(1) Conditional expectations

(a) Prove Proposition 3.1.8(i).

Hint: Define $h := \lambda \mathbb{E}(f|\mathfrak{G}) + \mu \mathbb{E}(g|\mathfrak{G})$ and check that h is \mathfrak{G} -measurable and that

$$\int_A h d\mathbb{P} = \int_A (\lambda f + \mu g) d\mathbb{P} \quad \text{for} \quad A \in \mathcal{G}.$$

(b) Prove Proposition 3.1.8(viii) by the definition of the conditional expectation.

(2) Stopping times?

Let $M_0 := 0$ and $M_n := \varepsilon_1 + \cdots + \varepsilon_n$, $n \ge 1$, where $\varepsilon_1, \varepsilon_2, \ldots : \Omega \to \{-1, 1\}$ are independent Bernoulli random variables. Let $\mathcal{F}_0 := \{\emptyset, \Omega\}$ and $\mathcal{F}_n := \sigma(\varepsilon_1, \ldots, \varepsilon_n)$. Which of the following maps are stopping times (inf $\emptyset := \infty$)?

- (a) $\sigma(\omega) := \inf \{ n \ge 0 : M_n(\omega) \in (10, 12) \}$
- (b) $\sigma(\omega) := \inf \{ n \ge 0 : M_n(\omega) \in (10, 12) \} 1$
- (c) $\sigma(\omega) := \inf \{ n \ge 0 : M_n(\omega) \in (10, 12) \} + 1$
- (d) $\sigma(\omega) := \inf \{ n \ge 0 : M_{n+1}(\omega) \in (10, 12) \}$
- (e) $\sigma(\omega) := \inf \{ n \ge 0 : M_{n+1}(\omega) \in (10, 11) \}$
- (f) $\sigma(\omega) := \inf \{ n \ge 1 : M_{n-1}(\omega) = 10 \}$
- (g) $\sigma(\omega) := \inf \{ n \ge 1 : M_{n-1}(\omega) = 10 \} 1$

(3) Stopping times and their σ -algebras

Let $(\mathcal{F}_n)_{n=0}^{\infty}$ be a filtration and $\sigma, \tau : \Omega \to \mathbb{N} \cup \{\infty\}$ stopping times.

- (a) Show that $\sigma + \tau$ is a stopping time.
- (b) Show that $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$ if $0 \le \sigma \le \tau$.

(4) Stopped processes

Let (Ω, \mathcal{F}) be a measurable space equipped with a filtration $(\mathcal{F}_n)_{n=0}^{\infty}$. Assume that $(X_n)_{n=0}^{\infty}$ is an adapted process, i.e. $X_n : \Omega \to \mathbb{R}$ is \mathcal{F}_n -measurable for all $n \geq 0$. Assume a stopping time $\tau : \Omega \to \{0, 1, 2, \ldots\}$. Prove that that the map

$$X_{\tau}: \omega \mapsto X_{\tau(\omega)}(\omega)$$

is an \mathcal{F}_{τ} -measurable map from Ω into \mathbb{R} .

(5) Martingales

Let $\varepsilon_1, \varepsilon_2, ... : \Omega \to \{-1, 1\}$ be independent Bernoulli random variables, i.e. $\mathbb{P}(\varepsilon_n = 1) = \mathbb{P}(\varepsilon_n = -1) = \frac{1}{2}$. Define the natural filtration $\mathcal{F}_0 := \{\Omega, \emptyset\}$ and $\mathcal{F}_n := \sigma(\varepsilon_1, ..., \varepsilon_n)$ for $n \geq 1$. Let $M_0 := 1$ and

$$M_n := \frac{e^{\sum_{k=1}^n \varepsilon_k}}{\alpha^n}, \quad n \ge 1,$$

where $\alpha > 0$. For which $\alpha > 0$ the process $(M_n)_{n=0}^{\infty}$ is a martingale?

(*) What happens if one considers the complex valued process

$$M_n := \frac{e^{i\sum_{k=1}^n \varepsilon_k}}{\alpha^n}, \quad n \ge 1?$$