Exercises -2- 16:15-18:00 MaD 381

(1) an algebra

Let $(\xi_n)_{n=1}^{\infty}$, $\xi_n:\Omega\to\mathbb{R}$, be random variables defined on $(\Omega,\mathcal{F},\mathbb{P})$. Show that

$$\bigcup_{n=1}^{\infty} \sigma(\xi_1, ..., \xi_n)$$

is an algebra on Ω .

(2) the tail sigma-algebra \mathcal{F}^{∞}

Assume a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and independent random variables $\xi_n : \Omega \to \mathbb{R}$, n = 1, 2, 3... and let

$$\mathfrak{F}^{\infty} = \bigcap_{N=1}^{\infty} \sigma(\xi_N, \xi_{N+1}, \dots).$$

Decide which of the following sets belongs to \mathcal{F}^{∞} :

- (a) $A_1 := \{ \omega \in \Omega : \xi_n(\omega) > 1 \text{ for infinitely many } n \}$
- (b) $A_2 := \{ \omega \in \Omega : \exists n \ge 1 : \xi_{n+1}(\omega) > \xi_n(\omega) \}$
- (c) $A_3 := \{ \omega \in \Omega : \exists c > 0 \forall n \ge 1 | \xi_n(\omega) | \le cn \}$
- (d) $A_4 := \{ \omega \in \Omega : \exists c > 0 \forall n \ge 1 | \xi_n(\omega) | \ge cn \}$

(3) a Three-Series-Theorem application

Let $(S_n)_{n=1}^{\infty}$ be a sequence of independent random variables where each S_n is exponentially distributed with parameter $\lambda_n > 0$. Set

$$T_n := \begin{cases} S_n, & S_n \le 1\\ 1, & S_n > 1. \end{cases}$$

- (a) Show that $\mathbb{E}T_n = \frac{1 e^{-\lambda_n}}{\lambda_n}$, $\mathbb{E}(T_n \mathbb{E}T_n)^2 = \frac{1 2\lambda_n e^{-\lambda_n} e^{-2\lambda_n}}{\lambda_n^2}$ and $\mathbb{P}(S_n \ge 1) = e^{-\lambda_n}$.
- (b) Show:

$$\sum_{n=1}^{\infty} S_n < \infty \quad a.s. \iff \sum_{n=1}^{\infty} \lambda_n^{-1} < \infty.$$

(4) **0-1-law application**

Let $\xi_1, \xi_2, \dots : \Omega \to [0,1]$ be a sequence of independent random variables and $c \in [0,1]$.

(a) Use the 0-1-law of Kolomogorov to show that

$$p_c = \mathbb{P}(\limsup_n \xi_n = c) \in \{0, 1\}.$$

(b*) Is it possible to choose $c \in [0,1]$ such that $p_c = 1$?