x — y) dt

< HDUEHLOO(R") [z =yl

< |[Dul| poo@ny [ = 91

Then, we pass to the limit ¢ — 0 and, since the left hand side converges
almost everywhere we obtain that

|u(z) — u(y)] < [|Dul] oo geny [ = yl.
"=7: Suppose that u is Lipschitz continuous i.e.
u(z) —u(y)| < Ljz —y|
for all x,y € R™. We utilize the difference quotiens and estimate

r — hej) — u(x) <
L <

D7 ufz)] = | 4

and thus HD;hu(x)HLZ(Q) < L\Q\% for a bounded 2 . Since L? is

reflexive there exists a subsequence h; — 0 and functions v; € L*(Q)
such that

Dj_hiu — v;  weakly in L*(9).
Thus

8g0 def : h;
/Qua—x] dr = /Q(hlilinoDj o)udx

DOM ;. h;
= }111210 Q(Dj go)udx

=1 D;hi
hilino/ggp ;o ude

= / vjpdr
Q

in the weak sense. O

for every ¢ € C§°(£2). Thus
ou

J
al'j
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2.10. Compactness theorem. Recall Remark 2.23 showing that Sobolev
space is not compact. However, Sobolev space embeds compactly to
suitable LP spaces. This is sometimes useful for example in the exis-
tence proofs.

Theorem 2.62 (Rellich-Kontrachov compactness thm). Let B be a
ball, u; € W'(B), 1 < p < n and ||willw1o(py < € < oo for each
1=1,2,.... Then for each 1 < q < p* there exists a subsequence and
a limit w € WYP(B) such that

u; =~ u in LYB).

We don’t work out a detailed proof, but remark that the proof is
based on the following steps:

e By approximation, it holds that
(uj)e > w; in LY(B) ase — 0, uniformly in i.

e Thus it suffices to prove the result for mollified functions. We
show for mollified functions that

C C
@)l < =0 1Dl < <

e Arzela-Ascoli’s compactness result completes the proof.

Remark 2.63. The case p > n s easier. Why?

3. UNIFORMLY ELLIPTIC LINEAR PDES

We consider the second order linear elliptic equations in the diver-
gence form, and the (Dirichlet) boundary value problem

Lu=f in
u=g¢g on Jf,

where ) is a bounded open set, u : 2 — R is the (a priori unknown)
solution to the problem, and ¢ : 2 — R and f : @ — R. Finally, L
denotes a second order partial differential equation of the form

Lu(x) = — Z D;(a;j(x)Dju(zx)) + Z bi(z)Dyu(x) + c(z)u(x)

for given coefficients a;;, b; and c.

Example 3.1. Let A= 1. Then A = A and

—div(A(z)Du) = — div(Du) = — Z D;Dju = —Au
i=1
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ie. we obtain the Laplacian studied in the course PDFEI.
Example 3.2. Let b; =0 and ¢ =0 and A(x) = [aijlij=12,.n - Then

n

Lu= =" Dy(a;(x) Dju(x)) = — ZDz‘(Z aij(x) Dju(x))

=— div(A(x;Du).

This explains, why we say that the equation is in the divergence form.

ij=1

We always assume that A is a symmetric matrix ie. a;; = a;;.

Remark 3.3. Observe that here A does not depend on u or Du. If it
did, for example A = |Du|p_2], yielding the so called p-Laplacian

Apu = div(|Du|’ "> Du) = 0,

the equation could be nonlinear. Our operator L instead is linear, a, be
R

L(au + bv) = aLu + bLv.

3.1. Physical interpretation. As mentioned above our divergence
form operator models diffusion as a physical interpretation. Consider
chemical which flows and diffusion takes place from the higher concen-
tration to lower. To be more precise

e { time
z € Q C R" location
u(z,t) chemical concentration at place x at time ¢
b € R" velocity
a diffusion coefficient, constant for simplicity.

Also, we do not worry about smoothness etc. in the formal argument
below. In any subdomain ' C Q the the total amount of chemi-
cal [, u(z,t)dx only changes because of the inward and outward flux
through the boundary

9 u(x,t)d:v:—/ bu-l/dS—/ —aDu-vdS (3.11)
o _ Jooy o0

ot
A NV TV TV -
total change flow diffusion
where v = (v1,...,1,) is the outward unit normal vector. The minus

sign in front of the integral on the right hand side is due to the fact that
we are using outward vector. It is natural to assume that the diffusion
is comparable to the difference in concentration of the chemical and
thus to —aDu. Recall Gauss-Green theorem

Dl-udx:/ uv;de, 1=1,2...,n.
o
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which implies the divergence theorem for F': ' — R" F' = (F},..., F},)

F.vdS = / Fv,dS = DiFid:v:/divFidx.

i=1
Thus

g/ u(z, t)dr = —/ bu-de—i-/ aDu-vdS
ot Jor o0 oY
divthm _ / div(bu) dz + / adiv(Du) dz.
/ 89/

Finally taking the time derivative inside the integral and using the fact
that the above argument holds for all ' C  we get

uy = aAu — div(bu).

If we have reached an equilibrium, then 2 [, u(z,t)dz = 0 and we
end up with
0 = aAu — div(bu) = aAu — div(b)u — b - Du,

which is a special case of the equations we are studying. Moreover, if
we had a source/sink of the chemical then this would add

+ [ fdzx
Q/

on the RHS of (3.11) where f is given. Moreover, decay (or creation)
of the chemical would be modelled by adding

—/ cudx

on the RHS of (3.11). Thus we would have
0= gAy —div(bu)+ f —cu
—~ ——— ~
diffusion  ¢ransport source/sink decay
=alAu—0b- Du— (div(b)u + c)u + f.

Finally, if the diffusion coefficient is not the same constant to all the
directions, i.e. we have an anisotropic medium, then we replace aDu
by more general divergence form operator and end up with

— z": D;(a;;Dju) +b- Du+ (div(b)u + c)u = f.

ij=1
PUNCHLINE: Our equation models general diffusion, transport, de-
cay, and source/sink.
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Definition 3.4 (uniformly elliptic). PDE is uniformly elliptic if there
exists constants

0<A<A<
such that
NEP <Y ai(@)6g; < Ale)
ij=1
for a.e. v € Q and £ € R".
Our standing assumptions are (unless otherwise stated)
a;j,¢,b; € L(€2),  uniform ellipticity

12
A symmetric, (2 open, bounded. (3.12)

Intuitively, uniform ellipticity tells us how degenerate the diffusion
determined by the diffusion coefficients to each direction can be: dif-
fusion does not extinct or blow up. This helps in existence, regularity
etc. Uniform ellipticity tells that real (due to symmetry) eigenvalues
Ai(z) of A satisfy A < \;i(z) < A.

3.2. Weak solutions.
Example 3.5. x € (0,2)=Q, b=0=c,a=1 and

)1 2e(0,1]
J(@) = {2 e (1,2).
Consider the problem
Lu=f, x €
u(0) =0 = u(2).

Then solving formally in (0,1] and (1,2) as well as requiring that the
solution is in O, from the equation

we obtain

—2 4 1.25z z € (0,1]
w@) =4 %
—x* 42252 — 0.5, z€(1,2).

Clearly, this is not in C?. Is this a unique solution in some sense?
Even more irreqular examples are possible, see Example 3.11.
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In the spirit of Hilbert’s 20th problem, to guarantee the existence of
solutions, we can extend the class of functions to be studied. These less
than C? regular solutions are called weak solutions (in contrast with
classical solutions that are C? and satisfy the equation pointwise).

We work in the spirit of Sobolev spaces, test the equation with
smooth test functions and integrate by part to get rid of the second
derivatives, so that only u € W'%(Q) is needed in the weak definition.

Let u € C%*(Q), a;; € CYQ), f € C(Q) and p € C(Q). Then
starting from Lu = f we can calculate

/Qfgpdx:/g(—ZDi(aijDu —i—Zb )Dju + cu)p dz

ij=1

it by parts / S ayDubip | Z bi() Diup + cup) de.

i,7=1

(3.13)
On the other hand, if

0= / ( Z ai;DjuD;p + Z b;Dyug + cup — fo) dx
Q

i,j=1 i=1

intby:parts/ ZD CLZ]DU +ZbDu—|—C’UA,0 f)QOd:r
Q

i,7=1

for every ¢ € C5°(Q2), then by fundamental lemma in calc var Lemma
2.9, it holds for x € 2 that

- Z D;(aijDju) + Z b;Diu+ cup — f =0.

ij=1 i=1

Observe that the right hand side of (3.13) makes sense even with
weaker assumptions, for example,

aij,bi,c € L(Q) and f € L*(Q)
and

u e W2(Q).

loc

Definition 3.6 (Weak solution, local). The function u € W,2*(Q) is a
weak solution to Lu = f if

/ ZawDungo—i—ZbDugp—i—cwp dx—/fgpda:
Q

i,7=1

for every ¢ € C3°(£2).
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Remark 3.7 (Warning). This definition is useful when studying local
properties such as local reqularity of solutions. However, the solutions
are not uniquely identified without fizing boundary values.

Definition 3.8 (Weak solution to the boundary value problem). Let
g € WH(Q). The function u € WH(Q) is a weak solution to

Lu=f inQ
u=g on OS2

if u—geWy?(Q) and

/ ( Z a;;DjuD;p + Z biD;up + cugp) dxr = / fodx
Q Q

ij=1 i=1
for every ¢ € C°(Q).

Remark 3.9. In the literature, the sums are sometimes dropped for
brevity

/(aiijuDZ«p + b;Djup + cup) doe = / fodz.
Q Q
Example 3.10. Let us check that

—Z 4 1.25z, z € (0,1]
u(z) = )
—x* 42252 — 0.5, z€(1,2).

15 a weak solution to Fxample 5.5. First task is to show that u €
Wh2(Q) and u € Wy*(Q), which is left as an exercise.
Then, lete >0, ¢ € C§°((0,2))) and write

ng de D(QM/ ng dr class. g)l r#£1 _/ (CL'U,I)IQO dr
(0,2) (0,1—¢)U(1+4¢,2) (0,1—e)U(1+¢,2)

= / (au ) dz —a(l —e)u'(1—e)+0—0+a(l +e)u'(1+¢)
(0,1—¢)U(1+4¢,2)

DOM, cancellation
— / (au’)y' dx
(0,2)

as € — 0. Above the use of DOM can be justified, and at the last step
cancellation

—a(l—e)/'(1—¢e)+a(l+e)u'(14+¢) =0

18 1mportant.
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Since here u € Ct,a € C' no confusion arises even if we immediately
write

fodr = —/ (au') p dx
(0,2) (0,1)U(1,2)

= / av'o' dx
(0,2)

— (a(Du'(Dp(1) = a(0)u'(0)¢(0)) = (a(2)'(2)p(2) — a(1)u'(1)¢(1))

= / av'’ dzx,
(0,2)

as we did with the weak derivatives.
PUNCHLINE: The solution above is not in C? so it is not a classical
solution but it is a weak solution.

Look next at the example Q = B(0,1) C R", n > 1. The first task,
if no boundary conditions are considered, is to show that u € Wllof(Q).
Suppose then that there would only be a singularity at the origin and
everything is smooth elsewhere. We get by Gauss’ theorem that

/ feodx cass 2720 / div(ADu)p dx
B(0,1)\B(0,¢) B(0,1)\B(0,¢)

.ADu-l/dS—/ ADu - Dpdx
B(0,1)\B(0,)

/8((3(0,1)\B(0,a))
:/ ADu-vdS — ADu - Dydzx,
0B(0,¢) B(0,1)\B(0,¢)

where ¢ € C§°(B(0,1)). Then it remains to verify the following con-
vergences

/ ADu-vdS — 0,
0B(0,¢)

/ ADu - Dpdx — ADu - Dp dx
B(0,1)\B(0,) B(0,1)

/ fodr — / fodx
B(0,1)\B(0,¢) B(0,1)

as € — 0 in order to show that u is a weak solution. However, in
Example 5.12 below we follow a slightly different strategy

Example 3.11. z € (0,2)=Q, f=1,b=0=c¢,
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Consider the problem

{Lu:ﬁ x€Q
u(0) =0 = u(2).

Then solving formally in (0,1] and (1,2) as well as requiring suitable
conditions in the middle , we obtain

:1}2
-2+ z € (0,1]
u(z) = —Z 4 5e+l 2e(1,2)
4 12 6’ ’ :

Ex: Show that this is a weak solution to the above problem.
PUNCHLINE: The above solution is not in C? or even C' so the
weak solution does not need to have classical first derivatives. This also
highlights that the reqularity of the coefficients affects the reqularity of
the solution.

Example 3.12. The next example is from Serrin (Pathological solu-
tions of elliptic differential equations, 1964 ), which he gives for any n
but here for simplicity n = 2. Let a € (0,1), and

a3 +a’z3 (1 _ a2)x1x2

A= (an aw) Y T s kT
2\ z1T a‘xitx
o e (1 —a)5F I

Then coefficients are always bounded and
2
?lE <Y ay(2)&g < 1g
ij=1
(ex) and
w:B(0,1) > R, u(x)=|z]* "o
with x = (1, x9) is a weak solution i.e.

A(z)Du(z) - Do(x)dx = / Z a;;DjuD;pdr =0
B(

B(0,1) 0,1) ;=1

for all p € C§°(82).
To see this, first show that uw € W%2(B(0,1)) (ex). Then show that
w s a classical solution (ex) to

— Y Di(aiDju) =0 in B(0,1)\ {0},

,5=1
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and thus
/ Z aiijuDigo dr =0
B(O,1) 52
for every ¢ € C§°(B(0,1) \ {0}). Then define a cut off function n €
C3°(B(0,2r)) such that
2
,

Let ¢ € C§°(B(0,1)) and observe that (1 —n)p € C(B(0,1) \ {0}).
Thus

0= / Z a;;DjuD;((1 —n)p)dx (3.14)
B(0,1)

t,j=1

n

N /3(0,1) Z

ij=1

n

(1 —n)a;;DjuD;pdx — / Z wa;;DjuD;ndx.

B(O0.1) /52
We will show that the the first term on the RHS converges to
fB(O N > i1 @ijDjuDip dx and the second converges to 0:

|/ ngaiijqu dx|
B(0,1)

1,j=1

< H%?XHGUHLOO(B(O,I)) HSDHLOO(B(UJ)) Z /B(O ) |Djul|Din| dx

ij=1

def of 2
< Hll.f]’fx ||az‘j||Loo(B(o,1)) ||80HL<>0(B(0,1)) - Z /B(o,zr) |Djul dz

ij=1

Holder 9 1/2 1/2
< C- Z (/ |Djul? dx) (/ 1dx>
r i1 B(0,2r) B(0,2r)

C 1/2
< —(/ |Du|2dm> /2
T N JB(0,2r)

2

. ) 1/2
< C’r?(/ | Dul dx) — 0
B(0,2r)
asr — 0.

Next we aim at using DOM for the first term on the RHS (3.14) to
have

/ Z (1 —n)a;jDjuD;p dv — Z a;; DjuD;p dx
B(0,1)

i,j=1 BOD) =1
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as v — 0. This is justified by the facts
lir%(l —n) =1 for almost every x € B(0, 1)
r—r

and

(1 = mai; DjuDig| < max|lai;|| 50,0 1Pl 50, Pul € L.

PUNCHLINE: The previous example shows that a weak solution with
just bounded coefficients is not better than Hoélder continuous and to
prove higher regularity for solutions, we need more assumptions on the
coefficients later.

Example 3.13. A modification of Serrin’s example also shows that
Wlif(Q) s an essential assumption in the definition. Indeed, otherwise
we might lose uniqueness, local boundedness of solutions and mazimum
principles which all are essential and desirable features of the theory.
Considern =2, 0 <e <1, x = (x1,22) and u: B(0,1) - R
w(x) = x|z

This is a classical solution to

— Y Di(a;Dju) =0 in B(0,1)\ {0}

3,j=1

with

22

a‘ri+xs ( 2 T1T2
a®—1)
ailz Az 2 2
A — — ‘$| 2 2 433'
a1
1
=

o =

The coefficient are again bounded, and uniformly elliptic with the
constants A\ =1 and A = o? (ex). It holds that (ex)

2
e WHP(B(0, 1 ifp < .
u (B(0,1)) ifp T2

Observe that p < 2 when 0 < e < 1 and that
u ¢ WH(B(0,1)).
In a similar way as in the previous example we see that
B(O0,1) ;52

for every ¢ € C°(B(0,1)).
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However, without details we state that u is not locally bounded and
does not have the standard mazimum principle that we will encounter
later. Nor is there uniqueness with the fixed boundary values: in-
deed solve v € WH2(B(0,1)) with the boundary values u on dB(0,1) .
Thenu —v =0 on IR, and u — v solves (5.15), but u — v % 0.

PUNCHLINE: Without the assumption u € W,.?(Q) in the definition
of the weak solution, we might lose uniqueness, local boundedness of
solutions and maximum principles which all are essential and desirable
features of the theory that we will establish later.

3.3. Existence: Hilbert space approach. For simplicity, let b; =0
and that we look for solutions with zero boundary values i.e.

u € Wy?(Q).

The Riesz representation theorem can be used to prove existence for
weak solutions to

— Z Di(aiiju) +cu = f
ij=1

To this end, we define

(u,v) := / ( Z a;; DjuD;v + cuv) dx.
Q

ij=1
and will show that this is an inner product in W,*(€2).

Lemma 3.14. There is ¢ < 0 such that if ¢ > co, then (-,-) is an
inner product in W, (Q).

Proof. We intend to show that (u,u) = 0 implies u = 0 a.e. The other
properties of inner product are easier (ex).

If ¢ > ¢y > 0, then the proof is immediate, but we can improve the
bound for cq:

n
(u,u) = / (> ayDjuDiu + cu?) da
Q=1
ellipticity

> / A Dul? + cou? dx
Q

Sob.-Poincaré, Thm 2.53 A D 9 A 9 J
> — -
/Q 2[ ul —|—(M2+co)u T

2
>« ||UHW1v2(Q) )
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where o = min{\/2, (co + A/(2p1))}, and p originates from [, u® dx <
1t [, |Dul® dz, i = ¢ diam(Q)?. Furthermore, we require co+\/(2p) > 0
which gives the condition for cg. U

Remark 3.15. If we set
ull] = v/ (u, ),
then by the above proof |||ul|| > ¢ ||u||W01,2(Q). On the other hand
HWHE::/Q(E:aUDﬂd%u+cwﬂdx
Q

ij=1
elliptic

2 /\/|Duﬁ¢r+nqhmmk/}ﬁdx
Q Q
2
<C ”u‘|wgvz(g) .

Thus the new norm |||-||| is equivalent to ||-||W§,2(Q).

Lemma 3.16. Let W,*(Q) be Wy(Q) with the new inner product
(-,-). Then

F@:Lﬂm

is a bounded linear functional in Wy (Q).

Proof.
|F(v)] = / fodx
Q
Hélder ) 1/2 9 1/2
< (/fd:c) </Ud:c>
Q Q

< HfHL?(Q) HUHWOLQ(Q)

< O 2oy vl
where at the last step, we used the equivalence of the norms. U

Theorem 3.17. There is a constant cg < 0 such that if co > ¢ then
Lu = f has a unique weak solution u € Wy*(Q) for every f € L*(Q).

Proof. By the previous lemma
Fv) = / fvdx
Q

is a bounded linear functional in Wy%(Q).  Moreover, W2(Q) is a
Banach space since the norms [|-[|;y12(qy and |[|[-]|| are equivalent. By
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Riesz representation theorem for Hilbert spaces, there exists a unique
u e Wy?(Q) such that

F(v) = (u,v)
= / Z a;jDjuD;v + cuv dw
Q=1

for every v € Wy*(Q). By the equivalence of norms we have shown
that there is a unique u € W,*(Q) such that

/ fodr = / Z a;;DjuD;p + cup dx
Q Q;

7,7=1
for every ¢ € C§°(Q). O
Example 3.18. Let f € L*(Q). Then the Poisson problem
—Au=f in§
u=20 on 082

has a unique weak solution.
Example 3.19. Consider Q = (0,2), c=0=0b, f =1 and
o -{7 12
and a problem
{Lu ~ f, z €N
u(0) = 0 = u(2).

Observe that this is not uniformly elliptic.
Then by solving in (0,1) and (1,2) respectively the equation

1=f=Lu=—(a(z)u(x))
we obtain

—x+cIn(x) + ¢, € (0,1]
u(z) = 1.2
—5T° + 3T + cy, z € (1,2)

One might then suggest
-, z € (0,1]
u(z) = 1.2
—50? +2.5r -3, ze(l,2)

as a weak solution by using the boundary conditions and requiring con-
tinuity at x = 1. Howewver, this is not a weak solution (ex).
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Example 3.20. Also it is clear that if we consider for example the

coefficient
o(z) = 1, x€(0,1]
0, ze(l,2)

we lose the uniqueness because now we do not have much info about
the second derivative in the interval (1,2).

PUNCHLINE: Uniform ellipticity is essential for the existence and
uniqueness.

Remark 3.21. o Let g € WY2(Q) and consider the problem
Lu=f mnQ
u=gq on 0S2.

Then the problem

Lv=f—Lg 1in
v=20 on 0f).

has a solution (Lg defines a bounded linear functional in the
Sobolev space, and our proof extends to this setting as such).
For example, for L = —/A we have

/Dv‘Dwdx:/fapdx—/Dg'Dgodx.
Q Q Q

Thus uw = v + g s a solution to the first problem.

e Also observe that no reqularity assumptions on OS2 is needed.

e If we included + Y7, biD;u to our operator, then L would not
define an inner product. In this case, finding the element u as
above 1s still based on Riesz representation theorem but requires
more work. This is called Lax-Milgram theorem.

Example 3.22. Consider

—u"(z) — mu(z) =1, z€(0,1)
u(0) =0 = wu(l)

does not have a solution implying, that the condition on c is necessary.
Indeed, let v(zx) = sin(wz), then

1
Blu, v] :/ u'v' — w?uw do
0

1
int by parts
= / —w” — 7uv dx
0
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1
= / un? sin(nz) — m*usin(rr) dx
0

=0+# /0 1 -sin(mz) dx
= —(cos(ml) — cos(0))/m = = (=1 —1)/7 =2/,

i.e. we have found a test function v € W,>((0,1)) for which the weak
definition does not hold no matter what u is. Later we show in Lemma
3.29 that the class of test functions can be extended from C§°(Q2) to
Wy2(Q), and thus there is no weak solution to the above problem.

Looking at the proof of existence result, it fails because Blu,v] is no
longer positive definite i.e. there exists u € VVol’2 such that Blu,u] < 0.
In particular, Blu,v] no longer gives an inner product.

On the hand, the homogenous problem

—u"(z) — u(z) =0, z€(0,1)
u(0) =0 =wu(l)
has infinitely many solutions
u(z) = asin(rz), a€R.

PUNCHLINE: Lower pound on c is necessary.

3.4. Existence: variational method. The existence can be shown
by studying the corresponding variational integral. The variational
integral related to PDE

— Z Di(aiiju) +cu = f

ij=1
is
1 n
I(v) = 3 /(Z ai;DjvDw + cv?) dr — / fvdz

The PDE — 7., Di(a;jDju) + cu = f is called the Euler-Lagrange

ij=1
equation of this variational integral.

Example 3.23. The variational integral corresponding to the Poisson
equation —Au = f i

is
1 2
—/|Dv| da:—/fvdx.
2 Ja Q
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Definition 3.24. A function u € W,*(Q) is a minimizer to the vari-
ational integral iof

I(u) < I(v)
for every v e Wy ().

Definition 3.25. Let g € W2(Q). A function u € WH(Q)  with
u—g € W&’Q(Q) 1s @ munimizer to the variational integral with boundary
values if

I(u) < I(v)
for every v € WH2(Q) such that v — g € Wy (Q).

Theorem 3.26 (Dirichlet principle). If u € Wy*(Q) is a minimizer
to the variational integral I(u), then it is a weak solution to the corre-
sponding Fuler-Lagrange equation.

Proof. Let ¢ € C3°(2) and € > 0. Now
u+ep € W&’2(Q)

I(u) < I(u+ep)

/Zaw u+ep)Di(u+ep)+ clu+ep) dx—/fu+€<p) dx

=:1i(e).

We utilize the fact that if v is a minimizer, then i(¢) has a minimum
at € = 0 so that

i'(0) = 0.
Then
i(e / Z ai;(DyjuDiu + eDjuDip + eDjpDiu + €D, Dip)
ij=1
+;/Q c(u? + 2eup + % /fu+6g0
and
i'(e / Z aij(DjuDyp + DjpDiu + 26 DjpD;p) + c¢(2up + 2ep*) dx
ij=1

—/Qfgoda:.
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From this
i'(0 /ZaUDqu—l—D ngu)—l—cngpdx—/fgodx
i,j=1
a”—aﬂ/ ZaUD uDgp—i—cwpdx—/ﬂpdx—O U
,j=1

Lemma 3.27. Let f € L*(Q). There is a constant cy such that the
variational integral 1(v) is bounded from below in Wy (Q) if ¢ > co.
Further, we have the estimate

/ |Dv|? da + / v?dr < ¢y + el (v),
Q Q
where c1,co > 0 are independent of v.

Proof. By Young’s inequality [, |v/efv/ve|de < 5 [, v* du+5 [, f* dz,
and thus

I(v) “/ Dof 42 da:—/|f\|v\da:

| —|Dv|2+—0v2dx——/v do— 5 [ 12
= )2 2 2
Poincaré, Thm 2.53 ) 1, A
> —/|DU|2dx+2(2M+Co—€)/ /f dx

where we choose ¢g > —A/(2u) and € such that 2 - +co—e > 0, so that

inequality holds for every v € Wy*(Q). Recall that (1t is the constant
in Poincaré’s inequality.
The estimate in the claim is also build in the above proof. O

Next we show existence of a minimizer. As shown above, minimizer
is also a solution to the Euler-Lagrange equation. The following proof
does not use Hilbert space structure (unlike the first proof) and works
in the context of nonlinear equations as well.

Theorem 3.28. There is a constant ¢y such that if ¢ > ¢y, then for any
f € L*(), the variational integral I(v) has a minimizer u € W,2(Q).
Proof. By the previous lemma [(v) is bounded from below and thus
inf  I(v)
1,2
veEW*(Q)

is a finite number. By the definition of inf there exists a minimizing
sequence uy € Wy?(Q) such that

I(ug) — inf  I(v)
veEW, 2 ()
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as k — 0o. Since the finite limit exists, we also have

for some M < oo. By this and the estimate in the previous lemma, we
have

/|uk|2dx+/|Duk|2dx§cl—i—czM.
Q Q

Since uy, and Duy are bounded in L%(2), there is a subsequence, still
denoted by wuy such that

up — u  weakly in L*(Q),
Duy, — Du  weakly in L*(Q)".

Since the space VVO1 2(Q) is closed under weak convergence so that u €
Wy (Q).
Next we show

I(u) < limkinff(uk).

To establish this, observe that a similar argument as in Lemma 3.27
implies

/ Z aijD;(u, — u)Di(ug — u) + c(uy, — u)? dx
Q=1

ell
> / A D(up —w)|” + e(uy —u)?dx > 0.
0

from which it follows that

/ Z CLiijukDiUk + cui dz
Q'

i,7=1

> 2/ Z a;; Djup Div + cupu dx
Q

2,7=1

— / Z a;;DjuD;u + cu?dx.
Q

i,0=1
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Using this, we get

hmklnf/ﬂ Z CLZ‘ijUkDiUk + C(uk)Q dx

Z7j:]‘

> QIimkinf/Q Z a;jDjupDiv + cupu dx

1,j=1

— / Z CLZ'J'DJ"LLD,L‘U + C(U)2 dx
Q

ij=1
= / Z CLZJDJUDZU + C(U)2 dl‘,
Q=1

since Djur — Dju weakly in L?(Q2). Combining this to the fact that
weak convergence implies

lim/fukd:v:/fudx.
ko Ja Q

we obtain I(u) < liminfy I'(uy).
Since we originally chose uy, so that limy, I (uy) = inf, ey I(v), we
finally obtain

I(u) < limkinf I(uyg)

= inf I(v).
veWy 2(Q)

Thus u € W,*(Q) is a minimizer to the variational integral. O

3.5. Uniqueness and comparison principle. In this section we con-
sider

Lu=— Z D;(aij(x)Dju(z)) + c(x)u(z) = f.

We start by showing that we can extend the class C5°(Q2) of test
functions to Wy ().

Lemma 3.29. If u € W,*(Q) is a weak solution to Lu = f, then

/ Z a;jDjuD;v + cuv dx = / fudx
Q. Q

ij=1

for every v € Wy (Q).
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Proof. Let v € Wy*(Q). By definition of W,?(Q), we may take a
sequence gy, € C§°(Q) such that

or — v in WH(Q).
By using this, (3.12), and Hélder’s inequality, we obtain

’ / > (ayDjuDw + cuv — fv) d:c’
Q-

2,7=1

- ‘ /Q Z (aiijUDi(U — ) +cu(v — ) — f(v— on)) dx

i,7=1

+ / Z ai; DjuD;py, + cupr — for dx‘
Q

1,j=1

<3 laglleqm, / DyuDy(v — 1) da
ij=1

+/ culv — )| + [ F(v — o)) de + 0
Q

< Z ||ai]~HLw(Q) </Q]Dju|2 dx>1/2</Q|Di(v—90k)|2da:>1/2

1,j=1

+lell L@ </Q“2 das>1/2</ﬂ|v—gok|2dx>l/2
+ (/Qf2dx>1/2</ﬂ‘v—<,0k|2dx)1/2
—0

as k — o0. O

Theorem 3.30 (Uniqueness). Let uy,uy € Wy *(Q) be two weak so-

lutions. There is co such that if ¢ > c¢o it holds almost everywhere
that

U1 = Ua.

Proof. By the previous lemma,

/ZaiijulDiijculvdx:/fvdx
Q Q

1,j=1

/ Z a;jDjus Div + cugv dv = / fvdx
Q Q

4,j=1
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for every v € Wy*(Q). By subtracting the equations
/ Z a;; Dj(ur — ug)Dijv + c(uy — ug)vde = 0.
Q=1
Now we choose v = (u; — uy) € W,*(Q2) and estimate
0= / Z aiij(ul — UQ)D,'(U1 — Ug) + C(Ul — u2)2 d[l?
Q

1,j=1

> / )\|Dz(u1 — U2)|2 + C(Ul - u2)2 dz.
Q

A
/c|u1—u2|2d:r2——/|u1—uQ|2d1’
Q 21 Jo

with the choice ¢ > —\A/(2u). Combining the facts and recalling
Poincaré’s inequality [, v*dz < u [, |Dv|” dz we have

Then

A A A
O Z / —|D2(U1 — U2)|2 (— — —) (Ul — U2)2 dZL'
Q2 2 2p
A
— 5/ ’Dz(ul — UQ>|2 d.T
Q
Using Poincaré’s inequality, we see that u; = us a.e. O

Example 3.31. The uniform ellipticity was utilized again: Choose
2=(0,2),b=0=c,

and consider the problem

{Lu =/, in (0,2),

u(0) =0 = u(2).
Then
s () = {—0.25932 ta, z € (0,1]
—x*+25r—1, z€ll,2)
and

() = —0.52% +z, x€(0,1]
2T 15—y z€[1,2)

are weak solutions to Lu = f. (Ex)
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Theorem 3.32 (Comparison principle). Let u,w € W12(Q) be weak
solutions and (u —w), € Wy(Q). Then there is ¢ such that if ¢ > ¢
it holds that

u<w ).

Proof. The idea is the same as in the proof of the uniqueness. First

/Z%;D uDv—l—cuvda:—/fvd:E

3,7=1

/Za”Dva+cwvdx—/fvdx
Q

i,0=1
for every v € Wy*(Q). By subtracting the equations
/Za” w)D;v 4 ¢(u —w)vdr = 0.
7,7=1
Now we choose v = (u — w); € Wy(Q) and estimate

0—/2@2] (u—w)Di(u —w); + c(u —w)% dx

2,j=1

> [ D= w)ef + cfu = w)? do.
Q

/c(u—w)idxz—i/(u—w2
Q 21 Jo

with choice ¢ > —A/(2p). Combining the facts and recalling Poincaré’s
inequality [;,v?dz < [, |Dv|* dz we have

Oz/gg\Di(u—w)AQ—l—(———)(u—w)id:c

A
:—/ Dy — w). [ de
2 Ja

Again using Poincaré’s inequality, we see that (u — w); = 0 a.e., that
isu<w a.e. O

Since

PUNCHLINE: The same technique that gave us uniqueness also gives
us the comparison principle. On the other hand, comparison implies
uniqueness for solutions.
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Remark 3.33. By analyzing the above proof, we see that also the fol-
lowing holds: Let u,w € W2(Q) and u and w be sub- and supersolu-
tions respectively ie.

/ZawD uDv+cuvdm</fvdx

i,5=1

/Z‘%D va+cwvdx>/fvd:v

i,j=1
for every v >0, v € Wy*(Q), and (u — w), € Wy*(Q). Then
u<w ).

PUNCHLINE: For the comparison principle (but not for uniqueness),
it is enough to have sub- and supersolution in the correct order.

3.6. Regularity.

3.6.1. Local L?-regularity. In the previous sections, we relaxed the con-
cept of a solution and observed that weak solutions are not necessarily
C?. Next we study what is the natural regularity class and which
conditions are needed to have a better regularity.

First we motivate our approach by a formal calculation. Let f €
L?(Q) and u be a solution with zero bdr values to a Poisson equation

—Au=f

/f2dx:/(Au)2dx
Q Q
[5s
B Qi 65’37,2
_2/82U82
0x2 0z
1,j=1

int by parts 83 8u
Z / 0220z ; 70x; 895]

int by parts
d
Z / 0z;0x; 8$ &BJ .

i,j=1

:/ ‘D2u‘ dx,
Q

in 2. Then
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where we denoted

2%u _%u

aac% T 0z 0xp
9u 92y

D2u — Ox20x1 Tt Oxo0xn
0%u du
Oxndx1 ox2

2
and [D%uf = 57, (522)
1. guess: The L? norm of second derivatives is estimated in terms of
L?norm of f.

Then let us differentiate the Poisson equation

of 0 ou
— =——Au=-A—.
Denote f := % and u := % ie.
—AT = f.

Now we may apply the previous calculation to have
2. guess: L%-norm of the third derivatives of u can be estimated in
terms of L?-norm of the first derivatives of f.
3. guess: A solution v has two more derivatives than f and L?-norm
of the kth derivatives of u can be estimated in terms of L?-norm of the
k — 2 derivatives of f.

Next we make these formal calculations rigorous for

1,j=1 1=1

with the uniform ellipticity condition, and open, bounded €2.

Idea: We establish this by roughly speaking replacing derivatives of
the formal calculation by difference quotients, and carefully deriving
estimates for these.

Theorem 3.34 (local L?-regularity). Let
ai; € CH(Q),b; € L®(Q),c € L™(Q)
and
feL*9Q).
Further, let w € W'2(Q) be a weak solution to Lu = f. Then
u e W2(Q)

loc
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and for any ) € Q
HUHWQaQ(Q’) < C( Hf”L?(Q) + HDUHLZ(Q) + HUHL2(Q) )a
where C' may depend on ', Q and a;;,b;, c, but not on u.

Remark 3.35. e Observe that C' is uniform over all the bound-
ary values, since we didn’t assume zero bdr values this time.
e [t follows from the theorem that

Lu = fa.e.,

because if u € W22(S2) then

oc

/ ( Z ai; DjuD;p + Z biDiup + cup — f@) dx
Q

i,j=1 i=1

weak_deriv. _ / ( Z Di(a;jDju) + Z b;D;u + cu — f)sﬁdx
Q i=1

1,7=1

holds for every ¢ € C3°(Q2). Then the fundamental lemma in
the calculus of variations, Lemma 2.9, implies the claim. Such
solutions are sometimes called strong solutions.

e Qur earlier examples show that some reqularity assumption on
a;; 1s needed.

Proof of Theorem 3.3/. Let Q' € Q" €  and choose a test function
n € Ce(2), 0 <n <1 such that

(z) 1 zedY
€Tr) =
7 0 zeQ\Q

Since u is a weak solution, for every v € W,*(Q)

/Zaiijqudz:/fvdx
Q Q

ij=1
where f = f — >or biDju — cu. We choose a test function, for A > 0
small enough
v = —D;" (" Diu)
where
u(z + hey) — u(x)
h

is the difference quotient introduced in Section 2.8.

Diu(z) =



72 PDE 2

Let

A= —/ Z a;;DjuD; (D" (n* Dyu)) da
Q

t,j=1

and
B:=— / FD (2 D) de.
Q

We first estimate A using D;D;"(n*Dfu) = D;"Di(n?Dfu) at the
first step, as well as the standard rules of calculus

Q

ij=1

in arts for DI "
tbyp :t D / E DZ (GZJD]U) Dz(7’]2DZU) dx
Q

1,j=1

= / Z (DZaiiju + a,-jD,};Dju) (277DmDZu + 2D Dsu) dx
Q

2,0=1

= / Z (Dpai;Dyju(2nDinDpu) + Dyay; Dyu(n®* Dy Diu) + ai; Dy Dyju(2nDinDyu)) dx
Q

ij=1

+/ ZaijDZDju(fDZDiu) dx
Q

7’7]:]‘

= A; + As.

Then since |Dn), |a;;|, |Dla;;| < C and n*> < Cn , we have

|Ay] < c/ n<|Du||D,’;u\ + | Dul| Dy Dul| + \D,’;DUHD,’;UD dx
Q

Yoénge/nz‘DZDu‘zdx%—C’(e)/ (|Du|2—|—}DZu‘2) dx
Q

Q//

§8/772|DZDU‘2(113—|—C(8)/ |Du)? dz
Q 0
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where at the last step we used Theorem 2.40: [, D,@u|2 dx < [, |Du|? dx.

By uniform ellipticity

Q

ij=1
> )\/Qn2|DZDu‘2dx.
It remains to estimate B. We calculate
|B| = /?U dx
Q
_ / D" (n*Diu) do

= /(f - Z b;Dsu — cu) Dy " (0> Div) dx
Q i=1

Young
0@ [ (1P +1Dul + o) do

+ 6/ |D,;h(772DZu)}2d:c.
Q
Next we estimate the last integral again by Theorem 2.40
/ D" (17 Dlta) [ de < / ID(P D) | de
Q Q
< / ’277D77D2u + UQDDZu’2 dx
Q
< / ’277D77D,}§u + UQDZDu’2 dx
Q
Inl|Dn| < C,n* < Cn?
< C’/ 772|D,’;”u‘2da:—|—0/ nQIDZDu}Qd:E
Q Q
Thm 2.40
< C/ |Dul? dz + C/ | Dl Dul” da.
Q Q
Thus
B < C(s)/ (F12 + |Dul® + [uf?) de + 5/ 2| DDl de.
Q Q
Combining the estimates with the fact

Ay = [A] < [A] = [B]
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we have
/\/UQIDZDufdx—e/nz‘DZDufdx—C’(a)/ | Dul? da
Q Q Q

< C’(s)/ (11> + |Dul? + Jul*) d.ﬂ:—{—e/nQ‘DZDuFdx
Q Q
le.
A/n2|D,’;Du\2dx—2g/n2\D2Du|2dx
Q Q

SC(e)/Q(|f|2+|Du|2+|u|2) dx+C(5)/Q|Du|2da:.

Choosing € = A/4 and recalling n = 1 in €', we have
A

5/ n2|DZDu’2dx < C’/ (|f|2 + ]Du|2 + |u|2) dx.
o Q

This implies by Theorem 2.41 that Dju € W.'*(Q) and thus u €

loc

W2(Q). O

loc

We can also obtain [, |u|” dz instead of [, | Du|* dx on the right hand
side of the estimate in the previous theorem.

Lemma 3.36 (Caccioppoli’s ie). Let u, a;j,b;,c and f be as in the
previous theorem. Then

/ |Dul? dz < C’/ (|u|2 + f*) dx
' Q
for QU € Q.

Proof. Choose a test function v = n?u, where 7 is the same cut-off
function as in the proof of the previous theorem so that

/ Z ai; DjuD;(n’u) + Z biDyu(n*u) + cu(n®u) dx
@i i=1

i,7=1

= / Z aijDju(2nDimu + n* Diu) + Z b Diu(n*u) + cu(nu) dx
Q!

ij=1 i=1

Q

i,7=1

+ / Z 2a;;unDjuD;n + Z b; Dyu(n*u) + cu(n’u) dx
@ i=1

3,7=1

= A; + As.
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By the uniform ellipticity
A > )\/ n?| Dul’ da
Q
Recalling that |a;;|,n,|Dn| < C and using Young’s inequality yields
|As] < 5/ n?| Dul? dz + C/ u? dx.
Q Q
Finally, again by Young’s inequality

/fr]zudx §C’/f2daj+0/u2dx.
Q Q Q

Combining the above estimates with the PDE itself we have
)\/ n?|Dul? dz < 5/ n?| Dul? dz + C’/ u? + f?da.
Q Q Q

By choosing ¢ = \/2 we can ”absorb” the first integral on the RHS
into the left, and the proof is complete. 0

By adjusting the proof of Theorem 3.34 slightly to obtain some do-
main Q, Q” € Q € Q on the right in the estimate, we could com-
bine Theorem 3.34 with Caccioppoli’s inequality and have the following
corollary.

Corollary 3.37. Let
ai; € CH(Q),b; € L®(Q),c € L®(Q)

and
feL*9).

Further, let w € W'2(Q) be a weak solution to Lu = f. Then
u€ Wil (Q)

and for any ) € Q
HUHWM(Q/) < C( Hf”m(g) + HUHLz(Q) )7

where C' may depend on ', Q and a;;,b;, c, but not on u.

By a similar argument as above combined with the induction, we
could prove the following higher regularity result if the coefficient and
data are smooth enough. For details, see Evans: PDE p. 316. Consider
Au = f, and suppose then that f € W1'?(Q). By the above u €
W22(Q), and thus by the weak definition

loc
/Dng?dx:/f&’” de.

T ox;
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so that
f

Thus 2% is a weak solution with the RHS 8f € L2 Thus u € W>*(Q).
Iteratmg further, and using a generalized Sobolev imbedding gives that
u is smooth.

PUNCHLINE: The solution w has roughly speaking 2 derivatives

more than f.

Theorem 3.38 (Local smoothness). Let
CLZ']', bi, (S COO(Q)

and
fe ().

Further, let u € WY2(Q) be a weak solution to Lu = f. Then
ue C™(Q).

3.6.2. Global L?-reqularity. Also a global regularity result holds.

Definition 3.39. We denote 9Q € C*(Q), if for each point xo € O
there is a v > 0 and a C*-function

V:R”_I—HR

such that upon relabeling and reorienting the coordinate azes if neces-
sary it holds that

QN B(xg,r) ={x € B(xo;r) : x> y(x1,...,20-1)}
We also denote for bounded (2
CHQ) = {u e CHQ) : D*u, |a| <1, is uniformly continuous in 2}.
Theorem 3.40 (Global regularity). Let
ai; € CH(Q),b; € L®(Q),c € L™(Q)
and
feL*9).

Further, assume that 0Q € C?*(Q), let g € W?2(Q) and u € WH(Q)
be a weak solution to

Lu=f n €,
u—g € W,2(Q).
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Then
u € W22(Q)
and

||U||w2»2(9) < O( ||f||L2(Q) + ||u||L2(Q) + ||g||w2’2(9) )7
where C' may depend on Q and a;;, b;, ¢, but not on u.
Remark 3.41 (Warning). One might be tempted to think that all kind
of properties of the boundary value function are inherited by the solution
as long as the boundary has the same reqularity. This is false however!
Let a € (3,1) and
T
N={2e€C:|2| >0, Argz € (——, —)}.
{zeC: 2] >0, Argze(—5-, )
Denote z = x + iy = re with 6 € (—m, 7. Since
log z = i0 + log r

@ alog(z)

2% i=e = @087l — 1% (cos(af) + i sin(ad)).

We take for granted that z* is an analytic function in 2, and thus
its real part

u(z,y) == Re z* = r* cos(ad)
is a harmonic function. Then for x > 0 it holds that
u(z,0) = |z|*
even if

u =0 on Jf.

A harmonic function is actually locally but not necessarily globally Lip-
schitz.

The similar phenomenon happens even if the boundary is smooth.
Indeed, consider the upper half plane and

_ 2
Au=0 (z,y) € Ry (3.16)
u(z,0) = g(x),
where g(x) = |z| close to 0 and continued in a suitable bounded and

smooth fashion to the whole of R. Then y — u(0,y) is only Hélder
continuous close to y = 0.
Similarly, if g € C*(R) in (3.16) it does not always follow that u €

C2(RY).
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3.6.3. Local LP-regularity.

Example 3.42 (Calder6n-Zygmund type inequality). First consider a
classical approach to the problem

Au=f

where [ € LP, 2 < p < oo. A solution u is of the form (we say nothing
about a domain or uniqueness as this is just the idea on general level)

_ /()
u(z) = C/ T dy.

One of the questions in the reqularity theory of PDFEs is, does u have
the second derivatives in LP 1.e.

0u
83:2-5:1:]-
If we formally differentiate u, we get

2 2
Tu _of j-2 !

E)xi(‘)xj R awﬁxj |;(; — y|n_2
—

e LP?

dy.

|- 1<C/lz—y["

It follows that [ f(y)%;# dy defines (the precise definitions are
7 J | T—
beyond our scope here) a singular integral T f(x). A typical theorem in

the theory of singular integrals says
A1, < ClISIL

and thus we can deduce that Bcfi;x - € LP. Working further, we get
that w € WP, This was established by Calderén and Zygmund (1952,
Acta Math.) and thus the above inequality is often called the Calderdn-

Zygmund inequality.

Theorem 3.43 (Local LP-regularity). Let 1 < p < oo and
f e LrQ).

Further, let w € W'2(Q) be a weak solution to Au= f. Then
u€ Wl ()

and for any Q' € Q)

HUHWM(Q/) < C( HfHLP(Q) + HU’HLP(Q) )>

where C' may depend on p,n, Y, and Q0 but not on u.
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3.6.4. C° reqularity using De Giorgi’s method. For expository reasons
we only consider the Laplacian. Nonetheless, the method also applies
to the uniformly elliptic equation with bounded measurable coefficients.
Recall that Example 3.12 shows that this is the best we can hope for
under such weak assumptions on the coefficients.

Lemma 3.44 (Caccioppoli’s inequality). Let u € W,2*(Q) be a weak

loc
solution to Au = 0 in Q. Then there exists a constant ¢ = ¢(n) such

that

C \2

2 2 2

N1 D(u—k dr < / u—=k dx,
/B(I,O’R) |D( )+] ( R_ r) o) I( )+]

where k € R, 0 <r < R < o0 s.t. B(xg, R) C Q and uy = max(u,0).

Proof. Let n € C§°(B(zo, R)) cut-off function s.t.
0<n<i 1in B(zo,r), |Dny| < ¢
=1 in B(xzg,r —_—
=n>1Ll n 0,7 ) n = R—r
and a test function
o = (u—k)n’ € Wy*(B(xo, R)).

Since Dy = D(u — k).n* + (u — k). 2nDn we obtain using weak for-
mulation

/ Du-D(u—k)yn?de = —2/ Du - (u— k) nDndz. (3.17)
Q Q

Recall

Du a.e. {u>k}

0 a.e. {u<k}. (3.18)

Thus a.e.

|D(u—k)4|* = Du- D(u— k),
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and combining this with (3.17), we get

[ Dtk ds
B(zo,R)

= / Du - D(u — k)yn*dz
B(zo,R)

<9 / |\ Dul(u — k)| D] da
B(zo,R)

(3.18)

2 [ D= kel = Kyl Dil da
B(zo,R)

Youn,
Sge/ |D(u—k)+|2n2dx+0(5)/ (1 — k)| Dn| dz.
B(af)o,R)

B(zo,R)

From this the result follows by absorbing the first term on the RHS
into the left, and recalling the definition of 7. U

Theorem 3.45 (esssup-estimate). Let u € W2 (Q) be a weak solution
to Au=0 in . Then there exists ¢ = c(n) such that

NV
esssupu§k0+0<][ |(w — ko) dx)
B(zo,r)

B(zo,3)
where ky € R and B(xg,r) C Q.

Proof. Let 0 <1/2 < p <r and n € C§°(B(zo, 1))

0<n<1l n=1inB(zo,p), [Dnl<

r—p

and use test function v = (u— k), n. The proof will be based on the use
of Sobolev-Poincare, Caccioppoli and iteration. To be more precise,

[ apitdes [ b= kP ds
B(zo,r) B(zo,r)

< / D(u— k)sn + (u— k), Dyl de

Bl (3.19)

< / D(u— k)snf + |(u— k), Dyl de
B(zo,r)

Cacc, def. of n C

— |(w — k)| d.
(T - p)2 /B(xo,r) "
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Further,

(f om0 ae)™ <,

v € Wy%(B(z0,7)), Sobo ie

. 2/2*
v? d:p)

(:E(),T)

07“2][ |Dvl|? da.
B(zo,r)

Combining (3.20) and (3.19), we get
* 2/2* CT2 2
(0 k) d) g————f (= k), da.
<][B(xo,ﬂ) ! (r = p)? B(xo,r) ’

(3.21)
Define

(3.20)

A(k, p) = B(zo,p) N{z € Q : u(x) > k}
and observe

f‘ (u— k) de
B(z,p)

1
a |B<x07 p)| A(k,p)

Hgaw@:m</ k),
|Bm,|/kp“‘ [B(z0, p)]
< (f 00 ae) ™ () ™

(321)  (O2 Ak, -2
< _i_Ef‘ Iw—kﬁFM(%Lim) o
(T’ p) B(zo,r) I (‘TOv 10)|
If h < k, then

(= WAk ) = [ k= h s
A(k,p)
u >k in A(k, p)

< / (u — h)?dx
A(k,p)
h <k

< / (u — h)?dw
A(h,p)
< / (u — h)?*dz.
B(wo,p)

[(u— k)" de

. 2/2*
P de) Ak, )

*dx)2/2*< L4(k;p)|)1—£i (3:22)
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By this, denoting

u(h, p) = (]{3( )|(u—h)+|2dx)1/2, (3.23)
we get
Ak < = | ICRLE sy real CIORRNCED

Using this with (3.22), we get

(3.22) ro\2 Ak, )] \ 17
2 < (e
u(k,p)® < C(r—p> u(k,m) <|B(:vo,p)|> (3.25)
(3.24) N u(h, p)\20—3) )
2 2 (W, P) .
= C(r—p) uk, ) (k;—h>

w(h, 7)1 (k= b))
r=r (3.26)
U(h, T)1+0<k - h)_97

r—p
where 0 :=1 — 2%
Auxiliary claim: For k& € R it holds that

U(ko +d,’f’/2) =0
where d? := C20+0*/0+1y (k1) and ¢, § are as above.
Proof of the auxiliary claim: Let
ki =ko+d(1—27)
pj=r/2+277"r, j=0,1,2,...

so that pg =1, p; \yr/2 and k; /* k+d as j — oo. Then we show by
induction that

'Lb(kj, pj) < 27Hju(k'0; T), .] = 07 17 27 Tt (327)

where = (1+6)/6.
Indeed j = 0 immediately follows since py = r.
Assume then that the claim holds for some j, and observe that

pi— P = (27771 =277 = 27070,
kjvr —kj = (=271 +27)d=2"1d,
pj =T
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Using these with (3.26), we have
Cp;
Pj = Pj+1
(27j71d)7927uj(1+0)u(k07 70)1+9’

u(kjr1, pi1) < (ki1 — k)" ulky, pjan)

2797 2p
where we used induction assumption to estimate u(k;, pj41). Then
recalling the shorthand notations , we get

(0 +1)2
j+2+9(j+1)— 0 i
\—v—/ 2
u(kjer, pjor) < C2 w0 (02T e, 7)) ko, 1)
dYQ
_ olH(1+0) (1) L5 O “u(ko, )
0+1
@G+ (1= —5=)
_1
=2 0 u(ko, )

= 2_“(j+1)u(k0, r),
and thus the induction is complete. Further, this implies
hm U(kj, pg) =0

Jj—0o0
and
1
”

0<ult+d. )" L (£ -k as)’
2 B(z0.3)

B(ZL‘(), %)
It follows that

5<pi /B A i
2" (M/ (= k)2 dz)” < Cully, ps) = 0.
B(x07pj)

u(ko + d, g) — 0,

and this ends the proof of the auxiliary claim.
By using the auxiliary claim, we now finish the proof of the essup-

estimate. Indeed,
1

, .
Ozu(ko—l—d,§):<][ (1= (ko + d))4 )7,
B(zo,3)

where d? = C20+9° /041y, r)?. Thus a.e. in B(wp, 5) it holds that

u§k0+d:ko+0(][ :

B(zo,r)

(= ko) | de)



84 PDE 2

from which the claim
1

esssupu§k0+0(][ ](u—ko)Jr]de>5
B(zo,r)

B(xo,5)
follows. O

Corollary 3.46. Let u be a weak solution to Au = 0 in . Then there
exists C' = C(n) such that

1

esssup |u| < c<][ |u|2dm>2
B(xo,%) B(zo,r)

for all B(zg, %) C Q.

Proof. Choose kg = 0 in the previous result and observe that

1
esssupu§0<][ |u+|2dm>2.
B(zo,73) B(zo,r)

Since —u is also a solution, we obtain
1

—essinfu = esssup(—u) < C(f |(—u),|? dx)i.
B(zo,r)

B(zo,5) B(z0,%)
Combining the estimates
1
esssup |u| < max{esssupu, —essinf u} < C’(][ |u|® dx) O
B(o,%) B(zo,%) B(x0,73) B(zo,r)

The above result implies that (unlike Sobolev functions in general)
are locally bounded.

Next lemma is needed in order to prove Hoélder continuity for weak
solutions.

Lemma 3.47. [Measure decay] Let u be a weak solution to Au =0 in
Q, B(xg,2r) €,

m(2r) = essinf u, M(2r) = esssupu,
B(IQ,QT) B(xo,??")

and

|A(ko, )| < 7[B(wo,r)|, 0<vy <1,
where A(ko,r) = B(xo,7) N{x € Q : u(x) > ko} and kg = (m(2r) +
M(2r))/2. Then

lim |A(k,r)| =0.
kM (2r)

We postpone the proof and go to the proof of the Holder continuity
immediately.
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Theorem 3.48 (Holder-continuity). If u be a weak solution to Au =0
in S, then u is locally Hélder-continuous (or has such a representative
to be more precise).

Proof. Let
m(2r) + M(2r)
2

similarly to the previous lemma. Without loss of generality we may
assume that

k():

Bao,r) N {z €9 - ule) > ko)l = [Alho, )| < 5|Blao, )|, (3:28)
since otherwise if |A(ko, )| > 3|B(wo,7)| it holds that
o € Blao,r) : ~u(x) < —ko}| > 5|B(zo,r)
o € Blao,r) = —u(x) > —ko}| < 5|Bzo, )

and the argument below works for —u and —kq instead. Here we need
that both u and —u are solutions. Using the esssup-estimate with

ky = M(2r) — 2= D (M (2r) — m(2r))
we have

(= k)P dz)’
—_———

(M (2r)—ky)?

Aﬂ@sm+c(f

B(zo,r)
< ki + C(M(2r) - m)(%)z

since the integrand can only be nonzero in the set A(k;,r). By Lemma
3.47, we may choose [ large enough so that

C@é@uﬂ>%<£
’B (l’o, 7’) ’ 2

This fixes [. Combining the previous two estimates we obtain
T

]\/[(2

) <+ (M)~ k)
< M(2r) — 27UI(M(2r) — m(2r))
+ 5 (M(2r) — (M(2r) — 27D (M (2r) — m(2r))))

< M(2r) — 27D (2 — 1)(M(2r) — m(2r)).
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From this we get

M(35) - m(g) < M(3) - m(2r)
< (1 =272 (M (2r) — m(2r)).

Using the notation 0scp(xy2r) t := M(2r) — m(2r) = esssupp(,, 2r) U —

essinfpgyom v and A == (1 — 2-+2)) < 1, the above reads as

OSCR(z0,5) U < A OSCB(a0,2r) U-

The Holder continuity follows from this by a standard iteration. To be
more precise, choose j € N such that

41 < L < 47,
T

Then

i—1
OSCB(z,2) U < N7 0SCR (29,49 -1r) U

4971 <R 1
< N7 0SCB(x,R) U

(3.29)

< M OSCB(z0,R) U

T «
< C<E> OSCB(x0,R) U,

where we denoted v = —log A/ log4 € (0,1) and observed

E <4 = 47ir< (E)_a = (L)a

r r R

AL = glogi(V ) _ 4(i—1)log(V)/log(4) _ 4(1—ia < 4o (1)“'
- \R

Let y € Q s.t. |zg — y| < g dist(zo,09Q), R = dist(zg,0Q), 1 = |z — y|
(actually only for a.e. point but then the below deduction can be used
to define the Holder continuous representative). Then by the estimate
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(3.29)

|U(£L‘0) - U(y)| < OSCB(z,2r) U

2r\«
< C<§> 0SCp(z9,3 r) U
270~ 41)" osc u
gR B(Io,%R)
< Clzg — y|*R™*2 esssup |u]
B(a:o,%R)

<o

1

esssup-est 5
<  Clrg —y\o‘Ra<][ |u|2d:£>2
B(0,5R)

< Clxg —y|*.

It remains to prove the lemma used above.

Proof of Lemma 3.47. The proof is based on deriving an estimate con-
taining |A(h,r)| — |A(k,r)| by using Poincare’s and Caccioppoli’s in-
equalities. To this end, we let £k > h > ky and define an auxiliary
function

k —h, u()
v(x) =<Cu(x)—h, h<

k,
) <
0, () h.

|/\A|\/

It immediately follows

{z € B(zo,r) : v(x) =0} = [{x € B(xg,r) : u(x) < h}|
= |B(xo,7)| — |[{z € B(xo,r) : u(xz) > h}|
= |B(xo,7)| — |A(h,7)|

ko <h

> |B(wo,7)| — [A(ko,7)|

assump.

> (1=)[B(xo, 7).

From this denoting vg (s, ) = fB(xO oy v dz, we get

k—h — VB :][B( )(k—h—v)dm
To,T

> (- f (k= h—v)da
{zeB(xg,r) : v(x)=0}

— (1= )k —h).
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Integrating this over A(k,r) and using Poincare’s inequality, we obtain

1
(k= h)[A(k,7)| < —— (k —h = vpGn) dz
L= J e
v=k—hin A(k,r) 1
= —_— U — UB(zo.r)) AT
1=~ A(k:,r)( (o)

1
< — (U - UB(xoﬂ“)) dx

B Y J B(=zo,r)

n—1

Holder 1 T n
< 1—]8(3:0,7“)]( ‘U—UB(IO,T)‘ dx)
-7 B(zo,r)

Poinc.:Thm 2.55, p=1 1

< —|B(x0,r)|cr][ | Dv| dz.
1- Y B(xzo,r)

Then using the above estimate and by Holder’s as well as Caccioppoli’s
inequalities

1
(k — B)|A(k, )| < C’r/ | Du| da
1— Y B(zo,r)

def. v 1
< . O?”/ | Dul da
. 17 A(h,r)\A(k,r) o 1 (3.30)
< on([ o pafe) g n] - 1Ak )}
1—7 A(h,r)
Cacc

. s \1/2 )
o[ uade) (A ] - A )
A(h,2r)
where at the last step we observed that r/(2r — r) < C. Next replace
k and h in the above inequality by k; and k;_; where
ki = M(2r) — 27U (M (2r) — m(2r)).
Then since
ki —k;o = (M(2r)—2"9D(M(2r) — m(2r)))
— (M (2r) =277 (M (2r) — m(2r)))
= 27U (M1 (2r) — m(2r)),
we get by (3.30) that
27U (M (2r) — m(2r))|A(ky, )] = (kj — kj—1) | Akj, )|

5 1/2 1
<o [ ekl an) T (AG ) - 1A )E
A(kjflvzr)



PDE 2 89
Then observing u—kj_1 < M(2r)—k;_y = M (2r)— (M (2r)—279 (M (2r)—
m(2r))) = 279(M(2r)—m(2r)) and using the above estimate, we obtain
2_(j+1)(M(27“) — m(2r))|A(k;, 7)]
C(M(2r) = ki) [ Ak, 2r) 2 (|ACk;-1,7)| — | Ay, 7)])2
< C277(M(2r) — m(2r))|A(kj—1, 2r)[2 (| Akj—1, )] — [A(k;, 7))
Cancelling 277 (M (2r) —m(2r)) on both sides and choosing [,1 > j, we
end up with

Ak, )| < [A(k;,7)| < C|Blao, 27) 2 (|Ak; 1, )| — |Ak;,7)])2.

Taking squares and summing over j, this gives by telescoping

l
UA(k, )P = Ak, )
j:

l
< C|B(xo, 2r) Z |A(kj 1, 7)] = [A(k;, 7))

< C|B($o,27“)|(| (/fo, r)| = [Ak, 7)]) < cC|B(xo, 2r)|| B(o, )]
Dividing by [, we finally get
llim |A(ky,r)| = 0. O
—00

3.7. Weak and strong max principles. In this section we consider

=S Dy () Dyule)) + e(wyulz) = 0.

1,7=1
For the next theorem, we define

supu = inf{l € R : (u—1); € Wy*(Q)}.
20

Theorem 3.49 (Weak max principle). Let u € W'%(Q) be a weak
solution to — 37" | Di(aij(z) Dju(x)) + c(z)u(r) = 0, with ¢ > 0.
Then

esssup u < sup Uy..
Q o0

Proof. Set M := supyqus > 0. It holds that (u — M), € W,2(Q).
To see this, choose decreasing sequence l; — M so that (u —[;)y =
(uy —1;)+ € Wy*(Q). Then since Q is bounded, it follows that u—[; —
u— M in WH(Q). By it holds ,

(u—1;)y — (u— M),y in W-(Q)
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and thus the claim (u — M), € Wy*(Q) follows.
We may use v = (u — M), as a test function in

/ Z ai; DjuDyv + cuv dx = 0
Q

i.j=1

/ Z a;;D;MD;v + cMvdz > 0,
Q=1

where M, c,v > 0 was used. We subtract these to have
A/ |D(u— M)y |* 4 c(u — M) dz < 0.
Q

From this it follows that v < M a.e. O

PUNCHLINE: Roughly speaking the max principle says that the
largest value is attained at the boundary or at least a solution cannot
obtain strict maximum inside the domain. This is tightly connected to
the comparison principles too: a comparison with a constant.

Remark 3.50 (Warning). If there is f on the right hand side, the form
of the max-principle changes (ex).

3.7.1. Strong mazximum principle. Strong maximum principle for weak
solutions follows Harnack type arguments that we have not proven yet.
Nonetheless, we show that due to the classical theory this is something

to be expected anyway.
Recall

CHQ) = {u € C*(Q) : D*u is uniformly continuous for all || < 1}.

The argument does not rely on divergence form. For simplicity of
notation we consider

Lu=— Z aijDiDju = 0.
ij=1
By interior ball condition for Q at xy € 0f2, we mean that there is a
ball B C €2 such that xq € 0B.

Lemma 3.51 (Hopf). Let u € C?*(Q) N CY(Q) satisfy Lu < 0, and
suppose that there is xo satisfying interior ball condition for B and

u(zo) > u(z) for all x € €.

Then
@

o (Z’Q) >0
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where v is exterior unit normal for B at x.
Proof. We may assume that B = B(0,7) and u(xo) > 0. Set for v > 0

v(x) = el _ et e B(0,7).

Then
Djv = —2%-76_“*'9”‘2
and
DiDjU = (_261']'/7 + 4’)/2‘%5]3]')6_7‘1'2.
Thus

Lv=— i G,Z'jDZ'Dj’U

ij=1
== 4y (=207 + 4y wgwy)e T
ij=1
ell "
< (27D i — 42 Aa)e T
i=1
Thus for large enough v, we have
Lo < (29 as — 49°Az)e " <0, @€ B(0,r)\ B, £>-
i=1
By the assumption u(zg) > u(z) for all z € Q, for small enough £ > 0,
it holds that
u(zo) > u(x) + ev(x)
on 0B(0,7/2) C . The same holds on 0B(0, r) since there v = 0. We
have
L(u+ev —u(xg)) = Lu+eLv <0,
and therefore the weak maximum principle for classical solutions (ex.)
implies
u+ev—u(zo) <0 in B(0,r)\ B(0,7/2).
But
u(zo) + ev(zg) — u(xy) =0
so that
I(u~+ ev — u(xy))
v

(xg) > 0.
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This yields

0 0

a—Z(xo) > —aa—Z(xg) = —E?Dv(%)) = —6?(—235076’7'10'2) >0. O
Remark 3.52. The nontrivial point on Hopf’s lemma is that the in-
equality %(xo) > 0 is strict!
Theorem 3.53 (Strong max principle). Let u € C?(Q) N C(Q) satisfy

Lu <0,

and let  be a bounded, open and connected set. Then if u attains its
max at the interior of €1, it follows that

U = sup u.
Q

Proof. Let M := maxgu and
C={re: ulx)=M},
V={xe€Q: ulx) <M}
Let us make a counter proposition that V' is not empty. Take a point

y € V with dist(y, C") < dist(y, 0f2), which exist since dist(C, V) = 0
by continuity of u. Let

B=B(y,r)CcV

be a largest possible ball in V' centered at y. Then B touches C' at
some point g, and thus V' satisfies interior ball condition at this point.
By Hopt’s lemma,

ou

—(xo) >0

ay( 0)
but this is a contradiction since xy is a max point for u implying
Du(xy) = 0. O

4. LINEAR PARABOLIC EQUATIONS

Next we study generalizations of the heat equation. We denote
QT =0 x (O, T)
and

0,0 = (0 x {0}) U (02 x [0, T]).
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Definition 4.1 (parabolic Sobolev space). The Sobolev space
L*(0, T; WH2(Q),

consists of all measurable(in Qr) functions u(x,t) such that u(z,t) be-
longs to WY2(Q) for almost every 0 <t < T, (u(x,t) is measurable as
a mapping from (0,T) to WH23(Q), and the norm

(/[)T(‘u<x,t)‘2 + | Du(z, t)|?) do dt) 1/2

is finite. The definition of the space L*(0,T; Wy*(Q)) is analogous.

The notation above refers to Banach valued functions (0,7)
Wh2(Q2) and thus refers to Bochner integration theory. However, we
do not pursue this analysis here.

Definition 4.2. The space
C(0,T; L*(%2))

consists of all measurable functions u : Qp — R such that

lulleqorssen = mas: ([ lute 0 dr) ™ < o0

and for anye > 0 and t; € [0,T] there is 0 > 0 such that if [t; — to| <9,
where ty € 0,7, then

1/2
/ lu(z, t) — u(z, ty)|? dx) <e.

Theorem 4.3. The space C®(Qr) is dense in L*(0,T; W2(Q2)).

Proof. The space W12(Q) is separable (not proven here). The proof
consists of three steps. First, by separability, we can approximate any
function u € L*(0,T; W12(Q)), denoted by u(t) = u(x,t), with simple
functions. By modifying the simple functions in the set where the
norm is large compared to the norm of the original function, and using
Lebesgue’s dominated convergence theorem, we obtain a L?-convergent
sequence. Finally, we mollify the simple function.

Next we work out the details. Utilizing the separability of W2(Q),
we can choose a countable dense set

{ak}zozl - U(O,T)
We define for k=1,...,n
Fi={f e W) : [|If = allyreoiq = min [If = aillyre)}

1<i<n
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and
By —u\(Fp), Dy=Bj, Dj=Bp\(U)BY) for k=23,....

It follows from the measurability of u(t) that the sets D} are measur-
able, and thus

n

un(t) = Z axpy (t)

k=1

is a simple function. Because {a}?2, is a dense set, it follows that a.e.
u,(t) — u(t) in WH(Q) as n — oo.

In order to use Lebesgue’s dominated convergence theorem, we mod-
ify w, whenever [|u,(t)|[y1.2(q) 18 large compared to |[u(?)|y1.2(q). and
define

ity = L1003 T Ollunaey < 21y
0, it lun@llwrz) > 2 [z -
If f[u()|lyr2q) = 0, then v,(¢) = 0 and if [[u(t)||y12q) > 0, then
v, (t) = u,(t) for n large enough. We deduce
valt) wu(t) in WH(Q),  and  [[va(t)llreg) < 2Mu®)lyg) -

Thus Lebesgue’s dominated convergence theorem implies

T
/0 o (t) — u(t)H?,Vl,Q(Q) dt -0, as n— 0.
Next we denote

Dy = Dp\{t € (0,7) + flun(®)llwaey > 210 oy |

and get

n

valt) = 3 iy ).

k=1

We have shown earlier, using approximations that C'*°(€2) is dense in
W12(Q), and hence we can choose ¢ € C*°() such that

2 €
ot~ aulBis o) < 2

This implies

i

2

dt < e.
WL2(Q)

D axpy(t) = > euxpy (1)
k=1 k=1
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Finally, we may mollify in ¢ with a mollification parameter d,, (this
follows from the approximation results applied in 1D) such that for
eachk=1,....n

dt <

[ o= o 0]

n H%HWL?(Q) '

Accomplishing this approximation for each k = 1,2,...,n, we obtain
the desired smooth function

> enlxpp)s (1), (4.31)

which completes the proof. O

Lemma 4.4. Let u € L*(Qr), extend u as zero to (—00,0) and (T, o)
and set

wot) = [ et = o) (s)ds
R
where n. is a standard mollifier. Then
ue — u in L*(Qr)

Proof. By repeating the argument in the previous proof (cf. (4.31)), we
can produce a smooth approximation g such that

(/ |u—g|2dy)1/2 < /3.
Qp

We extend u by zero to (—00,0) and (7, 00), and denote by u. a stan-
dard mollification in the time direction. Similarly as for space mollifi-
cations

|u€(l‘7 t)| =

/t ” ne(t — s)u(z, ) ds

—&

t+e
< / ne(t — ) Pna(t — )2z, 5)) ds
t

€

ERYE ds)” ([ et =oate o as)™

3
. J/
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and
t+e
/ |u5(x,t)|2dxdt§/ / ne(t — 8)|u(x, s)|* ds da dt
Qp Qr Jt—e
T
:/ //Ua(t—8)|U($,8)|2dsd;Bdt
o JaJr
Fubini T 2
= // /Wa(t—s)!u(:v,s)] dx dt ds
rJo Ja
T
:// Ua(t—S)dt/]u(:v,s)Ideds
// lu(z, s)|” d ds

—/ \u(z, s)|* dx ds.
Qp

1/2

We deduce

( ]u—u6|2da:dt)
Qp
Minkowski

< (/ ]u—g|2dxdt)1/2+(/ g — g.|? dxdt)1/2 (/ |gs—u5|2dxdt)1/2
Qr Qp Qp
§5/3+(/ |g—gs|2dxdt)1/2+(/ g — ul*dx dt) "
Qp

Qr

<6/3+ (/Q g — g dwdt)? +6/3.

By adjusting the argument we used in with xz-approximations, we see
that g. — ¢ pointwise in 2x (0, T'). Moreover, |g — g.|* < 4maxq, |g| €
L'(Q7) and thus by DOM, for all small enough &

(/ |g—g€|2dxdt)l/2§6/3. O
Qr
Theorem 4.5. Let u € L*(Qr) and 2 € L*(Qr). Then there is such
a representative that

u € C(0,T; L*()).
Proof. By the previous lemma

{uE — u, in L?(Qr) (4.32)

Oue —y Du in L2(Q x (h, T — h)),
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where ¢ < h and the proof of the second statement again follows the
guidelines of the space approximations. By Fubini’s theorem for a.e. x
the function ¢ + u(z,t) in L*(0,7) C L'(0,T). Thus for a.e. z u.(x,t)
is a smooth function so that

2 Ou
ue(x, 1) — U, x,t):/ = dt
)~ et = [

1

and

t28u
oot = el = | [
L2(Q)

We apply (4.32) to the RHS together with Fubini’s thm and state
without a proof (cf. approx section) that LHS converges for a.e. ty, ts.

Thus
f2 ou’
lu(e. ) = ulas o)y < Ot —12) [ [ |5
t1 Q

This also implies the continuity on the whole interval [0, 7. O

dz dt.

We study initial-boundary value problem for given ¢ : Qp — R,
f : QT —R

u+Lu=f, x€Qr
u=gq, x € 0pdp.
Here

Lu(x,t) = ZD (a;j(x,t)Dju(x,t)) —I—Zb (x,t)Du(x,t)

7,7=1 =1
+ c(x, t)u(z, t).

Definition 4.6 (uniformly parabolic). The operator is uniformly par-
abolic if there are 0 < A < A < oo such that

AEP <) a&g < AP
ij=1
Definition 4.7 (local weak solution). A functionsu € C,.(0,T; L,
L2 (0, T:W.L(Q)) is a weak solution to the above PDE if

loc

(€2))N

—/ wpy da dt + ZGUD uD;p%—ZbDugo—i—cwpdxdt
Qr

Qsz 1 i=1

fodxdt
Qp
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for every ¢ € C3°(2r).
Definition 4.8 (global weak solution). Let g € C(0,7;L*(2)) N

)
L2(0, T;Wh3(Q)). A functions u € C(0,T; L*(2)) N L2(0,T; W12(Q))
is a weak solution with boundary values g to the above PDE if

- / wpy dx dt + Z a;; DjuD;p + Z b; D;up + cup dx dt
Qr

Qr ;=1 i=1
= fodxdt
Qrp

for every ¢ € C3°(Q2r), and
u—g € L0,T;Wy*(Q))

as well as

/u(x,O)gb(x) dm:/g(m,O)gb(x) dx  for every ¢ € C5°(§2).
Q

Q

4.1. Existence: Galerkin method. Let f € L*(Q7). For simplicity
we only consider the problem

uy = Au + f, in Qp
u =0, on 082 x [0, 7]
u(z,0) = g(x), on,

where g € VVO1 (€2), but intend to use methods that also work in greater
generality. In the weak form,

3}
—/ wZE dg dt + Du-Dgodxdt:/ fodxdx (4.33)
op Ot Or Q
for every ¢ € C§°(Qr).

Idea in Galerkin’s method is to take a basis w; i = 1,2, ... in L? and
W, *(Q) and approximate solution as

m
U (2,1) = Y & (t)wi(z).
i=1
Choosing the coefficients properly, we can show that this approximation
converges to a weak solution. Galerkin’s method has turned out to be
useful in numerical approximations to solutions of PDEs as well.
Step 1(basis): Let

w,, =12
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be orthogonal basis in W,*(Q) (wrt the standard inner product in
I/Igol 2(Q2)), and orthonormal in L?(Q) (with respect to inner prod of
L?).

Step 2 (approx solutions): Construct approximating solutions by

=Y tua)

where the coefficients satisfy

a—wk dx = / Du,, - Dwy, dz + / fwr dx (4.34)
o Ot Q Q

for k=1,2,...,m. Then for LHS

au—mwk dr = / Z —wlwk dx

orthonormality 8Ck

ot

Q

and

—/ Duy, - Dwy dox = — / it (t)Dwy, - Dwy dx = —c' (1) Ak
Q Q
Altogether, we obtain ODE
o (t
EO i /n+ 1),
t
where fi.(t) = [, f(x, )wi(z) dz. It follows that

A (t) = e M (ck + /Ot e fr(T) d7'>

where ¢, are chosen so that

x) = Z crwr ()

which is possible since w;, i = 1,2, ... forms a basis for Wol’Q(Q).
Step 3 (uniform estimates for solutions): Multiplying (4.34)
by the coefficients and summing, we obtain

/aumumdx— /Dum Dumdz—l—/fumd:v
L ot

10
= D
28t/u dx = /| Unn|? dx—i—/fumd:c

1.e.
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Further, by integrating over (0, 7), we obtain

1 1
—/ufn(x,T)dx——/ufn(x,O) dx
2 Ja 2 Ja

:—/ |Dum|2dxdt+/ fi, dz dt.
Qr Q-

We further estimate by using Young’s and Sobolev-Poincaré’s inequal-
ities

T
/ f(x,t)umdxdt‘ <C f? dxdt—l—e/;ﬂ/ /u?ﬂdxdt
Q, Qr o Jao

T
<C dexdt+5//|Dum|2dxdt
0 Q

Qr

where p is again the constant in Sobolev-Poincaré’s inequality. By
choosing ¢ > 0 small enough, we can absorb the gradient term and
obtain an important energy estimate

1
sup —/u?n(x,t) dJH—/ | Dy, | da dt
teo,11 2 Jo Qr

(4.35)
SC/U%(%,O)CMI—{—C/ f*dx dt.
Q Qp

Multiplying (4.34) by %c?(t) and summing over k, we obtain

8Um 8um B 8um 8um

and again integrating over (0,7") and using Fubini, we have

)

Again by using Young’s inequality

Jo

Ou,,

2 T
1
Ot d:vdt:——// 2|Dum|2dtalm+ f——dxzdt.
2 JaJo Ot ap Ot

ot

ou,,

2
1
d diL( / Dy (2, ) — / | Dy, 0) ? d)
ot 2" Jq Q

ou
Se/ -
Qp

(4.36)

2
dedt+C | f2dvdt.
Qp

ot
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Combining (4.35) and (4.36), we have

2 aum
/QT |Dum| +'7

§C’/|Dum(x,0)|2dx +C [ frdedt,
RaY , Qr

2
+ |t |* dez dt

(4.37)

'

— [ |Dg(z)|? dz, as m—o0

where the right hand side is independent of m . Altogether, we have

/ |Dum\2+
Qr

where C' is independent of m.

Step 4 (taking limits): Since the estimate (4.38) is uniform in m,
the sequence u,, is uniformly bounded in L*(0,T; W'?(2)) and 2%= in
L*(Qr). Thus, there exists a weak limit such that

Oy,

2
5| T |t |> dzdt < C (4.38)

u e L2(0,T; W, 2(Q)), % c L*(Qp).

Further, by Thm 4.5, u € C(0,T; L*(Q)).

Step 5 (weak solution): A priori, u,, satisfies the weak formula-
tion for basis functions, so it remains first to check that u is a weak
solution. To this end, let

heCe(Q) and v € C5([0,T7),

and choose a sequence
J
hj(z) = Zakjwk(x) —h in W'(Q) as j — oo.
k=1

We multiply (4.34) by v (t), integrate over (0,7"), and pass to the limit
m — oo to have

T 8% T
/ /—wkwdazdt:—/ /Du-Dwkz/Jda:
o Jo Ot 0o Ja
T
+/ /fwkwdxdt.
0o Ja
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Then, we multiply this by as;, and sum up to have

T J T J
/ /@Zakjwkl/}dxdt:—/ /Du-DZakjwkwdxdt
o Jo Ot &= o Ja pt
T J
+/ /f(x,t)Z@kjwkwda:dt.
0o Ja T

Then passing to the limit with 7, we end up with

/ /3U:Et )(t) do dt = / /Duxt) Dh(z)¢(t) d dt
//f:rt Y(t) dz dt.

By modifying the proof of Thm 4.3, see in particular (4.31), we see that
by summing up the functions of the type h(x)y(t) we may approximate
functions in L*(0,T; Wy (Q)). Thus, in particular,

T T
/ / —pdrdt = / /Du~D<pd:cdt+/ /fgodxdt
Q 0o Ja

for all ¢ € C5°(Qr).
Step 5 (initial condition): It remains to check that the ini-
tial condition is satisfied. Similarly as above, denoting v;(z,t) :=
7 Bri(t)wi(x), j < m, and for which v;(x,T) = 0 we obtain

/ /aumvjdxdt / /Dum Duv;(z) dxdt

/ / f(z, t)vj(x) dz dt.
Integrating by parts wrt ¢,

/um(xOijO d:v—/ /um—dxdt
—/ /Dum~vadxdt+/ /fvjdxdt.
o Ja o Ja

Then we pass to the limit m — oo, and then with j — oo, where
we may choose [i; so that v;(z,0) — ¢(z) € C°(Q) in L*(Q) and v,

(4.39)
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converges to a suitable test function v. This produces

ooty [ ' [ o2 ara

T T
:—/ /Du-Dvd:vdt—l—/ /fvdxdt.
o Ja o Ja

On the other hand, passing first to the limit m — oo and then j — oo
in (4.39), as well as integrating by parts wrt ¢ after that, we get

—/Qu(x,O)gb(x) dx—/OT/Qu% dz dt

T T
:—/ /Du-Dvd:pdt+/ /fvdxdt.
0 Jo 0o Ja

Comparing (4.40) and (4.41), we see that wu satisfies the initial condi-
tion.
We have proven the following.

Theorem 4.9. Let g € Wy *(Q) and f € L*(Qp). There exists a weak
solution to the problem

(4.40)

(4.41)

uy = Au + f, in Qr
u=0, on 02 x [0,T]
u(z,0) = g(z), onfd

Remark 4.10. The condition g € WOI’Q(Q) can be relaxed as well as
the operator with

al-j,bi,c € LOO<QT>,f c L2(QT)

15 ok, see Fvans p. 356. The method remains essentially the same.
Method also generalizes for more general bdr conditions g € C(0,T; L*(Q))N
L0, T; W12(Q)).

4.2. Standard time mollification. Now % exists but in more gen-

eral situation (for example u; = div(A(z,t, Du)) for a suitable nonlin-
ear operator), u does not necessarily have time derivative. Nonetheless,
it is often useful to have u in the test function, and thus we would have
% in the weak formulation, which does not necessarily exist as a func-
tion. This problem is treated by time mollification.

Let ¢ € C§°(Qr). Our goal is to show

Troae [T _
_/0 Quﬁdw/o /Q<Du>s-D¢dz—0, (442)

where € in u. and (Du). denote the mollification with respect to t.
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Let spto(x,-) C (e, —€). We can use Lebesgue’s dominated con-
vergence theorem to see that D [ = [ D in this case. Further, by
Fubini’s theorem and by taking into account the support of ¢(z, ), we

see that
T
/ /Du(x,t) - Do dz
o Jo
T
:/ /Du(x,t)-D/ng(m,s)nE(t—s) dsdz
o Jo R

_ /R /Q /OTDu<x,t).D¢(x,s)ns(t—s)dtdxds -

T
= / / / Du(z,t)n.(t — s)dt - Do(x, s) dx ds.
rJa Jo
Since 7). is an even function, we have

/0 Du(x,t)n.(t — s)dt = /0 Du(x,t)n.(s —t)dt = (Du(z, s)).,

(4.44)
where we can restrict ¢ < s < T — . This is due to assumption
spt(o(zx,-)) C (e,T — ¢). By subtracting (4.44) into (4.43), we obtain

/OT/QDu(x,t) . Dé.(x,1) d>

. (4.45)
= / /(Du(:n, 8))e - Do(x, s) dx ds.
€ Q
Similarly
/T/u(:c t)a¢6 dx dt
o Jo Ot
T
0
= u(z, t)—o(x, s)n.(t — s) ds dx dt
/0 /Q/R 05 (4.46)

T—e T 0

_/5 /Q/O u(z, t)n.(t — s) dt$¢(3§,s) dx ds
T—e 0

:/5 /Que(x,s)aqﬁ(a:,s) dx ds.

The definition of a weak solution combined with (4.45) and (4.46) imply
(4.42).
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4.3. Steklov averages. Another alternative is to use Steklov aver-
ages. Let u € L'(Q7). Then the Steklov average is defined as

1 t+h
uh:ﬁ/ u(zx, ) dr, te (0,7 —h).
t

Weak formulation can also be written (ex) for 0 < t; <ty < T as

Au(m,tz)w(x,tg)dx—/u(x,tl)gp(x,tl)dx

Q

—/ ugotdxdt—i-/ Du - Dpdxdt = 0.
Qx(t1,t2)

QX (t1,t2)

Then choose (s, x) € C§°(Q2r) independent of ¢ (this is not compactly
supported in ¢ as it is constant in ¢, but it does not matter). Since ¢
is compactly supported in s, we can choose t; = s, to = s+ h for small
enough h. Then divide by h, and observe that ¢; = 0 so that

1
0 =7 /Q(u(x, s+ h) —u(x,s))p(x,s)dx
s+h
+ %/Q/S Du(x,t)dt - Do(x,s) dx

Oup(x, s
:/Q%go(x, s) dm—l—/Q(Du)h(x,s)-Dg)(x,s) dx.

Integrate wrt s over (0,7) to obtain

0= / Mg@(% s)dxds +/ (Du)y(z, s) - Dp(x, s) dx ds
Qr 88 Qr

= —/ Uh(?_gp dxds+/ (Du)y, - Dpdxds,
op 0s Qr
(4.47)

for every ¢ € C§°(Qr).

4.4. Uniqueness. In this section, similarly in the elliptic case, we sim-
plify the treatment considering

Lu=— Z D,‘(CliijU) + cu

i,j=1

with ¢ > ¢y, cg € R. In the proof below, we want avoid using the time
derivative of a solution and therefore use mollifications.
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Theorem 4.11. There is cq such that if ¢ > ¢y, then the weak solution
to

us+ Lu =0, inQp
u=g on 0,8 r.

with g € C(0,T; L*()) N L*(0, T; WH2(Q)) is unique.
Proof. Let u and w be two weak solutions. Then similarly as in (4.42)
—/ Ue dxdt—l— Z%Du )eDiv® + cu(v®). dxdt =0
Qr

Qsz 1

where spt v C €r, and ¢ is small enough, and a similar equation for w.
Then by subtracting the equations, we have

-/Q (u— dxdt%— QT;§;aw WD)

+ c(u — w)(v%)dx dt = 0.

We choose
v(w,t) = (Xor(t)e(u — w).
with
(0 t < h,
(t—nh)/h h <t <2h,
Xor =1 1, oh <t <T —2h,

1
(—t+T—h)/h, T—2h<t<T—h,
0 T—h<t.

Moreover, by density we can extend the class of test functions so that
(v9). is admissible (ex). We estimate

ov®
/QT(u—w)gg dx dt
:/ (u—w)sa<xh)€(u_w)s dz dt
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Then we integrate by parts and pass to the limit

intby_parts . 8( ) 1/ 8(Xh)€ N 2
= /QT(U w)2 o o dx dt — 5 QT—at (u—w)Zdxdt

_ 1 / _3(“)8@ — w)?dx dt
Qr

2 ot
<ol
202 —aXh(u—w)2dxdt
2 Jo, O

2%
/u— dxdt /u— dxdt
T—2h

o--/( (2.T) — w(z, T))? da,

2 Ja

where at the last step we used continuity and the initial condition.
The other terms in (4.48) converge by similar approximation argu-
ments as before, and combining the above calculation together with
(4.48), we obtain by first letting € — 0 and then h — 0

1 2
0= 5 /Q(u(x,T) —w(x,T))* dr
/Q Zaw Di(u —w) + c(u —w)(u —w) de dt
parab ]

> Q/Q(u(x,T)—w(x,T)fdx
—l—/ ADj(u —w)|* + e(u — w)? dx dt

> %/Q(u(x,T) —w(z,T))* dv + /QT (2 + co> (u —w)? dx dt

where we used Sobolev-Poincaré’s inequality with a constant p. If
—y := 2(Mp + o) > 0 then the result is immediate. Otherwise, let
us denote n(T) := [, (u(x,T) —w(x,T))* dz. Then the above estimate
reads as

y / n(t) dt > n(T).

We can repeat the argument for a.e. t € (0,7") instead of 7', and have
7y fo s)ds > n(t). But this is as in well-known Gronwall’s inequality
(proof is ex.) which now says n(t) = 0 a.e. completing the proof. [
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4.5. C“ regularity using Moser’s method. For simplicity we con-
centrate on % = Au+f, f € L=(Qr) but method immediately extends
to more general linear PDEs.

Definition 4.12 (supersolution). A function u € L3 (0, T; W.?(Q2))
1s a weak supersolution to % =Au+f, if

—/ ua—(’pdxdt—f— Du-Dypdxdt > fodxdt
op Ot Qr Qr

for every ¢ € C3°(2r), ¢ > 0.

Definition 4.13 (subsolution). A function u € L3 (0,T;W-(Q)) is
a weak subsolution to aa—;‘ =Au—+f, if

—/ ua—spda:dt—l— Du - Dydxdt < fodxdt
Qr at Qr Qr

for every ¢ € Cg°(Q2r), ¢ > 0.

Formally we can write for example for subsolution % —Au < f.
Rough plan:

We will describe details, notation etc. later, but look at rough ideas
to begin with.

We look at parabolic Harnack’s inequality. The elliptic Harnack’s
inequality for positive harmonic function in 2 reads as

esssupu < C'essinf u
B B

where 2B C Q (local estimate). In contrast with this, in parabolic
Harnack’s inequality the sets on RHS/LHS are not the same. Instead,
they take into account the flow of information from the past to the
future. Indeed, parabolic Harnack’s inequality for a positive solution
to the heat equation can be stated as
esssupu < C'essinfu
Q- +

where Q™ lies in the past compared to Q*, where the cylinder lie well
within the domain (again a local estimate) . There are counterexamples
(ex) showing that this so called waiting time is indispensable.

(1) (Easier part ) We intend to show that a positive subsolution is
bounded from above with explicit estimate

esssup u < C’/ wdx dt

Q Q

where Q, Q are parabolic cylinders .
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(2) (Harder part ) We partly show a lower bound for a positive
weak supersolution in a form

/ uwdx dt < Cessinf u.
_ Q+
In this estimate, direction of time plays a crucial role.

Lemma 4.14 (Energy estimate). Let u > 0 be a weak subsolution to
9u — Au<0in Qr and v > 1. Then there exists C = C(v) such that

/ | Du|*u"~'n? dz dt + esssup / un? dx dt
o Q

te(0,T)

0
< C’/ u™| Dy dz dt + C/ u' iy PN da dt
Qr Q ot

T

for every n € C°(Q2r), n > 0.
Proof. Use (formal, details are ex.) test function ¢ = n°x{,u” (now

is a power) in

—/ uaﬁdxds+ Du - Dpdxds < 0.
op Ot Qr

First term can be estimated by integration by parts as

o 2. h v
/ ua—(pdxds:/ uwdxds
QOr ot Qr ot

O’ X6 _,du
— /QT u(T’u”’ + 7 xo " 15) dx ds

1 In*xo
— / " Xog W dx ds.

For the second term

Du - Dydxds
Qr

= Du - D(n*xh u?) dx ds
Qr '

= / Xty | Dul*w ™ + Du - xB, Dn?u” dz ds
Qr

- / VX | Dul "™+ uOY 2 D X (D yuO Y d ds.
Qr

Then use Young’s inequality to estimate the second term.
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Finally combine the estimates and absorb the gradient term into the
left, choose t suitably so that one of the terms is close to esssup-term
(detailed calculation was presented during the lecture). U

Choosing v = 2¢* — 1, k = 0,1,2,..., ¢ > 1 gives the following
corollary. Also observe that as 7 increases, the constants in the previous
lemma remain bounded. Thus we can choose the constant independent
of k below.

Corollary 4.15. Let u > 0 be a subsolution in Qp and ¢ > 1. Then
there exists C'= C(q) such that

)

Dud"

2

n* dx dt + ess sup/ u2qk172 dx dt
te(0,T) JQ

n

5 dx dt

<C | «'Dpfdzdt+C | u* 'r]‘
QT QT

for every n € C§°(Qr), n > 0.

Lemma 4.16 (Parabolic Sobolev’s inequality). Letu € L*(0,T; W, *(Q))
and ¢ =1+ 2/n. Then there exists C = C(n) such that

/ |u|2qudt<C’ esssup/|u| dx n/ |Du? dx dt
Qr te(0,T

Proof. By Hélder’s inequality for a.e. t € (0,T)

/|u|2qd$§/|u|1q+2€l+(q1) dr
Q
/n
/| |(1+qn/n 1) dl’ /|u|q 1n dl’
(n—1)/n 1/n
/\u|(1+q n/(n=1) dx) (/ |u] d:z:)
Q

Then using Sobolev’s 1nequahty with 1* =n/(n — 1) and 1, we have

/‘ |(1+q)n/n 1) dl’) <C/ ‘D ’u| 1+q ‘

:C/|u|q|Du|dx

Holder 9
/\u! qdw /]Du\ dx

Then we combine the estimates, integrate over (0,7") and estimate by
esssup to obtain the result. O
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For notational convenience we consider the domain around the origin.
This can be done without loss of generality.

Qr = B(0,R) x (—R*, R?),
We assume that 2 <n and R < 1.

Lemma 4.17. Let u > 0 be a subsolution to g—? —Au < fin Qar .
Then there are C = C(n) such that

1/2
esssupugC(][ uzdxdt> + Clfl e (p) -
QRry2 R

Proof. The proof consists of several steps:
Step 1 (simplification): Set w = u + (tmax — 8) | f|[ (g, Where
tmax 1S a suitable constant so that ¢, —t > 0, and observe that

—/ wa—(’pdxdt—i- Dw - Dpdxdt
Qr 0 Qr
dyp
=— u—— dx dt + Du-Dgpdxdt—/ 700000 @ dz dt
/QR ot Qr Qr F@n)

g/ (f =1l oo (gpy)p dxdt < 0.

Qr

Thus we may concentrate on the homogenous equation 22 — Aw < 0.

E)
If the results holds for w '

1/2
esssupw < C’<][ w? dxdt)
QRr/2 R

this then implies

1/2
esssupu§0<][ uzdazdt) —i—C’HfHLoo(QR).
QRr/2 R

Step 2 (reverse Holder): By step 1, let u > 0 be a subsolution to
% — Au < 0. Let p,o be such that

R
§§P<U§R

and choose a cut-off function n € C§°(Q,), 0 <7 <1 such that n =1
in @, and

C
og—p

877%
D — <
i+ |51 <
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By Corollary 4.15 (the same proofs give the estimates in @), instead of
Qr) choosing k = 0, we have

|Dul*n? dz dt + esssup / u?n? dx dt
B(0,0)

Qo te(—o2,02)
SC’/ u2|Dn|2dmdt+C/ UQU@‘
. 0, ot
< LQ / u? de dt.
(p=0) Jg,

By using parabolic Sobolev’s inequality in Lemma 4.16 and then the
previous estimate, we deduce

( / u? dx dt) o

P

2/(nq) 1/
< CY9esssup (/ (nu)? dx) ! (/ |D(nu)|? dz dt> !
¢ B -

(2/n+1)/q
SCl/q(esssup/ n*u? dx+/ |D(7]u)|2dxdt> 1
oB Qo

t

dz dt

SCl/q(esssup/ n2u2dx+/ |Dn|2u2+n2|Du|2dmdt>
oB Qo’

t

14
< o / u® dx dt.
o—p ;
Similarly

( / W da dt)l/q2

P

parab Sobo 2/(ng?) 1/q
< OV esssup ( / (nu)? dx) ( / |D(nu?)|? da dt)
B(0,0)

t

o

(2/n+1)/¢’
<oV <ess sup/ n*u®? dx + / |D(nu?)|* dx dt> L4
B(0,0)

t

1/¢? 2, 2q 2, 2q 2 q|2 Ya
<C ess sup n“u“! dr + | Dn|"u™ + n*| Du?|” dz dt
B(Ova) Qa

t

Cor 4.15, k=1 C/q 1/q
< <—2 / u?? dx dt) .
(0 —p) Qo

2
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This argument in general yields

1 2gk+1 1/(2qk+1)
<Rn+2/cgpu dxdt)

1/q 1/(2¢%)
< (C—/ w2 dx dt) o
R (p—0)* Jq,

Step 3 (Moser’s iteration): Replace in (4.49) p by pr+1 and o by
pr where

R
pk:§(1+2*’f), k=0,1,...

so that py — pr+1 = E27%(1 — 1/2) = R27%72. Thus

1 1/(2¢" 1) C1/a92(k+2) 1/(24%)
<Rn+2 / U,2qk+1 dx dt) S <W / u2qk dx dt) .
Q Q

Pk+1 Pk

We iterate this

1 1/(2¢%1)
e
Q

Pk+1
k
< Cl/(2qk+1)2(k+2)/qk( ]. u2qk dm dt 1/(2(] )
- Rn+2
ka
k—1
< Cl/(qu+1>2<k+2>/qkCl/(2qk>2<(k—1>+2>/qk*1( 1 / 24 g dt)” (G
Rn+2
Qpp_1
k-1
< 01/<2qk+1>2<k+2>/qk01/<2q’“>2<<k—1>+2>/q’f*1( 1 / 24 g dt)” (G
Rn+2
Qpp_q
Lo 1/2
< C727 <][ quxdt> ,
Qg
where
=1 = 2(i + 2)
r - * .
V=D VLTS
i=1 1=0
Then let k& — oo and observe that the LHS in the above estimate
converges (see Measure and integration 1) to esssupg . 1o U U

Lemma 4.18 (Iteration lemma). Let G(s) be a bounded and nonneg-
ative function for s € [R/2, R]

Co

G(p) < 0G(o) + =9
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where 0 < 1 and R/2 < p < o < R. Then there is C = C(«,0) such
that

, C
G(p) < C<—<0/ _"p,)a),
where R/2 < p/ <o’ < R.

Proof. Ex. O

Corollary 4.19. Let u > 0 be a subsolution to 88—7; — Au < f in Qap.
Then there is C' = C(n, s) such that

1/s
esssupu§0<][ usdxdt> +C||f||Lm(QR).
QRr/2 Qr

for s > 0.

Proof. First, we may again without loss of generality restrict ourselves
to the homogenous case.

If s > 2, then the result follows directly from the previous lemma and
Holder’s inequality. Let then 0 < s < 2. Using the result of previous
lemma with o, p instead of R/2, R, and p; = p+27"(c — p) as well as
inspecting carefully the proof, we get

k41
<i / w2 gy dt) A
on Q

P41
C 1/(20")
< (—2 / u?" dx dt)
a(a = p)* Jg

Pk

vt o 1/(24%)
< ? ( / w2 dx dt> )
o—p) N\,

Iterating this, observing that > ° 1/¢" =1/(1-1/¢q) = 1/((¢—1)/q) =
q/(¢—1) = (1 +2/n)/(2/n) = (n+ 2)/2, and then using Young’s
inequality to the resulting inequality we have

- o \Z=ol/d 1/2
esssupu < C727 ( ) ( — / u? dx dt)
Qp g—p g Qo

(n+2)/2 1 1/2
C 7 ( / u? dx dt>
g=r a2 Jo,

<(J< ! / ( )25t d dt>1/2
<(C|l—— esssupu)” *u’ dx
(c=p)" Jo,  Qu

Tl +o( ! / *d dt)l/s
= 20T o= fp, )

IA
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since (2—s)/2+s/2 = 1. Then use iteration Lemma 4.18 with p’ = R/2
and 0’ = R , we get

C 1/s
esssupu < ( / u® dx dt) : O
QRry2 (R - R/Q)(n+2)/s Qr

Next we consider the second part.

Lemma 4.20. Let u > 6 > 0 be a weak supersolution to g—qz — Au > 0.
Then w = u~" is a weak subsolution.

Proof. First observe that u™! < 67! and |Du™!| = [u™2Du| < 62| Dul
so that ™! is in the right parabolic Sobolev space. We choose (for-
mally) a test function ¢ = nu=? withn € C§°(Qr), n > 0, and calculate

0 S/ —ua—@+Du~Dg0dxdt
Qr ot

-2
= / —UM + Du - D(nu™?) dx dt
Or ot

= / —u(@u’2 - 2nu’38—u) + Du - (u™2Dn — 2nu~>Du) dx dt
Or ot ot

on u~" 1 —3 2
= —— -2 - D -Dn—2 Du|” dx dt
/QT 5 U 5 u n — 2nu~°|Du|” dx

< / @u’1 — Du™'- Dndxdt
o Ot

where at the last step we integrated by parts and dropped the negative
term. Thus

0
0> / A + Du™' - Dndxdt. U
op Ot

Lemma 4.21. Let u > 6 > 0 be a weak supersolution to ‘?9—7; — Au > 0.
Then there is C = C(n, s) such that

—1/s
( ][ u ®dx dt) < (Cessinf u.
Qr QRr/2

for any s > 0.

Proof. By the previous lemma, u™! is a subsolution. Then by Corollary
4.19, we have

1/s
esssupu” ! < C<][ (u)"*dx dt)

QRry2 R
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so that
—1/s
<][ u °*dx dt) < essinf u.
Qg QRr/2
O
We denote
Q = B(0, R) x (—3R? 3R?),

Q" = B(0,R) x (R? 3R?),

Q™ = B(0,R) x (—3R? —R?), (4.50)

Q" = B(0,R/2) x (2R? — (R/2)% 2R* + (R/2)%),

Q™ = B(0,R/2) x (—2R* — (R/2)*, —2R* + (R/2)?).

The proof of the following deep theorem can be found in Fabes and
Garofalo: Parabolic B.M.O and Harnack’s inequality.

Theorem 4.22. Let u > § > 0 be weak supersolution to % —Au>0
in Qar. Then there is s > 0 and C = C(n) such that

(][~ u’ dx dt) e < C(]{2 u *dx dt>_1/5.

Combining the previous two results i.e. Lemma 4.21 and Theorem
4.22, we immediately obtain weak Harnack’s inequality. One could
show (not done here) that this holds for 0 < s < (n +2)/2 with
C = C(n,s) and in particular with s = 1.

Theorem 4.23. Let u > 6 > 0 be a weak supersolution to % —Au>0
in Qar. Then there is s > 0 and C' = C(n) such that

1/s
<][~ u’ dx dt) < C’escsginfu.

Corollary 4.24. Letu > 6 > 0 be a weak supersolution to %—Au > f
in Qar. Then there is s > 0 and C = C(n) such that

1/s .
<][u d;cdt) < CesginfquCHfHLoo(Q)-

Proof. Observe that u+ (t—tmm) || f| |Loo(Q) > ¢, where t,,;, is a constant

such that t — t,,;, > 0, is a weak supersolution to % — Au > 0 and
thus by the previous theorem

( ][~_<u + (¢ = tamin) |1 f]] 1 (g))° d dt)l/s

< Cesginf(u + (= toin) [[fl = (5))-
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This implies the result. U

Then by weak Harnack’s inequality (Corollary 4.24 ) and local bound-
edness estimate (Corollary 4.19), we get for a weak solution of % —

Au = f that

1/s
esssupuSC(][~ usdxdt) +C||f||Loo(Q)
o _

. 2 ~
< Cesg}rnsz—C' 1l o) -

This finally gives us parabolic Harnack’s inequality.

Theorem 4.25 (Harnack). Let u > 0 > 0 be a weak solution to 2% —
Au=f in Q. Then there is C = C(n) such that

esssupu < Cessinfu + C oA -
Q_p ot 1f11; @)
Remark 4.26. The assumption u > § > 0 is only technical: if u > 0,
we may consider u+ 6 and since the constant in Harnack’s inequality
is independent of 6, we may let 6 — 0.

Example 4.27. "Elliptic” Harnack’s ie., where we have same cylinder
on both sides, does not hold in the parabolic case: the equation G —
Uzr = 0 has a nonnegative solution in (—R, R) x (—R?, R?) (translated
fundamental solution)

1 __(z+6)?
u(r,t) = ——==e 4t+28%
(#,1) Vit+2R?
where € is a constant. Let x € (—R/2,R/2), x # 0 and t € (—R?, R?).
Then

_ 2 (ate)? _ —2%_2a¢ 22 42xe
u(O,t) — ¢ 4(t+2R%) — o 4(t+2R?) — p4(t+2R2) _ ()

as £signr — —00.
4.6. Holder continuity. By iterating (weak) Harnack’s inequality we
may prove the local Holder continuity of weak solutions.

Theorem 4.28. Let u be a positive weak solution to % — Au = 0.

Then there exists v € (0,1) and a representative such that
[u(a, 1) = u(y,s)| < Cllz =yl + |t = s’

locally.
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Proof. We take the weak Harnack for s = 1 for 'granted and using that
for a weak (super)solutions u — ess infs u and esssups u — u, we have

][ udr —essinfu < C ( esg2 Jirnf u — essinf u)

Q Q Q

esssupu—][ udr < C(esssupu—esssupu).
Q Q Q Q+

Summing up yields
oscyu < C’(och U — 0SCQ+ u),

where we denoted

08Cy u := esssup u — ess inf u.
9 Q

Rearranging the terms, we have
08Co+ U < (1 — é) 08C U.
Thus by setting § :=1—1/C € (0,1) we obtain
osco+ < foscy u. (4.51)
The proof of (weak) Harnack would also work in the geometry
Q := B(0,R) x (—R? R?)
Q' = B(0,R/2) x (R*/2 — (R/2)*, R*/2 + (R/2)?).

Using this and denoting, with a slight abuse of notation,

Qu = B0, R/2") x (b = (R/2")2 ty + (R/2")?)

for a suitable ¢, we obtain oscg, u < f oscg, u. Repeating the argument,
we deduce

oscg, u < 0% oscg, u.

Then fix p < R and k such that 28 < R/p < 281 k =0,1,2,... so
that 27*R > p > 2=¢+D R and

k <log(R/p)/log(2) < k+1

log(R/(2p))/log(2) < k

1Or use (strong) Harnack to have JCQ— udzr < Cessinfg+ u. Then applying this

to u —essinfy u and esssupy u — u gives the same oscillation estimate.
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Thus

osco, u < gloe(R/(2p))/ log(2) 0SCQp U
— plos(£/(2p))log(8)/(10g(6) 10g(2)) g Qo U

p 1 log(0)/1og(2)
()

—log(6)/10g(2)
(P >
=C <R> 0SCQ, U

Since p can be chosen arbitrarily small and u is locally bounded, this
implies Holder-continuity. U

4.7. Remarks. Also a similar regularity theory that we established
for the elliptic equations can be developed for g—;‘ + Lu = f if the

coefficients are smooth enough.
Intuition: We consider formally the heat equation

9 — Au=f inR"x(0,7]
u=g on R" x {0}

and u decays fast enough at infinity. Then integration by parts gives

ou
2dr = — — Au)dx
Rnf x /( u)®

(%
/ — —2—Au+Au dx
8u 0Du
= — 2——.D A
Ot + 5 u+ Au? dx

Then we calculate

t 2
/ / @ Dudzrds = / / 0| Dyl dz ds
n 0 n at

e [ Dutepfde - [ Dyl
R™ R7
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Moreover, similarly as with the elliptic equations

"L 0%u = 0%u
i= J

ij=1 i U
Pu 0
int by parts Z d°u U "
= e 0220z 70x; (995]
int by parts Z 0%u du

= e 890 890] O0z;0x;

= / ‘Dzu‘de.
Rn

Choosing ¢ so that [g, |Dul*(z,t)dz > Lsup,cqr [ |Du(z,t) do

and combining the estimates, we end up with
+ ‘D2u‘2 dx dt + sup / |Du(z,t)|” dx

T ou?
/0 /n E te(0,T)
T
§C’/ / \f]2dxdt+0/ |Dg|” dz.
0 n Rn

Continuing in this way (cf. elliptic), we would obtain higher regularity
estimates as well. The solution has two more space derivatives than
f etc. To make above conclusions rigorous, we could again utilize
difference quotients both in space and time.

5. SCHAUDER ESTIMATES

We finish the course by briefly returning to the elliptic theory, and
sketching the Schauder theory because this is needed to finish the story
with Hilbert’s 19th problem.

Recall Holder continuity

Definition 5.1. Let u : Q@ — R. For o € (0,1), we denote the semi-
norm

|f(z) = f(y)]
|U|Ca(Q) = sup /G
syeQazy [T =Yl

)
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and a set of all functions satisfying |u|ga gy < 0o by C(Q). This space
can be equipped with the norm
[f(x) = ()
Mooy =l llgeo@ + sup  ——7—.
A llca@) = 11l D

Stmilarly

C(Q) = {u : DPuc C*(Q) for |8] < k},
where (3 is a multi-index.

The main result of this section is

Theorem 5.2. Let u be a weak solution to —Au = f in B(0,2R)

with f € C*(B(0,2R)). Then u € C**(B(0,R/4)) with an explicit
estimate.
Remark 5.3. o Theorem 5.2 actually comes with estimate, see

Theorem 5.185.
e The result can be extended to Lu = f with

||aij||ca(3(o,23)) ) ||bi||C&(B(0,2R) ) ||C||CQ(B(0,2R) < M’

uniform ellipticity, and a;; = aj;; by the freezing of coefficients
technique.
e In reqular domains, there is also a corresponding global result.

First, we look at the important step i.e. how to pass from integral
estimates (natural from the point of view what we have done so far) to
the pointwise Holder norms. For this, we use a theory of Campanato
spaces. Denote

1

Upp = 75— 7 u(y) dy.
g ’Q N B($7 p)' QNB(z,p)
where () is a regular domain, for example 2 = B(0, R).

Definition 5.4 (Campanato space). Let u >0 and u € L*(Q). Then
the functions satisfying

1 o \12
|ul g2 () = sup (7 |u(y) — vl dy) <00
z€Q,0<p<diam(Q) ‘P JONB(z,p)
belong to the Campanato space L>#(Q). We use the norm
[l g2 0y = Ul g2y + |l 20 -

Lemma 5.5 (Mean value lemma). Let u € L**(Q), v € Q and 0 <
p < R < diam(Q2). Then

|ux7R - uw,p| < CP_H/QRM/2|“|£27“(Q)'
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Proof. Let y € B(x,p) N Q and write

’ux,R - Ux,p|2 S C(’ux,R - u(y)|2 + |U(y) - ux,p 2a

integrate over B(x,p) N2 C B(z, R) N to have
’um,R - ux,p|2 = ][ |ux,R - um,p|2 dy
B(z,p)NQ2
<Cffn = u) + fuly) gl dy
B(z,p)NQ2
<Cffn = ul) o+ fuly) -~ wl dy
B(z,p)N2

RE  pt
<O+ o)l
R
< 20F|u|i2qu(9)' O]

In the proof of the key result, we need integral characterization of
Holder continuous functions i.e. Campanato estimate.

Lemma 5.6 (Integral characterization of Holder continuous functions).
Letn < p <n+2. Then L2*(Q2) = C*(Q) and

C_1|U|C'O‘(Q) < |U|L27M(Q) < 02|u|CQ(Q)
with a = (u—mn)/2 and C = C(n, u).

Interpretation: C%(Q) C £L2#(Q) and each u € L*#(Q) has a presen-

tative @ in C*(Q).

Proof. The second inequality: Let v € C*(Q), v € Q and 0 < p <
diam(Q2) and y € QN B(z, p). We have

][ u(y) —u(z)dz
B(z,p)NQ
<) - ul)d:
B(z,p)NQ
< ’U\Ca(Q)][ ly —2|*dz
B(z,p)NQ

Clu| e
< | |i () / |y N Z‘a dz — *
p B(z,p)NQ2

|U(y) - u:c,pl =
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since |2 N B(z, p)|C > p™ . Moreover, since y — x € B(0, p) it follows
that B(y —x, p)NQ C B(0,2p) N and by the change of variables that

C «
< Mi (ﬂ)/ 27 d
P B(0,2p)NQ

Clulga
< |ulc (Q)/ 2 d
P* JBo2) (5.52)

< Clule (Q)/ n—lta g,
p" 0
< Clu|ge(a)p™.

Hence
1

7 LW Up.pl* dy < ClulEaiyp®™ | Bz, p) N Q|
x,p)N
200 — p+n
2 X
< Clulgegyp 0

and thus the second inequality follows.

The proof of the first inequality is in three steps: construction of the
representative @, showing that @ = u a.e., and showing that @ € C*(Q)
Stepl(construction of the representative @): Let x € Q,0 < R <
diam(Q) and R; = 27'R, i =0,1,.... Then by Lemma 5.5

—n/2 pp/2
’uzij - Uz,Rj+1| <C Jrl/ Rg/ |u|£“(9)

— (9i(n—p)/24+n/2 p(p—n)/2 |u|£2 w@y-

Thus for 0 < j <1

}ux,R‘j — Uz,Rj4q + Uz, Rjyq — - + Uz, R; 1 — Uz,R;
i—1

< CRW—m)/2 ‘u’m”(ﬂ) Z ok(n—p)/24n/2
k=j

— ORIy 1y )220 ”21 k(n—p)/2+n/2
k=0
1 — 9i—i)(n—p)/24n/2
1 — on—w)/2+n/2

= ORIy 1y, g 27010/ 24012

-n)/2
= CRY ™|l o ).
where C' = C(n, u). We have derived the estimate
-n)/2
< CRE‘” / ’u|L21N(Q)7 (5.53)

‘/U’IE,RJ' - uCE,Ri



124 PDE 2

It follows that ug R, ¢ = 0,1,2,... is a Cauchy sequence. Hence we
may define

i(z) = lim ug g, x €S
1—00
It also holds that the limit does not depend on the particular choice
of R. To see this, take 0 < r < R and let r; =27%, i =0,1,.... Then

again by Lemma 5.5

—n/2 2
<cr " RY |ul g2 (0

Ri n/2 —n)/2
=¢ <_) LA e

T

|ux,Ri - u:):,ri

R n/2 .
=¢ <7> Bl gy = 0

as i — oo, since > n. Thus ugr(x) = 4.(z). Moreover, by (5.53)
setting 7 = 0 and letting ¢+ — oo

|uz.r — a(x)] < C’R(“*”)/ﬂu‘gz,u(g) (5.54)
so that 4(x) = limp_,o Uy g.
Step2 (4 = u a.e): By Lebesgue’s theorem

a(xr) = ll:iig%) Us.R Leb u(z) a.e. in Q.

Step3 (i € C%(Q)):
Let z,y € Q, x # y and set R := |z — y|. By (5.54)
|i(x) — a(y)| < [W(z) — ver| + [t r — wy r| + [uyr — U(y)|
< CR(M?n)/2|u’£2’H(Q) + [ua,r — Uy,R-

Set G = QN B(x,2R)N B(y,2R). Observe that G C QN B(z,2R) and
G C QN B(y,2R)), and C|G| > R™ because () is smooth. Estimate
the second term on the RHS as

|u:t:7R - uy,R|

= ][ |Uus. r — Uy r|dz
G

QN B(x,2R)| 2 1/2
S | N (ZL', R)| (/ |ux,R . U(Z)F dZ)
|G| QNB(z,2R)

QN B(y,2R)|? 1/2
=+ ‘ (y7 )’ (/ ‘U(Z) . uy,R|2 dZ)
’G‘ QNB(y,2R)

< CR(“_H)/2|U‘E2»M(Q)’
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Combining the estimates, we have
() = aly)| < CRY™Plul a0
so that @ € C*(Q2) with o = (u —n)/2, and
’u|CQ(Q) < C|u|L21N(Q)‘ O

Calculation (5.52) gives us a useful estimate, that we state separately
as a lemma

Lemma 5.7. Let u € C*(2), x € Q. Then
[ o) el dy < Clufea gy
B(z,p)NQ

Without loss of generality, as long as we have the uniqueness, we may
derive the Schauder estimates assuming smoothness, by using smooth
approximations, and passing to the limit at the end.

Lemma 5.8. Let u be a weak solution Au = 0 in B(0,2R). Then for

any 0 < p < R, it holds
>n/ u? dx
B(0,R)

/ w?dr < C (
B(0,p)
n+2
/ (u—u,)?dr < C’( ) / (u — ug)? dz,
B(0,p) B(0,R)

with C = C(n).

Do W

Proof. The first estimate: By the elliptic counterpart of the (ess)sup-
estimate (cf. Lemma 4.17, and ex 13 in set 3 ), we have for 0 < p < R/2

/ u?dr < Cp" sup u? < C <£> / u?dr.
B(0.,) B(0.) R’/ Jpo,R)

For R/2 < p < R the result immediately follows

/ u2dx§C'< 4 )n/ u? de.
B(0,p) \_R_/ B(0,R)

>C

The second estimate: The second follows from the first one by observing
that w = D;u is also a solution to the Laplace equation, and thus by
the first estimate

/ (Dyu)?dz < C (ﬁ)" / (Dsu)? d (5.55)
B(0,p) R/ Jpo,r)
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Summing over i, assuming 0 < p < R/2, and using Poincaré’s inequal-

1ty
9 Poinc. 9 9
/ (u—wu,)*de < Cp / | Du|” dx
B(0,p) B(0,p)

S(hﬁ(£>é/ |Dul* dx
R/ JB(o,r/2)

By Caccioppoli’s inequality (ex)

|Dul? dz < < (u —ug)*dx.
B(0,R/2) R?

B(0,R)

Combining the previous two estimates, we have

n+2
uw—u,)dr <C L / u—ug)?dr.
/ L ) (&), e

The case R/2 < p < R is again easier:

/ (u —u,)*dz
B(0,p)
§/ (u — up +ug — u,)* dx

B(0,p)
SC’/ (u—uR)2dx+C'/ ][ (up — u)? dx dv

B(0,p) B(0,p) J B(0,p) (5.56)

C/ (u —ug)*dx

B(0,R)

p n+2 / 9
<Cl = u— upr)”dx.

IN

L]
Lemma 5.9. Let u be a solution to Au = f in B(0,2R), and let
w = Dju, f € C*(B(0,2R)). Then for0 < p <R
1 / 9
— |Dw — (Dw),|” dzx
pn-‘rQa B(0,p) p

C 2
< Rnioa /B |Dw — (Dw)g|" dz + C|f‘%’a(B(O,R))'
(O,R)

Proof. Decompose w = w; + wy, where

—Aw; =0 in B(0,R)
w; = w on 0B(0, R)
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and

wy =0 on 0B(0, R)

in the weak sense. Then use Lemma 5.8 for D;w; (this is also a solution
to Laplace eq) to have

9 p n+2 9
B(0,p) R B(0,R)

Summing over ¢

9 P n+2 9
/ (Duwy = (Dwy),)*dz < C () / (Dw; — (Dwi)g)* de
B(0,p) R B(0,R)

and further (change of radius as before in (5.56))

/ (Dw — (Dw),)* dx
B(0,p)

<C / o Dw (D)t /B o (Duy— (D)o

0,p)

n+2
<c(2) /’ LMu—(DwnRde+c{/ (Dws — (Dwa) p)? da
B(0,R)
p n+2 9 2
<o () / (Dw — (Dw)p)? dz + C (Dwy — (Dwy)g)* d
R B(0,R)
n+2
<C <£) / (Dw — (Dw)g)*dz + C | Dw,|? dz,
B(0,R) B(0,R)

where we wrote Dw; = D(w; + wy) — Dws etc.

By using ¢ = ws as a test function in [ Dwy- Do dr = — [ fDpdx
we get (recall zero bdr values)

/ wwﬁmz—/ (f = fr)Dws da
B(0,R) B(0,R)
1

1
§—/ (f—fR)de—I——/ | Dw,|? da.
2 B(0,R) 2 B(0,R)
Thus

/ | Dws|? dx < C/ (f — fr)?dzx
B(0,R) B(0,R)

n+2o 2
< CR™*|flce(s0.m)

where we also used estimate similar to Lemma 5.7.



128 PDE 2

Combining the estimates

/ (Dw — (Dw),)? da
B(0,p)

<C(8)" [ (Dw— (Dwprfde+ CR\1 b
R B(0,R) 7

Then by Lemma 5.10

/ (Dw — (Dw),)? dx
B(0,p)

<o (L) (Dw — (Dw)g)? dx + R f|? 0
< I . R C*(B(0,R)) )
In the previous proof, we used the following iteration lemma for

G(r) = / (Dw — (Dw),)* dz
B(0,r)
where r € [0, R].
Lemma 5.10 (another iteration lemma). If
G(p) < A (}%)WG(R) +BRP, 0<p<R<R,
where 0 < 8 < vy, then there is C'= C(A,~, ) such that

P\’ 8

G(p) gc(ﬁ) (G(R) + BR®), 0<p<R<R,

Proof. Ex. 0
We also need a Caccioppoli type estimate.

Lemma 5.11. Let u be a solution to —Au = f in B(0,2R), f €
C*(B(0,2R)). Then there is C = C(n) such that

/ |D2u}2dx
B(0,R/2)
1
g(}(—/ e+ B 1oy + B ooy )
7 o Lo2(©) Ca(B(0,R))

Proof. Since u € W2?(B(0,2R)) by our earlier regulatity results, we

loc

may test with ¢ = D,;¢ with a smooth function ¢. Integrating by parts
/fDiqbda: = /Du -DD;¢dx

int by parts / DD;u - D¢ du.
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Thus in the weak sense w = D;u
—Aw = D;f = Di(f — fr).
Testing this with ¢ = n?w, where n € C5°(B(0,R)), 0<n <1, n=1
in B(0, R/2) and |Dn|* < C'//R?, we have (ex)

/ ]Dw]27)2 dr < C’/ wQ\Dm2 dx + C/ 772\]” — fR\zdx
B(0,R) B(0,R) B(0,R)
C

< — w? dx + CR"+2a|f|Ca(B(o,R))7
B(O,R)

where at the last step we also used Lemma 5.7. Further testing the weak
formulation of —Au = f by ¢ = n?u where n € C§°(B(0,3R/2)), 0 <
n <1, n=1in B(0,R) and |Dn|* < C/R?, we have

/ w? dr < / | Du|*n? da
B(O,R) B(0,3R/2)

SC’/ u2|Dn|2dI—|—C’R2/ n?| f|? da
B(0,3R/2) B(0,3R/2)

C n 2
< — / u*dx + CR"™ HfHLoo(B(O,3R/2)) ’
B(0,3R/2)

where we estimated for example fB(o 3R/2) En*uf dv < CR? fB(O 3R/2) n?| f|? da+

=/ B(0.3R/2) n?*u? dz. Combining the previous two estimates we have

/ ’D%’Q dx
B(0,R/2)
¢ / 2 9
< — u“dr + CR"||f||7~ +CR"+2a\f| o .
4 B03R/2) L>(B(0,3R/2)) C*(B(0,R))

O

Lemma 5.12. Let u be a solution to —Au = f in B(0,2R), and let
w = D, f € C*B(0,2R)). Then for 0 < p < R/2 there is C = C(n)
st

/ |Dw — (Dw),|* dz < p" > MzC
B(0,p)

where

]- 2 ]- 2 2
Mp = Ritia |[ul| oo (B0, R)) T 2o 1o (B0.)) T | floa(B0.80)):
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Proof. By Lemma 5.9
/ |Dw — (Dw),|* dx
B(0,p)

7 (6% 2
< Cpt? ( | Dw — (Dw)g|" dz + |f|2ca(B(0,R/2))>

Rn+2a /B(O,R/Z)

1
<C"+2°‘<—/ Duwl? da + |f|2a )
=~ 0p Rnt2a 0.5/ | | | fle (B(0,R))

Then by the Caccioppoli type estimate Lemma 5.11 we have

/ \Dw — (D), dz
B(0,p)

1
< Cf n+2a (_ / D 2 d 4 2 N )
= 0P R [0 mo) |Dw|” dz + | f|c (B(0,R))

1 1
<C n+2o (_/ 2d
> 0p <Rn+2a R4 B(O,R)u z

n 2
+ R HfHLoo(B(o,R))) + ‘f|2Ca(B(0,R))>‘

U

Theorem 5.13. Let u be a solution to —Au = f in B(0,2R) with
f e C*B(0,2R)). Then

2

‘D u‘Ca(B(O,R/4))

1 1
< C(W ull oo B0,y + R f 1 o B0,y + | flcaB0.8))-

Proof. What we have in Lemma 5.12 looks very much like the Cam-
panato seminorm. Indeed, this is exactly the idea of the proof. To
be more precise, by Lemma 5.6 it suffices to bound the Campanato
seminorm.

u (5 [ 1) = w,ar)”
U po, = sup — u(y) — uy, x) .
L2(BO.R/4)) 2€Q,0<p<diam(B(0,R/4)) P! Joy,(x) o

To this end, let x € B(0,R/4) and 0 < p < R/2 and observe that
similarly as before in (5.56)

2
/ | D*u(y) — (D*u) papnpo.r/e| do
B(z,p)NB(0,R/4)

< C’/ |D2u(y) — (Dzu)B(m,p)|2 dx.
B(z,p)
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Then by Lemma 5.12,
2
| D)~ (D agepfds
B(z,p)

1 1
n+2a 2 2 2
< Cp™* (W ul|7oe 0,y T R 1z (B0,R)) + |f’Ca(B(0,R))>‘

We combine the estimates, divide on both sides by p"™2® take
SUP,c0,0<p<diam(B(0,R/4)), ald power % to obtain the result. U

The previous theorem immediately implies Theorem 5.2.

By differentiating the Euler-Lagrange equation related to a mini-
mizer, using the Holder-continuity result, then Schauder estimates and
iterating using so called bootstrapping argument, Hilbert’s 19th prob-
lem was settled.

6. NOTES AND COMMENTS

I would like to thank Juha Kinnunen for providing his lecture notes
at my disposal when designing this course. Other material includes
"Elliptic & Parabolic Equations” (Wu, Yin and Wang, 2006, World
Scientific), ”Partial Differential Equations” (Evans, 1998, American
Mathematical Society), ”Elliptic Partial Differetential Equations of
Second Order” (Gilbarg, Trudinger, 1977, Springer), ”Second Order
Elliptic Equations and Elliptic Systems” (Chen, Wu, 1998, American
Mathematical Society), ” Direct Methods in the Calculus of Variations”
(Giusti, 2003, World Scientific), ” Partial Differential Equations” (Jost,
2002, Springer), and ”Partial Differential Equations” (DiBenedetto,
2010, Birkh&user).
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