Exercises -3- 16:15-18:00 MaD 381

- (1) Exercises from Demo 2 (except 2a,2b).
- (2) explosions

Let $(S_n)_{n=1}^{\infty}$ be a sequence of independent random variables where each S_n is exponentially distributed with parameter $\lambda_n > 0$. We define a stochastic process $(X_t)_{t \geq 0}$ as follows:

$$T_0 := 0,$$

 $T_n := S_1 + \dots + S_n, \quad n \in \mathbb{N},$
 $X_0 := 0,$
 $X_t := \sum_{n=1}^{\infty} n \mathbb{1}_{[T_n, T_{n+1})}(t), \quad t > 0.$

We say that the path $t \mapsto X_t(\omega)$ explodes, if $\tau(\omega) := \sum_{n=1}^{\infty} S_n(\omega) < \infty$. Explain (use exercise (3) from Demo 2)

- (a) under which conditions and why the process X either a.s. explodes or a.s. does not explode,
- (b) why a process for which it holds $\lambda_n = \lambda$ for all $n \in \mathbb{N}$ (which is, in fact the Poisson process) does a.s. not explode.