To recall

- σ algebra
- Borel σ algebra $\mathcal{B}(\mathbb{R})$
- probability space
- properties of \mathbb{P} like continuity from below
- properties of measurable maps (random variables)

you can use the Lecture Notes 'An Introduction to Probability Theory' which is available in KOPPA.

$\left(1\right)$ Gambler's ruin with a fair coin

Prove Proposition 1.1.1 from the lecture notes for the case $p = q = \frac{1}{2}$.

- (2) σ -algebra generated by $f: \Omega \to \mathbb{R}$
 - (a) Let $f: \Omega \to \mathbb{R}$ and define

$$\sigma(f) := \{ A = f^{-1}(B) \subseteq \Omega : B \in \mathcal{B}(\mathbb{R}) \}.$$

Prove that $\sigma(f)$ is a σ -algebra on Ω .

(b) If (Ω, \mathcal{F}) is a measurable space (this means $\Omega \neq \emptyset$ and \mathcal{F} is a σ -algebra on Ω or in other words, a probability space without measure), show that f is a random variable if and only if

$$\sigma(f) \subseteq \mathcal{F}.$$

(3) symmetric difference

Let Ω be a non-empty set and $A, B, C \subseteq \Omega$. For the symmetric difference defined by $A\Delta B := (A \cup B) \setminus (A \cap B)$ show the following relations:

- (a) $A\Delta B = (A \cap B^c) \cup (A^c \cap B)$
- (b) $A^c \Delta B^c = A \Delta B$
- (c) $A\Delta B = A\Delta C \implies B = C.$
- (d) $(B \cup C)\Delta A \subseteq (B \setminus A) \cup (C\Delta A)$.

(4) a monotone class theorem

Let Ω be a non-empty set and 2^{Ω} the set of all subsets (the power set).

A system of subsets $\mathfrak{G} \subseteq 2^{\Omega}$ is called a *monotone class* if $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ with $A_k \in \mathfrak{G}$ implies that $\bigcup_k A_k \in \mathfrak{G}$.

Show that the following holds:

If $\mathcal{G} \subseteq 2^{\Omega}$ a monotone class and an algebra, then it is a σ -algebra.

Hint: In fact, one only has to show that also for arbitrary $(B_k)_{k=1}^{\infty} \subseteq \mathcal{G}$ it follows $\bigcup_{k=1}^{\infty} B_k \in \mathcal{G}$.

(5^*) an algebra is 'quite close' to its generated σ -algebra: Lemma 2.1.7

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and \mathcal{A} an algebra such that $\sigma(\mathcal{A}) = \mathcal{F}$. Check that for

$$\mathcal{G} := \{ B \in \mathcal{F} : \forall \varepsilon > 0 \, \exists A \in \mathcal{A} : \mathbb{P}(A \Delta B) < \varepsilon \}$$

the assertions are true:

(a)
$$\mathcal{A} \subseteq \mathcal{G}$$
.

- (b) \mathcal{G} is a σ -algebra.
 - **Hint:** Use (3) and continuity of \mathbb{P} from below and properties of Δ .
- (c) $\mathcal{G} = \mathcal{F}$.