(1) $\mathbf{2}$ or $\mathbf{3}$ Series Theorem?

Let $\left(X_{k}\right)_{k=1}^{\infty}$ be a sequence of independent random variables such that $\mathbb{E} X_{k}=0$ for all $k \geq 1$. Moreover, assume that

$$
\sum_{k=1}^{\infty} \mathbb{E} \psi\left(X_{k}\right)<\infty
$$

where

$$
\psi(x):=x^{2} \mathbb{1}_{\{|x| \leq 1\}}+|x| \mathbb{1}_{\{|x|>1\}} .
$$

Is it true that

$$
\sum_{k=1}^{\infty} X_{k} \quad \text { converges (to a finite number) a.s. ? }
$$

(2) Conditional expectation

We use the probability space $\left([0,4), \mathcal{B}([0,4)), \frac{1}{4} \lambda\right)$. Let $\mathcal{G}=\sigma([0,1),[1,3)) \subseteq \mathcal{B}([0,4))$ be a sub- σ algebra on $[0,4)$. Find out $\mathbb{E}\left[f_{k} \mid \mathcal{G}\right]$, for $k=1,2,3$, where

- $f_{1}(x)=x$,
- $f_{2}(x)=\mathbb{1}_{[1,4)}(x)$,
- $f_{3}(x)=e^{x}$.
(3) Closable martingale?

Let $\left(\varepsilon_{k}\right)_{k=1}^{\infty}$ be i.i.d. with $\mathbb{P}\left(\varepsilon_{k}= \pm 1\right)=1 / 2$. Define $M_{0}:=0$ and $M_{n}:=\varepsilon_{1}+\ldots+\varepsilon_{n}$ for $n \in \mathbb{N}^{*}$. We have shown that the process $N=\left(N_{n}\right)_{n=0}^{\infty}$ given by $N_{0}=1$ and

$$
N_{n}=\left(\frac{2}{e+e^{-1}}\right)^{n} e^{M_{n}}
$$

is a martingale. Does there exist an $Z \in \mathcal{L}_{1}(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}\left|N_{n}-Z\right| \rightarrow 0$ as $n \rightarrow \infty$?
(4) Radon-Nikodym Theorem

Let $\Omega \neq \emptyset$. Assume a filtration $\left(\mathcal{F}_{n}\right)_{n=0}^{\infty}$ on Ω such that

- $\mathcal{F}_{n}=\sigma\left(A_{1}^{(n)}, \ldots, A_{L_{n}}^{(n)}\right)$,
- the $A_{1}^{(n)}, \ldots, A_{L_{n}}^{(n)}$ are pair-wise disjoint and $\bigcup_{l=1}^{L_{n}} A_{l}^{(n)}=\Omega$,
- every $A_{l}^{(n)}$ is a union of elements from $\left\{A_{1}^{(n+1)}, \ldots, A_{L_{n+1}}^{(n+1)}\right\}$,
- $\mathcal{F}=\sigma\left(A_{l}^{(n)}: n=0,1, \ldots\right.$ and $\left.l=1, \ldots, L_{n}\right)$.

Assume probability measures \mathbb{P} and μ on (Ω, \mathcal{F}) such that $\mathbb{P}(A)=0$ implies $\mu(0)=0$ (in other words, μ is absolutely continues with respect to \mathbb{P}. We define the random variables $M_{n}: \Omega \rightarrow \mathbb{R}$ by

$$
M_{n}(\omega):=\left\{\begin{array}{rll}
\frac{\mu\left(A_{l}^{(n)}\right)}{\mathbb{P}\left(A_{l}^{(n)}\right)} & : \mathbb{P}\left(A_{l}^{(n)}\right)>0 \\
1 & : \mathbb{P}\left(A_{l}^{(n)}\right)=0
\end{array}\right.
$$

whenever $\omega \in A_{l}^{(n)}$.
(a) Show that $M=\left(M_{n}\right)_{n=0}^{\infty}$ is a martingale with respect to the filtration $\left(\mathcal{F}_{n}\right)_{n=0}^{\infty}$.
(b) Show that $\mu(A)=\int_{A} M_{n} d \mathbb{P}$ for $A \in \mathcal{F}_{n}$.
(c) Show that $\left(M_{n}\right)_{n=0}^{\infty}$ is uniformly integrable.

Hint: Here you can use the following fact: Assume a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a finite measure μ on (Ω, \mathcal{F}) such that μ is absolutely continuous with respect to \mathbb{P}. Then, given $\varepsilon>0$ there is some $\delta \in(0,1)$ such that $\mathbb{P}(A) \leq \delta$ implies that $\mu(A) \leq \varepsilon$.
$(d *)$ What is the meaning of the limit random variable $M_{\infty}=\lim _{n} M_{n}$ that exists according to Proposition 3.8.6?

