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1 Introduction

Why should one study Markov processes?

e Markov processes are quite general:

A Brownian motion is a Lévy process.

Lévy processes are Feller processes.

Feller processes are Hunt processes, and the class of Markov processes
comprises all of them.

e Solutions to certain SDEs are Markov processes.
e There exist many useful relations between Markov processes and

— martingale problems,
— diffusions,
— second order differential and integral operators,

Dirichlet forms.

2 Definition of a Markov process

Let (2, F,P) be a complete probability space and (F, r) a complete separable
metric space. By (E, ) we denote a measurable space and T C RU {oo} U

{—oo}.

We call X = {X;;t € T} a stochastic process if
Xe: (U F)— (BE), VteT.

The map t — X;(w) we call a path of X.

We say that F = {F;;t € T} is a filtration, if F; C F is a sub-o-algebra for
any t € T, and it holds F, C F; for s < t.
The process X is adapted to F <=4 X, is F; measurable for all ¢ € T.

Obviously, X is always adapted to its natural filtration FX = {FX;t € T}
given by FX = o0(Xy;s <t,s € T).



Definition 2.1 (Markov process). The stochastic process X is a Markov
process w.r.t. ' <=y

(1) X is adapted to F,

(2) forallt € T:P(AN B|X;) =P(A|X,)P(B|X:), a.s.
whenever A € F, and B € 0(X5;5 > ).
(for allt € T the o-algebras F; and 0(Xg; s > t,s € T) are condition-
ally independent given X;.)

Remark 2.2. (1) Recall that we define conditional probability using con-
ditional expectation: P(C|X,) :=P(Clo(X;)) = E[1lo|o(Xy)].

(2) If X is a Markov process w.r.t. F, then X is a Markov process w.r.t. G =
{Gi;s € T}, with G, = 0(Xs;s <t, s €T).

(3) If X is a Markov process w.r.t. its natural filtration the Markov property
1s preserved if one reverses the order in T.

Theorem 2.3. Let X be F-adapted. TFAE:
(1) X is a Markov process w.r.t. F.

(ii) For eacht € T and each bounded o(Xs; s > t,s € T)-measurable Y one
has

E[Y|~7:t] = E[Y’Xt]~ (1)

(i1i) If s,t € T andt < s, then
E[f(Xo)lF] = E[f (X)X (2)
for all bounded f : (E,€) — (R, B(R)).
Proof. (i) = (ii):
Suppose (i) holds. The Monotone Class Theorem for functions (Theorem

A.1) implies that it suffices to show (1) for Y = 15 where B € o(Xg;s >
t,s € T). For A € F, we have

E(E[Y|F]14) = Elalp
= P(ANB)=EP(AN B|X,)
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= EP(A[X,)P(B|X:)
= EE[14|X,|P(B|X:)
— E1,P(B|X,)
= E(E[Y]X]14)
which implies (ii).
(i) = (i):
Assume (ii) holds. If A € F, and B € 0(X5;5s > t,s € T), then
P(ANB|X;) = E[lanp|X(]
= E[E[Tanp|F][Xi]
= E[L4E[1p]F]|X¢]
= E[La|X,]E[15|X],
which implies (i).
(i) < (iii):
The implication (ii) = (iii) is trivial. Assume that (iii) holds. We want to

use the Monotone Class Theorem for functions. Let

H:={Y; Y is bounded and o(X,;s > t,s € T) — measurable
such that (1) holds.}

Then H is a vector space containing the constants and is closed under
bounded and monotone limits. We want that

H={Y; Y is bounded and o(X,;s > t,s € T) — measurable}
It is enough to show that

V=1L, fi(Xs) € (3)

for bounded f; : (E,€) — (R,B(R)) and t < 51 < ... < s, (n € N¥).
(Notice that then especially 14 € H for any A € A with

A={{weY X, €h,... X, €1,} : Iy € BR),sp € T,s, >t,ne N}

and o(A) =0(Xs;s >t,seT).
We show (3) by induction in n:



n = 1: This is assertion (iii).
n > 1:

EY|F] = E[E[Y|F,_,]F]
- E[H?;ffi(st')E[fn(Xsn)|Xsn71]|]:t]

By the factorization Lemma (Lemma A.2) there exists a h : (E, &) —
(R, B(R)) such that E[f,(X;,)|Xs,_,] = (X, _,). By induction assumption:

BT fi( X ) WX, )| ) = B[ fi(Xo ) h(X, )] X

By the tower property, since o(X;) C Fs, _,
E[I fi(Xo) (X, )IXe] = E[ILS fi(X ) E[fo (X, )| Fs, 1)1 X0

= E[E[IT) fi(Xs,) fu(Xo )| Fs, )1 X0
= E[H?:le(st) Xt]

Definition 2.4 (transition function). Let s,t € T C [0, 00).
(1) The map
P, s(x,A), 0<t<s<oo,xe€E A€,
is called Markov transition function on (E,E), provided that

(i) A P, 4(x, A) is a probability measure on (E, £) for each (¢, s, z),

)
(ii)  — P, s(z, A) is E-measurable for each (¢, s, A),
)
(iv) if 0 <t < s < u then the Chapman-Kolmogorov equation

Pru(, A) = / Poaly, A)Po(z, dy)
E

holds for all x € F and A € €.



(2) The Markov transition function P 4(z, A) is homogeneous <= 4 if
there exists a map P;(z, A) with P, s(z, A) = Ps_4(x, A) for all 0 < ¢ <
s,re B, Ae€.

(3) Let X be adapted to F and P, 4(z,A) with0 <t <s,z € E,A€ & a
Markov transition function. We say that X is a Markov process w.r.t. F
having P, ;(z, A) as transition function if

ELf(X,)|F] = [E F(5) Poa(Xo, dy) (4)

for all 0 <t < s and all bounded f : (E,&) — (R, B(R)).

(4) Let u be a probability measure on (F, £) such that u(A) = P(X, € A).
Then g is called initial distribution of X.

Remark 2.5. (1) There exist Markov processes which do not possess tran-
sition functions (see [4] Remark 1.11 page 446)

(2) A Markov transition function for a Markov process is not necessarily
UNIQUE.

Using the Markov property, one obtains the finite-dimensional distributions
of X:
for 0 <t; <ty <..<t, and bounded

[ (E™E®) — (R,B(R))
it holds

Ef(Xy,....Xy,) = /

E

,u(dll?o)/P(),tl(ilfQ,d.Tl).../Ptn_htn(l'n_l,dfl?n)f(ﬂfl,...,fEn).
E E

3 Existence of Markov processes

Given a distribution g and Markov transition functions {P;s(x, A)}, does
there always exist a Markov process with initial distribution p and transition

function {P, s(z, A)}?

Definition 3.1. For a measurable space (E, &) and an arbitrary index set
T define
Q:=ET, F=T:=0(X;teT),
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where X; : 2 — E is the coordinate map X;(w) = w(t). For a finite subset
J ={t1,....t,} C T we use the projections 7; : Q@ — E’

mw = (W(t), .., w(t,)) € B’
7TJX = (th,...,th).

(1) Let Fin(T) := {J C T;0 < |J] < oo}. Then
{P; : P is a probability measure on (E7,£”),J € Fin(T)}
is called the set of finite-dimensional distributions of X.

(2) The set of probability measures {P; : J € Fin(T)} is called Kolmogorov
consistent (or compatible or projective) provided that

PJ:PKO<7TJ |EK)71

forall J C K, J,K € Fin(T).
(Here it is implicitly assumed that

Pta(l) 77777 tg(n) (Ao‘(l) X ... X Ao-(n)) — Pt1 77777 tn (Al X ... X An>
for any permutation o : {1,...,n} — {1,...,n}.)

Theorem 3.2 (Kolmogorov’s extension theorem, Daniell-Kolmogorov The-
orem). Let E be a complete, separable metric space and € = B(E). Let T be
a set. Suppose that for each J € Fin(T) there exists a probability measure
Py on (E7,E7) and that

{P,;J € Fin(T)}

1s Kolmogorov consistent. Then there exists a unique probability measure P
on (ET,ET) such that

P,=Por;' on (E,&).
Proof: see, for example, Theorem 2.2 in Chapter 2 of [§].

Corollary 3.3 (Existence of Markov processes). Let E = R & = B(R?)
and T C [0, 00). Assume p is a probability measure on (E, &), and

{Pis(z,A);t,se T,z € E, Ac &}
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1s a family of Markov transition functions like in Definition 2.4. If J =
{t1,....tn} C T then by {s1,....,s,} = J with s1 < ... < s, (i.e. the ty's are
re-arranged according to their size) and define
Pj(A; x ... / / Ly, (@1, s @) pa(do) Po s, (20, d1)
Sn 1sn(xn 17dxn) (5>

Then there exists a probability measure P on (ET,ET) such that the coordi-
nate mappings, i.e.
X, ET 5 R w w(t)

form a Markov process.

Remark 3.4. Using the monotone class theorem (Theorem A.1) one can
show that (5) implies that for any bounded f : (E™,E™) — (R, B(R)) it holds

Ef(X817"’7 / / f L1y X de)POén(andxl)
sn 1,8n (xn 17dxn) (6>

Proof of the Corollary. By construction, P is a probability measure on (E7, 7).
We show that the set {P;;J € Fin(T)} is Kolmogorov consistent: consider
K CJ,

K={s; <..<s,}C{s1 <..<sp}, k<n,
and
i BT = ER (21, mn) = (T, 2,)-

We have 7' (By X ... x By) = Ay x ... x A,, with A; € {By, ..., By, E}. Let us
assume, for example, that £k =n — 1 and

Ay x ... xA,=B; X..xB,_9ax ExB,.
Then

P;(A x...xA4,) = / / 1By B axBx B, (L1 oos T ) p(d0) P s, (o, di )
E JE
...Psn_lysn(vxn—l)dxn)
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= P{31:~~~75n—275n}(B1 X ... X B’I’L—Q X Bn)

since, by Chapman-Kolmogorov, we have

/ Psn72’sn71(xn,2, dxnfl)Psnfhsn (Tn-1,dzyn) = Py, 55, (Tn—2,dzy).
E

According to Definition 2.1 we need to show that
P(AN BIX,) = P(A|X,)P(B|X,) (7)

for A € FX = o(X,;u <t), B e o(X,;s>1t). We only prove the special
case

P(X; € B, X, € B1|X;) = P(X; € B3| X;)P(X, € B1|Xy)
for u <t < s, B; € £. For this we show that it holds

Elp, (Xo)15, (X1, (X,) = EP(X, € Bs|X)P(X, € By|X,)1p,(X,).

Indeed, by (5),
IFi"]131 ]133 )]132(Xt)
////]lleBQXBg (@1, o, x3) pu(dxo) Py o (0, day ) Puy(21, dxe) Py s (22, ds)

Using the tower property we get

EP(X, € B3| Xy)P(Xy € B[ X)1p,(Xy) = E(E[Lp,(X,)|Xi])Lp, (Xu)1p,(Xe)
= EP,,(X,, B3)Lp, (Xu)1p,(X)).

To see that E[1p,(X;)|X:]) = P.s(Xy, Bs) we write
Elp, (Xs)1p(X) = / //133 z9) 1 p(21)pu(dzo) Poi(0, dz1) Py s (21, do)

= / / / ]lB 113'1 dflf[) POt(x(),dxl)]Dts(xlaBi%)
= EP, (X, B3)1p(Xy).



where we used (6) for f(x;) = L1g(x1) P, s(x1, Bs). Again (6), now for f(X,, X;) :=
P, s(Xy, Bs)1p,(X,)1B,(X:), we get that

EPt,s(Xh 83)]131 (Xu)lBQ (Xt)

Z///Pt,s($27B3)]lleBz($1,$2),u(d$0)Po,u($0,d%)Pu,t(xl,d@)
eJEJE

Z////]1le3sz3(5171,932>$3)M(d$0)P0,u($0,dIl)Pu,t(CUhdIz)Pt,s(l'%d%)-
EJEJEJE

O

4 Strong Markov processes

4.1 Stopping times and optional times

For (92, F) we fix a filtration F = {F;;t € T}, where T = [0,00) U {oo} and
Foo =F.

Definition 4.1. A map 7 : 2 — T is called a stopping time w.r.t. F provided
that

{r<tieF forall te][0,00).
Remark 4.2. Note that {T = oo} = {1 < o0}° € F since

{7‘<oo}:U{7'§n}€]:oo:}".

neN
Then {1 < oo} = {17 < oo} U{r = o0} € F and hence

{r<t}eF foral teT.

We define
Fo = [Fe t€0,00), Fos:=7F,
s>t
Fil = 0( U .7:S>, t € (0,00),
0<s<t
]:0_ = .F(), foo_ = F.
Clearly,
Fio ©F C Fiye

10



Definition 4.3. The filtration {F;;t € T} is called right-continuous if F; =
Fiy for all t € [0, 00).

Lemma 4.4. If 7 and o are stopping times w.r.t. F, then
(1) T+ o,
(2) T Ao, (min)
(3) TV o, (maz)
are stopping times w.r.t. .
Definition 4.5. Let 7 be a stopping time w.r.t. F. We define
Fr={AeF: An{r<t}eF Vte|0,00)},
Frp ={AeF: An{r <t} e F, Vte[0,00)}.
Note: F. and F, are o algebras.
Lemma 4.6. Let o,7,71, T, ... be F - stopping times. Then it holds
(i) T is Fr-measurable,
(ii) If T < o, then F, C F,,
(1)) Frp ={AeF:An{r <t} eF Vtel0,00)},
(iv) sup,, 7, is an F - stopping time.
Definition 4.7. The map 7 : Q — T is called optional time <=4
{r<tleF, Vte|0, 00).
Note: For an optional time it holds
7: (2, F) = (RU{oo},0(B(R) U {{o0}}))
i.e. 7 is an extended random variable.
Lemma 4.8.

(i) Forty € T the map T(w) =ty Yw € Q is a stopping time.

11



(i1) Every stopping time is an optional time.

(111) If {Fy;t € T} is right-continuous, then every optional time is a stopping
time.

() 7 is an {Fy;t € T} optional time <= 71 is an {Fii;t € T} stopping
time.

Proof. (i): Consider

Q;, to <t

(ii): Let 7 be a stopping time. Then

{T<t}:G{T§t—%}€]—}.

n=1\ ,

M 1 1
m{T<t+ﬁ}:{T<t+M}€E+if
n=1

we get that {r <t} € 7, VM € N" and hence {7 < t} € Fi;. = F; since
{Fi;t € T} is right-continuous.

(iv) == " If risan {F;;t € T} optional time then {7 <t} € F; = {7 <
t} € Fiy because F; C (o Fs = Fis. This means that 7 is an {Fy;t € T}
optional time. Since {F;,;t € T} is right-continuous (exercise), we conclude
from (iii) that 7 is an {F;;t € T} stopping time.

'«": If 7 is an {F;,;t € T} stopping time, then

> 1
{r<ty=J) {r<t-=} €F.
n=1 h,—n/

e]:(t—l/n)*' :ms>t—1/n FsCFt

12



Lemma 4.9. If 7 is an optional time w.r.t. F, then
Frp ={AeF  An{r <t} e Fy Vtel[0,00)}
1s a o -algebra. It holds

Fo={AeF: An{r<tteF, Vte|0,00)}.

4.2 Strong Markov property

Definition 4.10 (progressively measurable). Let E be a complete, separable
metric space and € = B(E). A process X = {X;t € [0,00)}, with X; : Q —
E is called F-progressively measurable if for all t > 0 it holds

X 1 ([0,4] x Q,B([0,4]) ® F,) — (E, ).

We will say that a stochastic process X is right-continuous (left-continuous),
if for all w €
t— Xt (w)

is a right-continuous (left-continuous) function.
Lemma 4.11.
(1) If X is F- progressively measurable then X is F-adapted,

(i1) If X is F-adapted and right-continuous (or left-continuous), then X is
F- progressively measurable,

(iii) If T is an F-stopping time, and X is F- progressively measurable, then
X, (defined on {1 < 00}) is F,-measurable,

(iv) For an F-stopping time T and a F- progressively measurable process X
the stopped process X7 given by

X] (w) == Xinr(w)
15 F- progressively measurable,

(v) If T is an F-optional time, and X is F- progressively measurable, then
X, (defined on {1 < o0}) is F,i-measurable.

13



Proof. (i), (ii) and (v) are exercises.
(iii): For s € [0, 00) it holds

>
{T/\tgs}:{Tgs}U{tgs}:{?T’<S} 2l er

Hence 7 At is Fi-measurable. We have h: w — (7(w) A t,w) :
(Q, F;) — ([0,t] x ©,B([0,t]) @ F).

Since X is F- progressively measurable, we have

X : ([0,t] x Q,B([0,t])) ® F) — (E,E). (8)
Hence

Xoh:(QF)—(EE). 9)

It holds that X, is F,-measurable <—

{X;eBin{r<tteF Vtel0,00).
Indeed, this is true:

{X;eBIn{r <t} ={X;n € B} n{r <t}

which is in F; because of (9), and since 7 is a stopping time.

(iv):
It holds
H: (s,w) — (T(w) A s,w) :
[0,¢] x Q,B([0,t]) ® F;) — ([0,t] x Q,B([0,t]) ® F;), t >0, (10)

{(s,w) €[0,t] x Q:7(w)As e [0,7]} = ([0,7] x Q) U ((r,t] x {T <r}).
Because of (8) we have for the composition
X oH :([0,t] x Q,B([0,t]) ® Fr) — (E, &),
(X0 H)(s,0) = Xrns(w) = X{(w).
[l

Definition 4.12 (strong Markov). Assume X is an F-progressively measur-
able homogeneous Markov process. Let { P,(z, A)} be its transition function.
Then X is strong Markov if

IP)<‘XT—i-t € A|]:T+) = Pt(XTvA>
for all t > 0, A € £ and all F-optional times 7 for which it holds 7 < oo a.s.

14



One can formulate the strong Markov property without transition functions:

Proposition 4.13. Let X be an F-progressively measurable process. Then,
provided X is a Markov process with transition function, the following asser-
tions are equivalent to Definition 4.12:

(1) X is called strong Markov provided that for all A € €
P(Xrie € AlFry) = P(Xrye € A[X7)
for all F-optional times T such that T < o0 a.s.
(2) Vti,..,t, €T, Ay, ..., A, €&
P(X e, € A1,y Xy, € Ap|Fry) = P( Xy, € Ay, Xy, € Al X5

for all F-optional times T such that T < co a.s.

4.3 Lévy processes are strong Markov

Definition 4.14. A process X is called Lévy process if

(i) The paths of X are a.s. cadlag (i.e. they are right-continuous and have
left limits for ¢ > 0.),

(ii) P(Xo =0) =1,
(i) VO<s<t: X,—X,ZX,,,
(iv) VO<s<t: X;— X, isindependent of FX.
The strong Markov property for a Lévy process is formulated as follows.

Theorem 4.15 (strong Markov property for a Lévy process). Let X be a
Lévy process. Assume that T is an FX -optional time such that T < oo almost
surely. Define the process X = {X;;t > 0} by

Xt = ]1{7'<OO}<Xt+T - XT)7 t>0.

Then on {1 < 0o} the process X s independent of ]-"T)i and X has the same
distribution as X.

15



Remark 4.16. To show that Theorem 4.15 implies that X is strong Markov
according to Defintion 4.12 we proceed as follows. Assume that T is an F~-
optional time such that T < oo a.s. Since by Lemma 4.11 (v) we have that
Xilreooy 18 .7’-—TX+ measurable, and from the above Theorem we have that
1{rco0} (Xigr — X7) is independent from FX., we get from the Factorization
Lemma (Lemma A.2) that for any A € £ it holds

P(Xr+t]l{7<oo} € A|‘F7'+> = E[]l{]l{7—<oo}(Xt+T_XT)+]l{T<OO}XT€A}|'FT+]

= (]E]l{1{T<oo}(Xt+T—XT)+y€A}) |y=1{r<oo}XT

The assertion from the theorem that 1<y (Xeyr — X7) 2 X, allows us to
write

E]]-{]I{T<OO}(Xt+T—XT)+yEA} = E]]-{Xt+yEA} - ‘F)t(y) A)

Consequently, we have shown that on {1 < oo},
P(XT-‘,-t S A’fT_A,_) - Pt<X7—7 A)

Proof of Theorem /4.15. The finite dimensional distributions determine the
law of a stochastic process. Hence it is sufficient to show for arbitrary 0 =
to <ty <...<ty, (meN*) that

X’tm - Xtmfl, ...,f(tl - )N(to and JF,, are independent.

Let G € F,. We define a sequence of random times

n - k
KD D - SEI
k=1

We have that 7" < co. Then for 61, ...,0,, € R, using tower property,

E exp {Z Z QZ(XT(H)thl - X‘r(">+t11)}]lc
=1

= ) Eexp {Z > 0 Xy, — XT<n>+tll)}]1cn{T<n>:;;}

=1

= ZEGXP {Z‘Zel(Xz’;thl - XQ’ﬁLthll)}]le{T(n):Q';L}

16



= ZE]IG’O{H”)Q’Z}E[GXP {izgl(X;%-&-tz — X21%+tl_1)}‘f2l%:|
k=1 =1

= ZE]IGO{TW:ZL"}E exp {@ Z QI(XQ%HZ - X2’%+tz_1)}’ (11)
k=1 =1

since G N {7 = =} e .Fk and property (iv) of Definition 4.14.

For w € {1 < oo} we have 7" (w) | 7(w). Since X is right-continuous:
XT(n)(w)_,_S — XT(UJ)JrS, n — OO,VS > 0.

By dominated convergence and property (iii) of Definition 4.14:

E exp {Z Z 01(Xrqy, — XT+tll)}]lGﬂ{T<OO}
=1

= 1111}1’2() E exp {Z Z 9[ ()44, T (7L>+tl_1)}]lG

m

— nlggol[” Eexp{zzertl X 1)}

= Eexp{ ZQZ (Xy, — X3, 1)}

where we used (11).

4.4 Right-continuous filtrations

We denote as above by (€2, F) a measurable space and use T = [0,00) U
{oo},F ={F;t € T}, Foo = F.

Definition 4.17. The system D C 29 is called Dynkin system if <=4
(i) Q e D,

(ii) ABeDand BCA = A\BeD,

(iii) (A,)2, €D, A/ CAC.. = U, 4,¢D.

17



Theorem 4.18 (Dynkin system theorem). Let C C 2% be a n-system. If D
1s a Dynkin system and C C D, then

a(C) CD.

Definition 4.19 (augmented natural filtration). Let X be a process on
(Q, F,P). We set

NP :={ACQ:3B € F with A C B and P(B) = 0},

the set of P-null-sets’. If FX = o(X, : u < t), then the filtration {F};t € T}
given by
Fli=o(FXuUNF)

is called the augmented natural filtration of X.

Theorem 4.20 (the augmented natural filtration of a strong Markov pro-

cess is right-continuous). Assume (E,&) = (R, B(RY)) and let X be a strong
Markov process with initial distribution p (which meansP(Xy € B) = u(B) VB €
B(R%)). Then the augmented natural filtration

{F/iteT}
18 Tight-continuous.

Proof. Step 1

We show that Vs > 0 and G € F : P(G|F2) = P(G|FY) P-as:

Fix s € [0,00). Then o = s is a stopping time w.r.t. FX := {FX;t € T} by
Lemma 4.8 (i) and (ii) we get that o is an F¥ optional time. For arbitrary
0<ty<t; <..<tp,<s<tyy <..<tyand Ay, A,.., A, € B(R?) we
have from Proposition 4.13 about the strong Markov property that

P(Xy, € Ao, ... Xy, € Ap| F2Y)

.....

-----

Hence the RHS is a.s. F-X-measurable. Define
D :={G € F : P(G|F. ) has an F,' measurable version }.
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Then Q2 € D. If G1,Go € D and G; C (o, then
P(Gs \ G1|FSy) = P(Go| FL) — P(G1|FLY)

has an ff—measurable version. Finally, for G, Gy, ... € Dwith G; C G5 C ...
we get by monotone convergence applied to ]E[]le|.7-"§i] that (J,—, Gx € D.
We know that

C={{X,, €Ag,.. X, €A} 0<ty <t <..<t,<8<tlpp <..<tm, Ay € BRY}

is a 7 -system which generates F-X. By the Dynkin system theorem we get
that for any G € F2
P(G|FL)

has an F:X-measurable version.
Step 2 We show f:;)j— C Fr.

If G € F C F then P(G|F2) = 1 a.s. By Step 1 there exists an F -
measurable random variable Y := P(G|FX). Then H := {Y =1} € F* and

HAG := (H\G)U(G\H)C{lg#Y} e N
From the exercises we know that for any ¢ > 0 it holds
Fi={GCQ:3H € FX: HAG € N*}. (12)
Hence G € Fr, which means F.X C F..

Step 3 We show F., C F. :
If GeFl thenVn>1 Ge¢ .Fil. We use again (12) and conclude that

there exists a set H,, € F;il with GAH,, € NT. Put

i A0

m=1n=m

Since U~ H, DU, ., H, we have H =(\"_,, U H, VM € N. We get

n=m+1
n=m
eFX |
S+W

H e FY . VM € N and therefore H € F} C F,. We show G € F_ by
M
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representing G = (GUH)\ (H\G) = (HAG)UH)\ (H \ G) where we have
H e FF, and HAG € N* will be shown below (which especially implies also
H\ G € NF). Indeed, we notice that HAG = (H \ G) U (G \ H),

H\GC (GHn) \G = G(Hn\G)eNP,

and

oo o

G\H=GnNH® = Gm(ﬂ U Ha
m=1n=m

Un

m=1n=m

Il
@Q

N

I
3

(o (i

1

3
Il

IN
(@

——
G\H,, CGAH,,ENF

( GNHE e NT.

m=1

So HAG € N* and hence G € F~.
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5 The semigroup/infinitesimal generator ap-
proach

5.1 Contraction semigroups

Definition 5.1 (semigroup). (1) Let B be a real Banach space with norm
|- |l. A one-parameter family {7°(¢);¢ > 0} of bounded linear operators
T(t) : B — B is called a semigroup if

e 7T(0)=1Id,
e T'(s+t)=T(s)T'(t), Vs,t>0.

(2) A semigroup {T'(t);t > 0} is called strongly continuous (or Cy semi-
group) if
ltlﬁ)lT(t)f =f, VfeB.
(3) The semigroup {7T'(t);t > 0} is a contraction semigroup if

1T = sup 7@ fl <1, vt=0.

As a simple example consider B = R?, let A be a d x d matrix and

o0

tk
T(t) == e = Z EA’“, t>0,
k=0

with A° as identity matrix. One can show that esT94 = es4¢t4 Vs t >0,
{et4;t > 0} is strongly continuous, and ||e!4]| < el4l ¢ > 0.

Definition 5.2. Let E be a separable metric space. By B we denote the
space of bounded measurable functions

[+ (E,B(E)) = (R, B(R))

with norm || f|| := sup,ep [ f(2)]-
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Lemma 5.3. Let E be a complete separable metric space and X a homo-
geneous Markov process with transition function {Py(x, A)}. The space Bg
defined in Definition 5.2 is a Banach space, and {T'(t);t > 0} with

T(t)f(x) = /E fW)Px.dy), e By

18 a contraction Semigroup.

Proof. Step 1 We realise that B is indeed a Banach space:
e measurable and bounded functions form a vector space
o [I/]] == sup,cp | /()] is a norm
e By is complete w.r.t. this norm.

To show that
T@)f: (E,B(E)) — (R, B(R))

we approximate f by f, = kle aplap, Ay € B(E),ap € R such that
|ful 71 f]- Then

T(t)fulz) = /E S 6 Lag (4) Py, dy)

k=1

Ny,
- S a / Ly (9) Pi ., dy)
k=1 E
Np,
= ZaZPt(x,AZ).
k=1

Since

B A7) - (B, B(E)) = (R, B(R)),

we have this measurability for T'(¢)f,, and by dominated convergence also
for T'(t)f.

ITOf = sup|T(E)f(a)
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< sup / F()|Pu(a, dy)
xelE JE
< sup |7 B) = ] (13)

Hence T'(t)f € Bg.
Step 3 {T'(t);t > 0} is a semigroup:

We have T(0)f(z) = [ f(y)Po(z,dy) = [5 f(y)d.(dy) = f(z). This implies
that 7°(0) = Id. From Chapman Kolmogorov’s equation we derive

T(s)T(t)f(x) = T(s)(T(t)f)(x)
s) f()

76) ([ 1n6an ) @

_ /E / F )Pz, dy) Pz, d2)
= [ 0 Pufodn) = T+ 9)f(a).

Step 4 We have already seen in (13) that {T'(¢);t > 0} is a contraction. [

5.2 Infinitesimal generator

Definition 5.4 (infinitesimal generator). Let {T'(t);¢ > 0} be a contraction
semigroup on Bg. Define

Af :=lim M
10 t

for each f € Bg for which it holds: there exists a g € Bg such that:

Tt)f —
There exists a g € Bg such that HW — g” — 0, for t10. (14)

Let D(A) :={f € Bg : (14) holds}. Then
is called infinitesimal generator of {T'(¢);t > 0}, and D(A) is the domain of

A.

23



Example 5.5. If W is the Brownian motion (one-dimensional) then A =
L& and C2(R) C D(A), where

2 dz?
C3R):={f :R = R: twice continuously differentiable, compact support }
We have P;(z, A) = P(W; € A|W, = z) and

T(0)f(x) = EFWIWy = o]
= Ef(W,+ x),

where W is a standard Brownian motion starting in 0. By It0’s formula,
— b —~ 1 [t
fWta) = f)+ / P, 4 )W, + / £"(W, + 2)ds.
0 0
Since f’ is bounded, we have E fg(f’(ﬁ//s + x))%ds < oo and therefore
t — —
E/ f' Wy + 2)dW, = 0.
0
This implies
— 1 L
EfW,+z) = f(x)+ §]E/ " (W + x)ds.
0
By Fubini’s Theorem we get Ef(f (W, + z)ds = fot Ef"(W, + z)ds. We

notice that g given by g(s) := Ef”(W, + x) is a continuous function. By the
mean value theorem we may write

/t Ef"(W, + z)ds = /tg(s)ds — g(6)t, for some £ € [0,4].
0 0

T)f(x)— flz) _ Ef(W+2)— fz) _ 3EJy /"W, + )ds
t t t

1 —~
= éE‘f”(W& + QZ’)

This implies that for any given ¢ > 0 we can find by uniform continuity of
f" ad >0 and get Chebyshev’s inequality that
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T(Zf)f(.%‘) — f(.?l') 1 "
‘ n - §f (x)

1 —
— §@ﬂ@n+x%aﬂ@ﬂ
1 TS 1" 1 "7
< §@f@%+wﬂm@9yaf@ﬂ+§wf@W+$ﬂmm»}

< 5 osw |(0) = @)+ g sup | @B(T > 0

2 ly—z|<o
1 1 " IE"|f/VV§|2
< f+§$gfm»jg—gs

for 0 < ¢ <t small.

Theorem 5.6. Let {T'(t);t > 0} be a contraction semigroup and A its in-
finitesimal generator with domain D(A). Then

(i) If f € Bg such that limy o T(t)f = f,
then fort > 0 it holds f(f T(s)fds € D(A) and

T@f—f_AAHuﬁ%.

(i) If f € D(A) and t > 0, then T(t)f € D(A) and

hgT@+$£_T®f:AT@f:T@Af

(iii) If f € D(A) and t >0 then [, T(s)fds € D(A) and

T f—f= A/O T(s)fds —/0 AT (s)fds —/0 T(s)Afds.
Proof. (i) If limy o T'(t) f = f then

ImT'(s)f = ltii%l Tu+t)f = ltifg Tw)Tt)f=T(w) limT(t)f =T(u)f,

slu tl0

where we used the continuity of T'(u) : By — Bg :
1T (u) fo = T() fI| = 1T () (fr = I < [1fn = i
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Hence the Riemann integral
t
/ T(s+u)fdu
0
exists for all ¢, 5 > 0. Set ¢} = % Then
n t
ST~ ) > [ Twide 0o
i=1 0
and therefore
t t n
7(5) [ T)sde = T ( JRACIETED SEATRN TS t’:_n)
0 0 i=1

+ 2 TTEN ]~ 1)

~+

T(s + ) fdu — /0 ) fdu)

t+s

— —

T(u) fdu — /0 ") fdu>

t+s

7~ N 7 N -7 N

:ﬁ/ﬂ

T(u) fdu — /0 ) fdu)
~ o sl0.

Since the RHS converges to T'(t)f — f € Bg we get fot T(u)fdu € D(A) and

N ol wl~k ®]|~

—~
<+

A /0 T(u) fdu = T(t)f — f.

(i) If f € D(A), then
TETWf-TOf _ TOT()f - 1) T()Af, 510.

S S
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Hence T'(t)f € D(A) and AT(t)f =T (t)Af.

(iii) If f € D(A), then T(S)f_f — Af and therefore T'(s)f — f — 0 for s | 0.
Then, by (i), we get fo u) fdu € D(A). From (ii) we get by integrating

Yy L0 = T@f _ [
/Ol;g]l . du—/o AT(u)fdu—/O T(u)Afdu.

On the other hand, in the proof of (i) we have shown that

/t T(s+u)f — T(u>fdu _ T(s)—1 /tT(u)fdu.

S S

T(s+u) f-T(uw)f

Since converges in Br we may interchange limit and integral:

/t lim Tstuf= T(u)fdu = lim % /t T(u)fdu

sd0 S s]0

_ 4 /O ") fdu.

5.3 Martingales and Dynkin’s formula

Definition 5.7 (martingale). An F-adapted stochastic process X = {X;;t €
T}such that E|X;| < oo ¥Vt € T is called F-martingale (submartingale, su-
permartingale) if for all t,t + h € T with h > 0 it holds

E[Xin|F] = (2, 9)X; as.

Theorem 5.8 (Dynkin’s formula). Let X be a homogeneous Markov pro-
cess with cadldg paths for all w € cmd tmnsitwn function {P,(z,A)}. Let
{T'(t);t > 0} denote its semigroup T(t = [, f(y)P(z,dy) (f € Bg)
and (A, D(A)) its generator. Then, for each g € D(A) the stochastic process
{My;t >0} is an {F;*;t > 0} martingale, where

M= g(X) () - | ' Ag(X.)ds. (15)
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(The integral fot Ag(Xs)ds is understood as a Lebesque-integral for each w:

/0 Ag(X,)(w)ds := / Ag(X.)(@)A(ds)

where A denotes the Lebesque measure.)

Proof. Since by Definition 5.4 we have A : D(A) — B, it follows Ag € B,
which means especially

Ag: (E,B(E)) = (R,B(R)).

Since X has cddlag paths and is adapted, it is (see Lemma 4.11) progressively
measurable:

X : ([0,] x Q,B([0,t]) ® F;) — (E,B(E)).

Hence for the composition we have
Ag(X.) - ([0,7) x 2, B([0,1]) ® Fi) — (R, B(R)).

Moreover, Ag is bounded as it is from Bg. So the integral w.r.t. the Lebesgue
measure \ is well-defined:

/Ot Ag(X,(w))A(ds), w e Q.

Fubini’s theorem implies that M; is F;* - measurable. Since g and Ag are
bounded we have that E|M;| < co. From (15)

E[M, 4| F] + g(Xo)

t+h
- E[g(XHh)—/O Ag(X,)ds|F]

= & [(sx - [ as0as)

The Markov property from Definition 2.4(3) (equation (4)) implies that

th] - /Ot Ag(X,)ds.

E [g(X0o)| F¥] = /E 9(y) Pa(X,., dy).
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We show next that E {th )ds‘]—"X} = tt+hE[Ag(Xs)\]iX}ds. Since

g € D(A) we know that Ag is a bounded function so that we can use Fubini’s
theorem to show that for any G € F;¥ it holds

t+h t+h
// Ag(Xs)dslgdP = / /Ag(Xs)]l(;dIPds
QJt t Q
t+h
= / /E[Ag(XS)\Ff]ngdes.
t Q

The Markov property implies that E[Ag(X;14)| 5] = [, Ag(y)Pa(Xy, dy).

Therefore we have
t
EX] - [ Ag(x s
0

| (o0t - [ - Ag(X s

= [E 9(y) Pu(Xs, dy) — /t - [E Ag(y) Ps—i(Xy, dy)ds

- /0 ' Ag(X.)ds.

The previous computations and relation 7'(h =[.f 5 () Pu(X, dy) im-
ply

E[M; 1] F¥] + 9(Xo)
= [Eg(y)Ph(Xt,dy)—/t [EAg(y)dsPst(Xt,dy)ds—/ Ag(X)ds

0

— T(h)g(X,) - / T(s — ) Ag(X,)ds — / Ag(X.)ds
th , 0
= T(h)g(X,) / T(u) Ag(X,)du — / Ag(X.)ds

0

= T(h)g(X,) — T(h)g(X,) + g(X,) - / Ag(X.)ds

= g(Xy) — /Ot Ag(X)ds
= Mt+g(X0)v

where we used Theorem 5.6 (iii).
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6 Weak solutions of SDEs and martingale prob-
lems
We recall the definition of a weak solution of an SDE.

Definition 6.1. Assume that o;;,b; : (RY, B(RY)) — (R, B(R)) are locally
bounded. A weak solution of

dXt = O'(Xt)dBt + b(Xt>dt, X() =, t Z 0 (16)
is a triple (X, Bt)i>o, (2, F,P), (Fi)i>0 such that
(i) (2, F, P, (F)i>0) satisfies the usual conditions:

e (2, F,P) is complete,
e all null-sets of F belong to Fy,

e the filtration is right-continuous,
(ii) X is a d-dimensional continuous and (F;):>o adapted process

(ili) (B)i>o is an m-dimensional (F;):>o-Brownian motion,

(iv) X7 =a® + 57 | [0 (X)dBY + [ bi(X,)du,
t>0,1<1:<d, as.

Let a;j(x) = Y-, or(x)ojr(x) (or using the matrices: a(z) = o(z)o” (x)).
Consider now the differential operator

Zaw Er ax] 37)‘1‘251(1‘) 0

with domain D(A) = C?(RY), the twice continuously differentiable functions
with compact support in R?. Then it follows from It6’s formula that

Fx) = £ - | AF(X(8))ds = / VH(X)o(X.)dB

is a martingale.
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By Q := Cra|0, 00) we denote the space of continuous functions w : [0, 00) —
R?. One can introduce a metric on this space setting

_ =1 SUPg<<y, [W(t) — @(1)]
dw, @) =Y o Dosts .
@)= T supe e o = o]

n=1

Then Cra[0,00) with this metric is a complete separable metric space ([8,
Problem 2.4.1]). We set

Fi:=o{ms, s €10,t]}

where
Ty : Cra[0,00) = R : w > w(s)

is the coordinate mapping. For 0 <t < u we have

([8, Problem 2.4.2]). We define local martingales to introduce the concept of
a martingale problem.

Definition 6.2 (local martingale). A continuous (F;)i>0 adapted process
M = (M;)i>0 with My = 0 is a local martingale if there ezists a sequence
of stopping times 71 < 75 < 73... T 00 a.s. such that the stopped process M™
giwen by M[™ := M, x: is a martingale for each n > 1.

Example 6.3. The process which solves
t
Xy =1+ / XZdBg
0
is a martingale if 0 < a <1 and it is a local martingale but not a martingale
for a > 1.

See https://almostsure.wordpress.com/2010/08/16/failure-of-the-martingale-property/#more-816

Definition 6.4 (Cga[0, 00)- martingale problem). Given (s, ) € [0, 00) x R4,
a solution to the Cga[0, 00)- martingale problem for A is probability measure
P on

(Cral0, 00), B(Cra[0,0))) satisfying

Plwe:w(t)=2, 0<t<s})=1
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such that for each f € C°(R?) the process {M;:t > s} with

M = F(X) - F(X,) - / AS(X)du

S

is a P-martingale.

Theorem 6.5. X (or more exactly, the distribution of X given by a probabil-
ity measure P on (Cgral0,00), B(Cgal0,00)))) is a solution of the Cga[0,00)-
martingale problem for A <= X is a weak solution of (16).

Proof. We have seen above that <= follows from It6’s formula.

We will show = only for the case d = m. See [8, Proposition 5.4.6] for the
general case. We assume that X is a solution of the Cra[0, 00)- martingale
problem for A.

One can conclude that then for any f(x) = z; (i = 1,...,d) the process
{M] = Mt > 0} is a continuous, local martingale. This can be seen as
follows: If we define the stopping times for n > max{|z™M|, ..., [z(¥|}

7= inf{t > 0 : max{|X"], ., |X\|} = n},
then we can find a function g, € C%°(R?) such that
(M) = (27,

By assumption M9" is a continuous martingale and it follows from the op-
tional sampling theorem that the stopped process (M9")™ is also a continuous
martingale.
We have

M= x" — 20— / bi(X,)ds.

0

Since X is continuous and b locally bounded, it holds

P({w - /0 bi(Xo(w))|ds < 00:0 < £ < 00}) = 1.

Also for f(z) = z;x; the process Mt(ij )= M/ is a continuous, local martin-
gale.

M7 = XX — @000 — / XOb;(X,) + XDbi(X,) + ai(X,)ds.
0
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We notice that
t
MM — / ai;(Xy)ds = M — 2O M) — 20 M — R,
0

where

0

S S

t . . .
= 7[00 - X0 + (X - X (X )ds
0
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Since XV — Xt(i) = M! — M} + f b;j(X,)du it follows by It6’s formula that
t ) ) t ) )
e = / (X = X (X)ds + / (X9 = X)bi(X,)ds

0 . . 0

+ / bi(X.)ds / b;(X.)ds
0 0
t t

_ / (M — Mi)b;(X.)ds + / (MF — MP)by(X.)ds

- / / WdudM: — / / WJdudM.

Since R, is a continuous, local martingale and a process of bounded variation
at the same time, R, = 0 a.s. for all ¢. Then

t
MM — / 0i; (X,)ds
0
is a continuous, local martingale, and
(M, MY, — / as; (X.)ds.

0
By the Martingale Representation Theorem A.3 we know that there exists an
extension (2, F,P) of (2, F,P) carrying a d-dimensional (F;) Brownian mo-

tion B such that (]t"t) satisfies the usual conditions, and measurable, adapted
processes £, 4,5 =1, ...,d, with

B( [ @pas <o) -1

d t
vi=Y" [ evak
j=17"0

such that

We have now

t t
Xt:x—l—/ b(XS)der/ ¢,dB,.
0 0
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It remains to show that there exists an d-dimensional (.7:}) Brownian motion
B on (2, F,P) such that P a.s.

/Otfsdészfota(xs)dgs, te0,00).

For this we will use the following lemma.

Lemma 6.6. Let
D :={(£,0);€ and o are d x d matrices with ¢€7 = oo™ }.

On D there exists a Borel-measurable map R : (D, DAB(RY) — (RY, B(RT))
such that

0 =ER(0), R(E )R (E0)=1 (§0)eD
We set

B, = /Ot RT(&,,0(X,))dB

Then B is a continuous local martingale and

9, By, /szgs, NRT (&, 0(X,))ds = t6;.

Lévy’s theorem (see [8, Theorem 3.3.16]) implies that B is a Brownian mo-
tion. [

Definition 6.7. (1) Given an initial distribution p on (R, B(R?)), we say
that uniqueness holds for the Cra[0, 00)-martingale problem for (A, u)
if any two solutions of the Cga[0, c0)-martingale problem for A with
initial distribution p have the same finite dimensional distributions.

(2) Weak uniqueness holds for (16) with initial distribution p if any two
weak solutions of (16) with initial distribution p have the same finite
dimensional distributions.

Note that Theorem 6.5 does not assume uniqueness. Consequently, existence
and uniqueness for the two problems are equivalent.

Corollary 6.8. Let pu be a probability measure on (R, B(RY)). The following
assertions are equivalent:
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(1) Uniqueness holds for the martingale problem for (A, ).

(2) Weak uniqueness holds for (16) with initial distribution pu.

Remark 6.9. There exist sufficient conditions on o and b such that the
martingale problem with a = oo’ has a unique weak solution. For example,
it 1s enough to require that o and b are continuous and bounded.

7 Feller processes

7.1 Feller semigroups, Feller transition functions and
Feller processes

Definition 7.1.
(1) Co(R?) :={f:R* = R : f continuous, lim; . |f(z)| = 0}.
(2) {T'(t);t > 0} is a Feller semigroup if

(a) T(t) : Co(RY) — Co(RY) is positive Vt > 0 (i.e. T(t)f(x) > 0 Vz
if f:RY—[0,00)),

(b) {T(t);t > 0} is a strongly continuous contraction semigroup.

3) A Feller semigroup is conservative if for all z € R? it holds
(3) group

sup — [T(t) f(z)] = 1.
JeCo(®), | f]=1

Proposition 7.2. Let {T'(t);t > 0} be a conservative Feller semigroup on
Co(R%). Then there exists a (homogeneous) transition function {P,(x, A)}
such that

T(t)f(x) = y f@) Pz, dy), Vo eR? f e Co(RY).

Proof. Recall the Riesz representation theorem (see, for example, [6, Theo-
rem 7.2]): If E is a locally compact Hausdorff space, L a positive linear func-
tional on C.(E) := {F : E — R : continuous function with compact support},
then there exists a unique Radon measure p on (F,B(FE)) such that

LF = /E F(y)p(dy).
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Definition 7.3. A Borel measure on (F,B(F)) (if E is a locally compact
Hausdorff space) is a Radon measure <=4

(1) p(K) < oo, VK compact,
(2) VAe B(E) : p(A) =inf{u(U) : U 2> A, U open },
(3) VB open: u(B) =sup{u(K): K C B, K compact },

Remark: Any probability measure on (R?, B(R?)) is a Radon measure.

By Riesz’ representation theorem we get for each z € R? and each T'> 0 a
measure Pi(z,-) on (R? B(R?)) such that

TN = [ SW)P.dy). VF € R
R
We need to show that this family of measures {P;(z,-); t > 0,z € R?} has
all properties of a transition function.

Step 1 The map A — P;(x, A) is a probability measure: Since {P;(z,-) is a
measure, we only need to check whether P;(x,R?) = 1. This left as
an exercise.

Step 2 For A € B(R?Y) we have to show that
x> Pz, A) : (R, BR?Y)) — (R, B(R)). (17)
Using the monotone class theorem for

H = {f:R%—= R:B(R?) measurable and bounded,
T(t)f is B(RY) measurable }

we see that it is enough to show that
VAe A:={[a, 1] X ... X [an,bp];a, < b} UD: 14 € H.

We will approximate such 14 by f, € C.(R?) : Let f,(z1,...7,) =
fo1(z1)...frna(zq) with linear, continuous functions

1 ar <@y < by,
f"’k(mk)_{O r<ap—=orxz>b,+ 1L
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Then f, | 14.
Since T'(t)f : Co(RY) — Co(RY) and C,(R?) C Cy(R?), we get

T(t)fa: (RY, BR?)) — (R, B(R))

It holds T'(t) fu(x) = [ga [u(y)Pi(x, dy) — Pi(z, A) for n — co. Hence
P, A): (Rd B(Rd)) — (R, B(R)), which means 14 € H.

Step 3 The Chapman-Kolmogorov equation for { P;(x, A)} we conclude from
T(t+s) =T(t)T(s) Vs,t > 0 (This can be again done by approximat-
ing 14, A € A and using dominated convergence and the Monotone
Class Theorem).

Step 4 T(0) = Id gives Py(z, A) = 0,(A) (again by approximating).
[l

Definition 7.4. A transition function associated to a Feller semigroup is
called a Feller transition function.

Proposition 7.5. A transition function {Py(z, A)} is Feller <=
(i) Vt >0 [ou f(y)Pi(-,dy) € Co(R?) for f e Co(RY),
(it) Vf € Co(RY), z € R : limyyo [ou [(y) Pz, dy) = f(x).
Proof. <= We will show that (i) and (ii) imply that {7'(t);¢ > 0} with

T(t)f(r) = Wﬂwﬂwﬂw

is a Feller semigroup. By know by Lemma 5.3 that {T'(¢); ¢ > 0} is a con-
traction semigroup. By (i) we have that T'(¢) : Co(R?) — Co(R?). Any T'(t)
is positive. So we only have to show that Vf € Cy(R?)

1T f = fIl =0, ¢10

which is the strong continuity.
Since by (i) T(t)f € Co(RY) we conclude by (ii) that for all z € R? :
limg o T'(t + s)f(z) = T(t) f(x). Hence we have

t — T(t)f(x) is right-continuous,
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x +— T(t)f(z) is continuous.

This implies (similarly to the proof 'right-continuous + adapted = pro-
gressively measurable’)

(t,x) = T(t) f(x) : ([0,00) x R, B([0,00)) ® B(R)) = (R, B(R)).
By Fubini’s Theorem we have for any p > 0, that

z = Ryf(z) = /OOO e PIT() f(2)dt - (RY, B(RY)) — (R, B(R)),

where the map f +— R, f is called the resolvent of order p of {T'(¢); t > 0}.
It holds

lim pR, f(z) = f(x).

p—0o0

Indeed, since {T'(¢);¢ > 0} is a contraction semigroup, it holds [|T'(3)f| <
|| fIl. Hence we can use dominated convergence in the following expression,
and it follows from (ii) that

pRf0) = [ erTfei= [T (g) F@)du— f().  (18)

for p — oo. Moreover, one can easily show that R, f € Cy(R?).
For the resolvent: f +— R, f it holds

= DRRS = =0, e fat
= - OOe_pST S ooe_th dtds
(- ) / (s) / (t)fdt
— (q—p)/ e(pq)s/ efq(tJrS)T(t—l—S)fdtdS
0 0
= (¢—p) /0 e~ (p-0)s / e~ (u) fduds
_ N = —qu b —(P=Ds g
(q p)/o e T(u)f/oe sdu
= (¢-p) / T () f—

q—7p

(e_(p_q)“ —1)du
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_ R+ / " e () fdu
= pf R f

= (q PIR(Ryf.
Let D, :={R,f; f € Co(R%)}. Then D, = D, =: D. Indeed, if g € D, then
there exists f € Co(R?) : g = R,f. Since

Rpf = qu - (q - p)Rquf

we conclude g € D, and hence D, C D, and, by symmetry, D, C D,,.
By (18)

IRy fII < 1F1I-

We show that D C Cy(R?) is dense. We follow [6, Section 7.3] and notice
that Co(R?) is the closure of C.(RY) with respect to ||f]| := sup,cga |f(2)].

A positive linear functional L on C,(RY) can be represented uniquely by a
Radon measure on (R, B(R?)) :

L) = [ F)ptan).

Since p(RY) = sup{ [pa f(2)u(dz) : f € Co(R),0 < f < 1}, we see that we

can extend L to a positive linear functional on Cp(R?) <= pu(R?) < oco.

In fact any positive linear functional on Cy(R?) has the representation
= Jpa f(@)p(dx) with a finite Radon measure 4 ( [6, Proposition 7.16]).

Since D is a linear space in view of Hahn Banach We should have a linear
functional L on Cy(R?) given by L(f) = [pa f( z) (here p is a signed
measure) which is 0 on D and p081tlve for an f E C'O(Rd) which is outside
the closure of D. But by dominated convergence we have

L(f) = g f@)p(de) = lim [ pR,f(x)u(dz) =0,

P—=0 JRrd

which implies that D is dense. We have
TR, f(x) = T(t)/ e PT(u) f(x)du
0
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= e /OO e PT(s)f(z)ds.
This implies
TR, f —Rpfl| = sup ept/ e T (s)f(x)du — / e PT(u) f(x)du
zCcRd t 0
< (P = DR fIl +tlIfIl =0, t]o0.

So we have shown that {T'(¢);¢ > 0} is strongly continuous on D. Since
D C Cy(RY) is dense, we can also show strong continuity on Cp(R?). The
direction = is obviously trivial. O

Definition 7.6. A Markov process having a Feller transition function is
called a Feller process.

7.2 Cadlag modifications of Feller processes

In Definition 4.14 we defined a Lévy process as a stochastic process with
a.s. cadlag paths. In Theorem 4.15 we have shown that a Lévy process
(with cadlag paths) is a strong Markov process. By the Daniell-Kolmogorov
Theorem (Theorem 3.2) we know that Markov processes exist. But this
Theorem does not say anything about path properties.

We will proceed with the definition of a Lévy process in law (and leave it as
an exercise to show that such a process is a Feller process). We will prove
then that any Feller process has a cadlag modification.

Definition 7.7 (Lévy process in law). A stochastic process X = {X;;t > 0}
on (Q, F,P) with X; : (Q, F) — (RY, B(RY)) is a Lévy process in law if

(1) X is continuous in probability, i.e. ¥t > 0,Ye > 0

lim P(|X, — X >¢) =0,

51,520
(2) P(Xo=0) =1,

(3)V0<s<t: X,—X,< X,_,,

(4) VO <s<t: X,— X, is independent of F.X.

Theorem 7.8. Let X be an {Fi;t > 0}-submartingale. Then it holds
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(1) For any countable dense subset D C [0,00), IQ* € F with P(Q*) =1,
such that for every w € Q :

Xy (w) == s¢lti£relD Xi(w) Xp(w):= S%igrelD Xs(w)

exists Yt > 0 (t > 0, respectively).
(11) { X5t >0} is an {Fip;t > 0} submartingale with a.s. cadlag paths.

(111) Assume that {Fy;t > 0} satisfies the usual conditions. Then it holds:
X has a cadlag modification <= t +— EX; s right-continuous.

Proof: See [8, Proposition 1.3.14 and Theorem 1.3.13]

Lemma 7.9. Let X be a Feller process. For any p > 0 and any f €
Co(R4[0,00)) == {f € Co(R?) : f > 0} the process {e P R, f(X;);t > 0}
is a supermartingale w.r.t. the natural filtration {FX;t > 0} and for any
probability measure P, :

P,(X, € B) =v(B), B < B(R%),
where v denotes the initial distribution.

Proof. Recall that for p > 0 we defined in the proof of Proposition 7.5 the
resolvent

FoRyf = / T fdt, | € Co(RY.
0
Step 1 We show that R, : Co(R?) — Cy(R?) :

Since
Rofll = || [ et T d
Rt =| [ errsal < [T erirona

and || 7(t)f]| < |If]], we may use dominated convergence, and since T'(t)f €
Co(R?) it holds

lim R,f(z,) = lim e T (t) f(z,)dt

Tp—T Tn= f
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_ / e lim T()f (2,)dt
0 Tp—T

= Rpf(x).

In the same way: lim,, |00 Rpf(2n) = 0.
Step 2 We show that Vo € R?: e P"T'(h)R,f(x) < R,f(z) provided that
f € Co(R%[0,00)) and h > 0 :

TR F(z) = e ™T(h) /0 e f ()t
_ / T e (4 b)) dt
= /Ooe_p”T(u)f(x)du
h
< /0 e PT(u)f(x)du =R, f(z).

Step 3 {¢ "'R,f(X;);t > 0} is a supermartingale:
Let 0 < s < t. Since X is a Feller process, it has a transition function, and
by Definition 2.4 (3) we may write

B, [e PRy f(XOIFT] = e | Ryf(y)Pro(Xs, dy)
= e_ptTﬂEt — $)Rpf(Xs).
From Step 2 we conclude
e P'T(t — 5)Ryf(Xs) < e PR, f(X).
O

Lemma 7.10. Let Y} and Yy be random wvariables on (2, F,IP) with values
in R Then

Vi=Y, as. < Ef(Y1)g(Ys) =Ef(Y1)g(Y1)
Vi, g:RY— R bounded and continuous

43



Proof. The direction = is clear.
We will use the Monotone Class Theorem (Theorem A.1) to show <= . Let

H:={h:R*xR* - R: hbounded and measurable,
Eh(Y:,Ys) = Eh(Y:,Y1)}

As before we can approximate Lig, p,]x...x[asu,b24] PY continuous functions with
values in [0, 1]. Since by the Monotone Class Theorem the equality

Eh(Y1,Y2) = Eh(Y1, Y1)

holds for all A : R x R — R which are bounded and measurable, we choose

h = 1{(z,)crixRé:z,y and infer

P(Yi # Ys) = P(Y; £ Y1) = 0.
O
Theorem 7.11. If X is a Feller process, then it has a cadlag modification.

Proof. Step 1. We need instead of the R? a compact space. We use the
one-point compactification (Alexandroff extension):
Let 0 be a point not in R?. We define a topology O’ on (R%)? :=
R? U {0} as follows: Denote by O the open sets of RY. We define

O :={AcC (RH?: either (A€ O) or (0 € A,
A° is a compact subset of RY)}.

Then ((R%)?,0’) is a compact Hausdorff space.

Remark. This construction can be done for any locally compact
Hausdorff space.

Step 2. Let ()22, C Co(R%[0,00)) be a sequence which separates the
points: For any z,y € (R?)? with # # y 3k € N : fu(x) # fu(y).
(Such a sequence exists: exercise).
We want to show that then also

S:={R,f.:peN",neN}
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is a countable set (this is clear) which separates points: It holds for
any p > 0

PRyf(x) = p/ooo e PPT(t) f(x)dt

_ /0 e <%) f(z)du
sup [pR,f(z) — f(z)] = sup

00 . E - ]
s [ () - s
< /Oooe—uHT (%)f—f|\du—>0, P — 00,

This implies

by dominated convergence since ||T' (%) = fll < 2||f]l, and the

strong continuity of the semigroup implies || T (%) f=fll — 0 for

p — oo. Then, if z # y there exists a function f; with fi(x) # fr(y)
and can find a p € N such that R, fx(z) # R, fi(v).

Step 3. We fix a set D C [0, 00) which is countable and dense. We show
that 3Q* € F with P(Q*) =1:

Yw € Q*Vn,p € N*:[0,00) 5 t = R, fn(Xi(w)) (19)

has right and left (for ¢ > 0) limits along D.

For this we conclude from Lemma 7.9 that
{e PR, fn(X;);t >0} isan {F;t>0} supermartingale.

By Theorem 7.8 (i) we have for any p,n € N* a set Q2 € F with
P(€2;, ) = 1 such that Vw € 2 Vt > 0(t > 0)

J lim e™”R,f(Xs(w)) (I lm e PR, fn(Xs(w))

sdt,seD sTt,seD

Since s — eP® is continuous we get assertion (19) by setting Q* :=

ﬂfzozl ﬂ;il Qz,p .
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Step 4.

Step 5.

We show: Yw € Q" : t — X;(w) has right limits along D. If
Alim,; .ep Xs(w) then 3z, y € (RY)? and sequences (s,)n, (3m)m C
D with s, | t, 5, | t, such that

lim X, (w) =2, and lim X; (w)=vy

n—roo m—0o0
But dp, k: R, fe(x) # R, fr(y) which is a contradiction to the fact
that s — R, fr(Xs(w)) has right limits along D.

Construction of a right-continuous modification:
For w € Q* set Vi > 0 :
X = lim X,
w) = lim X,(w),
For w & Q* we set X;(w) = = where x € R? is arbitrary and fixed.

Then: 3
X, =X, a.s.:

Since for f,g € C((R%)?) we have

Ef(X)g(X) = lim Ef(X;)g(X,)

slt,seD

= lim EE[f(X,)g(X,)|F¥]

slt,seD

= lim Ef(X)E[g(X,)|F¥]

slt,s€eD

= lim Ef(X)T(s —t)g(X)

slt,seD

= Ef(Xy)g(Xy),

where we used the Markov property for the second last equation
while the last equation follows from the fact that ||T(s—t)h—h| — t
for s | 0. By Lemma 7.10 we conclude X; = X, a.s.

We check that ¢ — X, is right-continuous Vw € Q : For w € QF
consider for § > 0

[Xi(w) = Xeps ()] < [Xi(w) = Xo(W)] + [Xo(w) = Xivs(w)]

where | X (w) — X(w)| < e forall s € (¢,t46(t))ND and | X,(w) —
Xips(w)| <eforall 6 <d1(t) and s € (t+ 0,6+ 06+ da(t +0)) N D.
Hence t — X, is right-continuous.
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Step 6. cadlag modifications:
We use [8, Theorem 1.3.8(v)] which states that almost every path of
a right-continuous submartingale has left limits for any ¢ € (0, 00).
Since {—e PR, f,(X,);t > 0} is a right-continuous submartingale,
we can proceed as above (using the fact that S separates the points)
so show that ¢ — X (w) is cadlag for almost all w € Q.
O

Remark 7.12. Since we used the one point compactification of R?, we are
not able to distinguish, for ezample, if a sequence (X, )n>1 converges to —oo
or +o0 if d = 1.

However, for a Lévy process it can be shown (see [7, Theorem I1.2.68] ) that
for every ¢ > 0

P(sup{|Xs| : s € [0, N D} < o0) = 1.

Consequently, lim,, | X, | = 0 has probability 0 and Xis a cadlag version with
values in RY.
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A Appendix

Theorem A.1 (Monotone Class Theorem for functions). Let A C 22 be a
m-system that contains Q. Assume that for H C {f; f: Q — R} it holds

(i) 14 €H for A€ A,

(i1) linear combinations of elements of H are again in H,

(111) If (fn)22y € H such that 0 < f,, T f, and f is bounded = f € H,
then H contains all bounded functions that are o(A) measurable.

Proof. see [7].

Lemma A.2 (Factorization Lemma). Assume Q # 0, (E, &) be a measurable
space, maps g : 1 — E and F : Q — R, and o(g9) = {g7*(B) : B € E}. Then
the following assertions are equivalent:

(i) The map F is (2,0(g)) — (R, B(R)) is measurable.
(i) There exists a measurable h: (E,E) — (R, B(R)) such that F = hog.
Proof. see [2, p. 62]

Theorem A.3. Suppose M}, ..., M¢ are continuous, local martingales on
(Q, F,P) w.r.t. F. If for1 <1i,5 < d the processes (M*, M7); is an absolutely
continuous function in t P- a.s. then there exists an extension (Q, F,P) of
(Q, F,P) carrying a d-dimensional F Brownian motion B and measurable,
adapted processes {X}7;t >0} i,j =1,...,d with

t
IP’(/ (X;‘J)st<oo) =1, 1<i,j7<d;0<t< o0,
0
such that P-a.s.

1<i<d;0<t< oo,

d t
(M, M), = Z/O XHXEds 1<4,j<d;0<t<o0.
k=1
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Proof: [8, Theorem 3.4.2, page 170 |
An Ito process has the form

X(t) =+ /Otu(s)ds—k/ota(s)dB(s),

1 and o are progressively measurable and satisfy

/ s)ds < oo, / ds<ooas

Lemma A.4 (It6’s formula). If B(t) = (By(t), ..., By(t)) is a d-dimensional
(F:) Brownian motion and

Xi(t) = x; + /m ds—i—Z/aU )dB;(

are Ité processes, then for any C? function f : R — R we have

f(Xi(t), .. Xa(t) = f(zq,..,x , - Xa(s))dX;(s)
%22 / @fa X(5) - Xl X, )

and d(X;, X;)s = EZ=1 Oik0jrds.
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