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4.3 Lévy processes are strong Markov . . . . . . . . . . . . . . . . 15
4.4 Right-continuous filtrations . . . . . . . . . . . . . . . . . . . 17

5 The semigroup/infinitesimal generator approach 21
5.1 Contraction semigroups . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Infinitesimal generator . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Martingales and Dynkin’s formula . . . . . . . . . . . . . . . . 27

6 Weak solutions of SDEs and martingale problems 30

7 Feller processes 36
7.1 Feller semigroups, Feller transition functions and Feller processes 36
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1 Introduction

Why should one study Markov processes?

• Markov processes are quite general:

A Brownian motion is a Lévy process.
Lévy processes are Feller processes.
Feller processes are Hunt processes, and the class of Markov processes
comprises all of them.

• Solutions to certain SDEs are Markov processes.

• There exist many useful relations between Markov processes and

– martingale problems,

– diffusions,

– second order differential and integral operators,

– Dirichlet forms.

2 Definition of a Markov process

Let (Ω,F ,P) be a complete probability space and (E, r) a complete separable
metric space. By (E, E) we denote a measurable space and T ⊆ R ∪ {∞} ∪
{−∞}.
We call X = {Xt; t ∈ T} a stochastic process if

Xt : (Ω,F)→ (E, E), ∀t ∈ T.

The map t 7→ Xt(ω) we call a path of X.

We say that F = {Ft; t ∈ T} is a filtration, if Ft ⊆ F is a sub-σ-algebra for
any t ∈ T, and it holds Fs ⊆ Ft for s ≤ t.
The process X is adapted to F ⇐⇒df Xt is Ft measurable for all t ∈ T.

Obviously, X is always adapted to its natural filtration FX = {FXt ; t ∈ T}
given by FXt = σ(Xs; s ≤ t, s ∈ T).
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Definition 2.1 (Markov process). The stochastic process X is a Markov
process w.r.t. F ⇐⇒df

(1) X is adapted to F,

(2) for all t ∈ T : P(A ∩B|Xt) = P(A|Xt)P(B|Xt), a.s.
whenever A ∈ Ft and B ∈ σ(Xs; s ≥ t).
(for all t ∈ T the σ-algebras Ft and σ(Xs; s ≥ t, s ∈ T) are condition-
ally independent given Xt.)

Remark 2.2. (1) Recall that we define conditional probability using con-
ditional expectation: P(C|Xt) := P(C|σ(Xt)) = E[1C |σ(Xt)].

(2) If X is a Markov process w.r.t. F, then X is a Markov process w.r.t.G =
{Gt; s ∈ T}, with Gt = σ(Xs; s ≤ t, s ∈ T).

(3) If X is a Markov process w.r.t. its natural filtration the Markov property
is preserved if one reverses the order in T.

Theorem 2.3. Let X be F-adapted. TFAE:

(i) X is a Markov process w.r.t. F.

(ii) For each t ∈ T and each bounded σ(Xs; s ≥ t, s ∈ T)-measurable Y one
has

E[Y |Ft] = E[Y |Xt]. (1)

(iii) If s, t ∈ T and t ≤ s, then

E[f(Xs)|Ft] = E[f(Xs)|Xt] (2)

for all bounded f : (E, E)→ (R,B(R)).

Proof. (i) =⇒ (ii):
Suppose (i) holds. The Monotone Class Theorem for functions (Theorem
A.1) implies that it suffices to show (1) for Y = 1B where B ∈ σ(Xs; s ≥
t, s ∈ T). For A ∈ Ft we have

E(E[Y |Ft]1A) = E1A1B
= P(A ∩B) = EP(A ∩B|Xt)
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= EP(A|Xt)P(B|Xt)

= EE[1A|Xt]P(B|Xt)

= E1AP(B|Xt)

= E(E[Y |Xt]1A)

which implies (ii).
(ii) =⇒ (i):
Assume (ii) holds. If A ∈ Ft and B ∈ σ(Xs; s ≥ t, s ∈ T), then

P(A ∩B|Xt) = E[1A∩B|Xt]

= E[E[1A∩B|Ft]|Xt]

= E[1AE[1B|Ft]|Xt]

= E[1A|Xt]E[1B|Xt],

which implies (i).
(ii) ⇐⇒ (iii):
The implication (ii) =⇒ (iii) is trivial. Assume that (iii) holds. We want to
use the Monotone Class Theorem for functions. Let

H := {Y ; Y is bounded and σ(Xs; s ≥ t, s ∈ T)−measurable

such that (1) holds.}

Then H is a vector space containing the constants and is closed under
bounded and monotone limits. We want that

H = {Y ; Y is bounded and σ(Xs; s ≥ t, s ∈ T)−measurable}

It is enough to show that

Y = Πn
i=1fi(Xsi) ∈ H (3)

for bounded fi : (E, E)→ (R,B(R)) and t ≤ s1 < ... < sn (n ∈ N∗).
(Notice that then especially 1A ∈ H for any A ∈ A with

A = {{ω ∈ Ω;Xs1 ∈ I1, ..., Xsn ∈ In} : Ik ∈ B(R), sk ∈ T, sk ≥ t, n ∈ N∗}

and σ(A) = σ(Xs; s ≥ t, s ∈ T).
We show (3) by induction in n:
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n = 1: This is assertion (iii).
n > 1:

E[Y |Ft] = E[E[Y |Fsn−1 ]|Ft]
= E[Πn−1

i=1 fi(Xsi)E[fn(Xsn)|Fsn−1 ]|Ft]
= E[Πn−1

i=1 fi(Xsi)E[fn(Xsn)|Xsn−1 ]|Ft]

By the factorization Lemma (Lemma A.2) there exists a h : (E, E) →
(R,B(R)) such that E[fn(Xsn)|Xsn−1 ] = h(Xsn−1). By induction assumption:

E[Πn−1
i=1 fi(Xsi)h(Xsn−1)|Ft] = E[Πn−1

i=1 fi(Xsi)h(Xsn−1)|Xt].

By the tower property, since σ(Xt) ⊆ Fsn−1

E[Πn−1
i=1 fi(Xsi)h(Xsn−1)|Xt] = E[Πn−1

i=1 fi(Xsi)E[fn(Xsn)|Fsn−1 ]|Xt]

= E[E[Πn−1
i=1 fi(Xsi)fn(Xsn)|Fsn−1 ]|Xt]

= E[Πn
i=1fi(Xsi)|Xt].

Definition 2.4 (transition function). Let s, t ∈ T ⊆ [0,∞). .

(1) The map

Pt,s(x,A), 0 ≤ t < s <∞, x ∈ E,A ∈ E ,

is called Markov transition function on (E, E), provided that

(i) A 7→ Pt,s(x,A) is a probability measure on (E, E) for each (t, s, x),

(ii) x 7→ Pt,s(x,A) is E-measurable for each (t, s, A),

(iii) Pt,t(x,A) = δx(A)

(iv) if 0 ≤ t < s < u then the Chapman-Kolmogorov equation

Pt,u(x,A) =

∫
E

Ps,u(y, A)Pt,s(x, dy)

holds for all x ∈ E and A ∈ E .
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(2) The Markov transition function Pt,s(x,A) is homogeneous ⇐⇒ df if

there exists a map P̂t(x,A) with Pt,s(x,A) = P̂s−t(x,A) for all 0 ≤ t ≤
s, x ∈ E,A ∈ E .

(3) Let X be adapted to F and Pt,s(x,A) with 0 ≤ t ≤ s, x ∈ E,A ∈ E a
Markov transition function. We say that X is a Markov process w.r.t. F
having Pt,s(x,A) as transition function if

E[f(Xs)|Ft] =

∫
E

f(y)Pt,s(Xt, dy) (4)

for all 0 ≤ t ≤ s and all bounded f : (E, E)→ (R,B(R)).

(4) Let µ be a probability measure on (E, E) such that µ(A) = P(X0 ∈ A).
Then µ is called initial distribution of X.

Remark 2.5. (1) There exist Markov processes which do not possess tran-
sition functions (see [4] Remark 1.11 page 446)

(2) A Markov transition function for a Markov process is not necessarily
unique.

Using the Markov property, one obtains the finite-dimensional distributions
of X:
for 0 ≤ t1 < t2 < ... < tn and bounded

f : (En, E⊗n)→ (R,B(R))

it holds

Ef(Xt1 , ..., Xtn) =

∫
E

µ(dx0)

∫
E

P0,t1(x0, dx1)...

∫
E

Ptn−1,tn(xn−1, dxn)f(x1, ..., xn).

3 Existence of Markov processes

Given a distribution µ and Markov transition functions {Pt,s(x,A)}, does
there always exist a Markov process with initial distribution µ and transition
function {Pt,s(x,A)}?

Definition 3.1. For a measurable space (E, E) and an arbitrary index set
T define

Ω := ET, F := ET := σ(Xt; t ∈ T),
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where Xt : Ω → E is the coordinate map Xt(ω) = ω(t). For a finite subset
J = {t1, ..., tn} ⊆ T we use the projections πJ : Ω→ EJ

πJω = (ω(t1), ..., ω(tn)) ∈ EJ

πJX = (Xt1 , ..., Xtn).

(1) Let Fin(T) := {J ⊆ T; 0 < |J| <∞}. Then

{PJ : PJ is a probability measure on (EJ , EJ), J ∈ Fin(T)}

is called the set of finite-dimensional distributions of X.

(2) The set of probability measures {PJ : J ∈ Fin(T)} is called Kolmogorov
consistent (or compatible or projective) provided that

PJ = PK ◦ (πJ |EK )−1

for all J ⊆ K, J,K ∈ Fin(T).
(Here it is implicitly assumed that

Ptσ(1),...,tσ(n)(Aσ(1) × ...× Aσ(n)) = Pt1,...,tn(A1 × ...× An)

for any permutation σ : {1, ..., n} → {1, ..., n}.)

Theorem 3.2 (Kolmogorov’s extension theorem, Daniell-Kolmogorov The-
orem). Let E be a complete, separable metric space and E = B(E). Let T be
a set. Suppose that for each J ∈ Fin(T) there exists a probability measure
PJ on (EJ , EJ) and that

{PJ ; J ∈ Fin(T)}

is Kolmogorov consistent. Then there exists a unique probability measure P
on (ET, ET) such that

PJ = P ◦ π−1
J on (EJ , EJ).

Proof: see, for example, Theorem 2.2 in Chapter 2 of [8].

Corollary 3.3 (Existence of Markov processes). Let E = Rd, E = B(Rd)
and T ⊆ [0,∞). Assume µ is a probability measure on (E, E), and

{Pt,s(x,A); t, s ∈ T, x ∈ E, A ∈ E}
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is a family of Markov transition functions like in Definition 2.4. If J =
{t1, ..., tn} ⊆ T then by {s1, ..., sn} = J with s1 < ... < sn (i.e. the tk

′s are
re-arranged according to their size) and define

PJ(A1 × ...× An) :=

∫
E

...

∫
E

1A1×...×An(x1, .., xn)µ(dx0)P0,s1(x0, dx1)

...Psn−1,sn(xn−1, dxn). (5)

Then there exists a probability measure P on (ET, ET) such that the coordi-
nate mappings, i.e.

Xt : ET → Rd : ω 7→ ω(t)

form a Markov process.

Remark 3.4. Using the monotone class theorem (Theorem A.1) one can
show that (5) implies that for any bounded f : (En, En)→ (R,B(R)) it holds

Ef(Xs1 , ..., Xsn) =

∫
E

...

∫
E

f(x1, .., xn)µ(dx0)P0,s1(x0, dx1)

...Psn−1,sn(xn−1, dxn). (6)

Proof of the Corollary. By construction, PJ is a probability measure on (EJ , EJ).
We show that the set {PJ ; J ∈ Fin(T)} is Kolmogorov consistent: consider
K ⊆ J ,

K = {si1 < ... < sik} ⊆ {s1 < ... < sn}, k < n,

and

πK : EJ → EK : (x1, ..., xn) 7→ (xi1 , ..xik).

We have π−1
K (B1× ...×Bk) = A1× ...×An with Ai ∈ {B1, ..., Bk, E}. Let us

assume, for example, that k = n− 1 and

A1 × ...× An = B1 × ...×Bn−2 × E ×Bn.

Then

PJ(A1 × ...× An) =

∫
E

...

∫
E

1B1×...×Bn−2×E×Bn(x1, ..., xn)µ(dx0)P0,s1(x0, dx1)

...Psn−1,sn(xn−1, dxn)
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= P{s1,...,sn−2,sn}(B1 × ...×Bn−2 ×Bn)

since, by Chapman-Kolmogorov, we have∫
E

Psn−2,sn−1(xn−2, dxn−1)Psn−1,sn(xn−1, dxn) = Psn−2,sn(xn−2, dxn).

According to Definition 2.1 we need to show that

P(A ∩B|Xt) = P(A|Xt)P(B|Xt) (7)

for A ∈ FXt = σ(Xu;u ≤ t), B ∈ σ(Xs; s ≥ t). We only prove the special
case

P(Xs ∈ B3, Xu ∈ B1|Xt) = P(Xs ∈ B3|Xt)P(Xu ∈ B1|Xt)

for u < t < s,Bi ∈ E . For this we show that it holds

E1B1(Xu)1B3(Xs)1B2(Xt) = EP(Xs ∈ B3|Xt)P(Xu ∈ B1|Xt)1B2(Xt).

Indeed, by (5),

E1B1(Xu)1B3(Xs)1B2(Xt)

=

∫
E

∫
E

∫
E

∫
E

1B1×B2×B3(x1, x2, x3)µ(dx0)P0,u(x0, dx1)Pu,t(x1, dx2)Pt,s(x2, dx3)

Using the tower property we get

EP(Xs ∈ B3|Xt)P(Xu ∈ B1|Xt)1B2(Xt) = E(E[1B3(Xs)|Xt])1B1(Xu)1B2(Xt)

= EPt,s(Xt, B3)1B1(Xu)1B2(Xt).

To see that E[1B3(Xs)|Xt]) = Pt,s(Xt, B3) we write

E1B3(Xs)1B(Xt) =

∫
E

∫
E

∫
E

1B3(x2)1B(x1)µ(dx0)P0,t(x0, dx1)Pt,s(x1, dx2)

=

∫
E

∫
E

∫
E

1B(x1)µ(dx0)P0,t(x0, dx1)Pt,s(x1, B3)

= EPt,s(Xt, B3)1B(Xt).

9



where we used (6) for f(x1) = 1B(x1)Pt,s(x1, B3).Again (6), now for f(Xu, Xt) :=
Pt,s(Xt, B3)1B1(Xu)1B2(Xt), we get that

EPt,s(Xt, B3)1B1(Xu)1B2(Xt)

=

∫
E

∫
E

∫
E

Pt,s(x2, B3)1B1×B2(x1, x2)µ(dx0)P0,u(x0, dx1)Pu,t(x1, dx2)

=

∫
E

∫
E

∫
E

∫
E

1B1×B2×B3(x1, x2, x3)µ(dx0)P0,u(x0, dx1)Pu,t(x1, dx2)Pt,s(x2, dx3).

4 Strong Markov processes

4.1 Stopping times and optional times

For (Ω,F) we fix a filtration F = {Ft; t ∈ T}, where T = [0,∞) ∪ {∞} and
F∞ = F .

Definition 4.1. A map τ : Ω→ T is called a stopping time w.r.t. F provided
that

{τ ≤ t} ∈ Ft for all t ∈ [0,∞).

Remark 4.2. Note that {τ =∞} = {τ <∞}c ∈ F since

{τ <∞} =
⋃
n∈N

{τ ≤ n} ∈ F∞ = F .

Then {τ ≤ ∞} = {τ <∞} ∪ {τ =∞} ∈ F∞ and hence

{τ ≤ t} ∈ Ft for all t ∈ T.

We define

Ft+ :=
⋂
s>t

Fs, t ∈ [0,∞), F∞+ := F ,

Ft− := σ

( ⋃
0≤s<t

Fs

)
, t ∈ (0,∞),

F0− := F0, F∞− := F .

Clearly,
Ft− ⊆ Ft ⊆ Ft+.
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Definition 4.3. The filtration {Ft; t ∈ T} is called right-continuous if Ft =
Ft+ for all t ∈ [0,∞).

Lemma 4.4. If τ and σ are stopping times w.r.t. F, then

(1) τ + σ,

(2) τ ∧ σ, (min)

(3) τ ∨ σ, (max)

are stopping times w.r.t. F.

Definition 4.5. Let τ be a stopping time w.r.t. F. We define

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t ∈ [0,∞)},

Fτ+ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft+ ∀t ∈ [0,∞)}.

Note: Fτ and Fτ+ are σ algebras.

Lemma 4.6. Let σ, τ, τ1, τ2, ... be F - stopping times. Then it holds

(i) τ is Fτ -measurable,

(ii) If τ ≤ σ, then Fτ ⊆ Fσ,

(iii) Fτ+ = {A ∈ F : A ∩ {τ < t} ∈ Ft ∀t ∈ [0,∞)},

(iv) supn τn is an F - stopping time.

Definition 4.7. The map τ : Ω→ T is called optional time ⇐⇒df

{τ < t} ∈ Ft, ∀t ∈ [0,∞).

Note: For an optional time it holds

τ : (Ω,F)→ (R ∪ {∞}, σ(B(R) ∪ {{∞}}))

i.e. τ is an extended random variable.

Lemma 4.8. .

(i) For t0 ∈ T the map τ(ω) = t0 ∀ω ∈ Ω is a stopping time.

11



(ii) Every stopping time is an optional time.

(iii) If {Ft; t ∈ T} is right-continuous, then every optional time is a stopping
time.

(iv) τ is an {Ft; t ∈ T} optional time ⇐⇒ τ is an {Ft+; t ∈ T} stopping
time.

Proof. (i): Consider

{τ ≤ t} =

{
Ω; t0 ≤ t
∅; t0 > t

(ii): Let τ be a stopping time. Then

{τ < t} =
∞⋃
n=1

{
τ ≤ t− 1

n

}
︸ ︷︷ ︸
∈F

t− 1
n
⊆Ft

∈ Ft.

(iii): We have that {τ ≤ t} =
⋂∞
n=1

{
τ < t+

1

n

}
︸ ︷︷ ︸

∈F
t+ 1
n

. Because of

M⋂
n=1

{
τ < t+

1

n

}
=

{
τ < t+

1

M

}
∈ Ft+ 1

M

we get that {τ ≤ t} ∈ Ft+ 1
M
∀M ∈ N∗ and hence {τ ≤ t} ∈ Ft+ = Ft since

{Ft; t ∈ T} is right-continuous.
(iv) ’ =⇒ ’: If τ is an {Ft; t ∈ T} optional time then {τ < t} ∈ Ft =⇒ {τ <
t} ∈ Ft+ because Ft ⊆

⋂
s>tFs = Ft+. This means that τ is an {Ft+; t ∈ T}

optional time. Since {Ft+; t ∈ T} is right-continuous (exercise), we conclude
from (iii) that τ is an {Ft+; t ∈ T} stopping time.
’⇐=’: If τ is an {Ft+; t ∈ T} stopping time, then

{τ < t} =
∞⋃
n=1

{τ ≤ t− 1

n
}︸ ︷︷ ︸

∈F(t−1/n)+=
⋂
s>t−1/n Fs⊆Ft

∈ Ft.
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Lemma 4.9. If τ is an optional time w.r.t. F, then

Fτ+ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft+ ∀t ∈ [0,∞)}

is a σ -algebra. It holds

Fτ+ = {A ∈ F : A ∩ {τ < t} ∈ Ft ∀t ∈ [0,∞)}.

4.2 Strong Markov property

Definition 4.10 (progressively measurable). Let E be a complete, separable
metric space and E = B(E). A process X = {Xt; t ∈ [0,∞)}, with Xt : Ω→
E is called F-progressively measurable if for all t ≥ 0 it holds

X : ([0, t]× Ω,B([0, t])⊗Ft)→ (E, E).

We will say that a stochastic process X is right-continuous (left-continuous),
if for all ω ∈ Ω

t 7→ Xt(ω)

is a right-continuous (left-continuous) function.

Lemma 4.11. .

(i) If X is F- progressively measurable then X is F-adapted,

(ii) If X is F-adapted and right-continuous (or left-continuous), then X is
F- progressively measurable,

(iii) If τ is an F-stopping time, and X is F- progressively measurable, then
Xτ (defined on {τ <∞}) is Fτ -measurable,

(iv) For an F-stopping time τ and a F- progressively measurable process X
the stopped process Xτ given by

Xτ
t (ω) := Xt∧τ (ω)

is F- progressively measurable,

(v) If τ is an F-optional time, and X is F- progressively measurable, then
Xτ (defined on {τ <∞}) is Fτ+-measurable.
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Proof. (i), (ii) and (v) are exercises.
(iii): For s ∈ [0,∞) it holds

{τ ∧ t ≤ s} = {τ ≤ s} ∪ {t ≤ s} =

{
Ω, s ≥ t
{τ ≤ s}, s < t

∈ Ft

Hence τ ∧ t is Ft-measurable. We have h : ω 7→ (τ(ω) ∧ t, ω) :

(Ω,Ft)→ ([0, t]× Ω,B([0, t])⊗Ft).
Since X is F- progressively measurable, we have

X : ([0, t]× Ω,B([0, t])⊗Ft)→ (E, E). (8)

Hence

X ◦ h : (Ω,Ft)→ (E, E). (9)

It holds that Xτ is Fτ -measurable ⇐⇒
{Xτ ∈ B} ∩ {τ ≤ t} ∈ Ft ∀t ∈ [0,∞).

Indeed, this is true:

{Xτ ∈ B} ∩ {τ ≤ t} = {Xτ∧t ∈ B} ∩ {τ ≤ t}
which is in Ft because of (9), and since τ is a stopping time.
(iv):
It holds

H : (s, ω) 7→ (τ(ω) ∧ s, ω) :

([0, t]× Ω,B([0, t])⊗Ft)→ ([0, t]× Ω,B([0, t])⊗Ft), t ≥ 0, (10)

since

{(s, ω) ∈ [0, t]× Ω : τ(ω) ∧ s ∈ [0, r]} = ([0, r]× Ω) ∪ ((r, t]× {τ ≤ r}).
Because of (8) we have for the composition

X ◦H : ([0, t]× Ω,B([0, t])⊗Ft)→ (E, E),

(X ◦H)(s, ω) = Xτ(ω)∧s(ω) = Xτ
s (ω).

Definition 4.12 (strong Markov). Assume X is an F-progressively measur-
able homogeneous Markov process. Let {Pt(x,A)} be its transition function.
Then X is strong Markov if

P(Xτ+t ∈ A|Fτ+) = Pt(Xτ , A)

for all t ≥ 0, A ∈ E and all F-optional times τ for which it holds τ <∞ a.s.
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One can formulate the strong Markov property without transition functions:

Proposition 4.13. Let X be an F-progressively measurable process. Then,
provided X is a Markov process with transition function, the following asser-
tions are equivalent to Definition 4.12:

(1) X is called strong Markov provided that for all A ∈ E

P(Xτ+t ∈ A|Fτ+) = P(Xτ+t ∈ A|Xτ )

for all F-optional times τ such that τ <∞ a.s.

(2) ∀t1, ..., tn ∈ T, A1, ..., An ∈ E

P(Xτ+t1 ∈ A1, ..., Xτ+tn ∈ An|Fτ+) = P(Xτ+t1 ∈ A1, ..., Xτ+tn ∈ An|Xτ )

for all F-optional times τ such that τ <∞ a.s.

4.3 Lévy processes are strong Markov

Definition 4.14. A process X is called Lévy process if

(i) The paths of X are a.s. càdlàg (i.e. they are right-continuous and have
left limits for t > 0.),

(ii) P(X0 = 0) = 1,

(iii) ∀ 0 ≤ s ≤ t : Xt −Xs
d
= Xt−s,

(iv) ∀ 0 ≤ s ≤ t : Xt −Xs is independent of FXs .

The strong Markov property for a Lévy process is formulated as follows.

Theorem 4.15 (strong Markov property for a Lévy process). Let X be a
Lévy process. Assume that τ is an FX-optional time such that τ <∞ almost
surely. Define the process X̃ = {X̃t; t ≥ 0} by

X̃t = 1{τ<∞}(Xt+τ −Xτ ), t ≥ 0.

Then on {τ <∞} the process X̃ is independent of FXτ+ and X̃ has the same
distribution as X.
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Remark 4.16. To show that Theorem 4.15 implies that X is strong Markov
according to Defintion 4.12 we proceed as follows. Assume that τ is an FX-
optional time such that τ < ∞ a.s. Since by Lemma 4.11 (v) we have that
Xτ1{τ<∞} is FXτ+ measurable, and from the above Theorem we have that
1{τ<∞}(Xt+τ −Xτ ) is independent from FXτ+, we get from the Factorization
Lemma (Lemma A.2) that for any A ∈ E it holds

P(Xτ+t1{τ<∞} ∈ A|Fτ+) = E[1{1{τ<∞}(Xt+τ−Xτ )+1{τ<∞}Xτ∈A}|Fτ+]

= (E1{1{τ<∞}(Xt+τ−Xτ )+y∈A}) |y=1{τ<∞}Xτ

The assertion from the theorem that 1{τ<∞}(Xt+τ − Xτ ) =
d
Xt allows us to

write
E1{1{τ<∞}(Xt+τ−Xτ )+y∈A} = E1{Xt+y∈A} = Pt(y, A).

Consequently, we have shown that on {τ <∞},

P(Xτ+t ∈ A|Fτ+) = Pt(Xτ , A).

Proof of Theorem 4.15. The finite dimensional distributions determine the
law of a stochastic process. Hence it is sufficient to show for arbitrary 0 =
t0 < t1 < ... < tm (m ∈ N∗) that

X̃tm − X̃tm−1 , ..., X̃t1 − X̃t0 and Fτ+ are independent.

Let G ∈ Fτ+. We define a sequence of random times

τ (n) =
∞∑
k=1

k

2n
1{ k−1

2n
≤τ< k

2n
}.

We have that τ (n) <∞. Then for θ1, ..., θn ∈ R, using tower property,

E exp

{
i

m∑
l=1

θl(Xτ (n)+tl
−Xτ (n)+tl−1

)

}
1G

=
∞∑
k=1

E exp

{
i
m∑
l=1

θl(Xτ (n)+tl
−Xτ (n)+tl−1

)

}
1G∩{τ (n)= k

2n
}

=
∞∑
k=1

E exp

{
i
m∑
l=1

θl(X k
2n

+tl
−X k

2n
+tl−1

)

}
1G∩{τ (n)= k

2n
}

16



=
∞∑
k=1

E1G∩{τ (n)= k
2n
}E
[

exp

{
i
m∑
l=1

θl(X k
2n

+tl
−X k

2n
+tl−1

)

}∣∣∣∣F k
2n

]
=

∞∑
k=1

E1G∩{τ (n)= k
2n
}E exp

{
i
m∑
l=1

θl(X k
2n

+tl
−X k

2n
+tl−1

)

}
, (11)

since G ∩ {τ (n) = k
2n
} ∈ F k

2n
and property (iv) of Definition 4.14.

For ω ∈ {τ <∞} we have τ (n)(ω) ↓ τ(ω). Since X is right-continuous:

Xτ (n)(ω)+s → Xτ(ω)+s, n→∞,∀s ≥ 0.

By dominated convergence and property (iii) of Definition 4.14:

E exp

{
i
m∑
l=1

θl(Xτ+tl −Xτ+tl−1
)

}
1G∩{τ<∞}

= lim
n→∞

E exp

{
i
m∑
l=1

θl(Xτ (n)+tl
−Xτ (n)+tl−1

)

}
1G

= lim
n→∞

P(G)E exp

{
i
m∑
l=1

θl(Xtl −Xtl−1
)

}
= P(G)E exp

{
i
m∑
l=1

θl(Xtl −Xtl−1
)

}
,

where we used (11).

4.4 Right-continuous filtrations

We denote as above by (Ω,F) a measurable space and use T = [0,∞) ∪
{∞},F = {Ft; t ∈ T},F∞ = F .

Definition 4.17. The system D ⊆ 2Ω is called Dynkin system if ⇐⇒df

(i) Ω ∈ D,

(ii) A,B ∈ D and B ⊆ A =⇒ A \B ∈ D,

(iii) (An)∞n=1 ⊆ D, A1 ⊆ A2 ⊆ ... =⇒
⋃∞
n=1 An ∈ D.
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Theorem 4.18 (Dynkin system theorem). Let C ⊆ 2Ω be a π-system. If D
is a Dynkin system and C ⊆ D, then

σ(C) ⊆ D.

Definition 4.19 (augmented natural filtration). Let X be a process on
(Ω,F ,P). We set

N P := {A ⊆ Ω : ∃B ∈ F with A ⊆ B and P(B) = 0},

the set of ’P-null-sets’. If FXt = σ(Xu : u ≤ t), then the filtration {FP
t ; t ∈ T}

given by
FP
t := σ(FXt ∪N P)

is called the augmented natural filtration of X.

Theorem 4.20 (the augmented natural filtration of a strong Markov pro-
cess is right-continuous). Assume (E, E) = (Rd,B(Rd)) and let X be a strong
Markov process with initial distribution µ (which means P(X0 ∈ B) = µ(B) ∀B ∈
B(Rd)). Then the augmented natural filtration

{FP
t ; t ∈ T}

is right-continuous.

Proof. Step 1
We show that ∀s ≥ 0 and G ∈ FX∞ : P(G|FXs+) = P(G|FXs ) P-a.s:
Fix s ∈ [0,∞). Then σ ≡ s is a stopping time w.r.t. FX := {FXt ; t ∈ T} by
Lemma 4.8 (i) and (ii) we get that σ is an FX optional time. For arbitrary
0 ≤ t0 < t1 < ... < tn ≤ s < tn+1 < ... < tm and A0, A1, ..., Am ∈ B(Rd) we
have from Proposition 4.13 about the strong Markov property that

P(Xt0 ∈ A0, ..., Xtm ∈ Am|FXs+)

= E[1{Xt0∈A0,...,Xtn∈An}1{Xtn+1∈An+1,...,Xtm∈Am}|F
X
s+]

= 1{Xt0∈A0,...,Xtn∈An}P(Xtn+1 ∈ An+1, ..., Xtm ∈ Am|FXs+)

= 1{Xt0∈A0,...,Xtn∈An}P(Xtn+1 ∈ An+1, ..., Xtm ∈ Am|Xs) a.s.

Hence the RHS is a.s. FXs -measurable. Define

D := {G ∈ FX∞ : P(G|FXs+) has an FXs measurable version }.

18



Then Ω ∈ D. If G1, G2 ∈ D and G1 ⊆ G2, then

P(G2 \G1|FXs+) = P(G2|FXs+)− P(G1|FXs+)

has an FXs -measurable version. Finally, for G1, G2, ... ∈ D with G1 ⊆ G2 ⊆ ...
we get by monotone convergence applied to E[1Gk |FXs+] that

⋃∞
k=1Gk ∈ D.

We know that

C := {{Xt0 ∈ A0, ..., Xtm ∈ Am} : 0 ≤ t0 < t1 < ... < tn ≤ s < tn+1 < ... < tm, Ak ∈ B(Rd)}

is a π -system which generates FX∞. By the Dynkin system theorem we get
that for any G ∈ FX∞

P(G|FXs+)

has an FXs -measurable version.

Step 2 We show FXs+ ⊆ FP
s :

If G ∈ FXs+ ⊆ FX∞ then P(G|FXs+) = 1G a.s. By Step 1 there exists an FXs -
measurable random variable Y := P(G|FXs ). Then H := {Y = 1} ∈ FXs and

H∆G := (H \G) ∪ (G \H) ⊆ {1G 6= Y } ∈ N P.

From the exercises we know that for any t ≥ 0 it holds

FP
t = {G ⊆ Ω : ∃H ∈ FXt : H∆G ∈ N P}. (12)

Hence G ∈ FP
s , which means FXs+ ⊆ FP

s .

Step 3 We show FP
s+ ⊆ FP

s :
If G ∈ FP

s+ then ∀n ≥ 1 G ∈ FP
s+ 1

n

. We use again (12) and conclude that

there exists a set Hn ∈ FXs+ 1
n

with G∆Hn ∈ N P. Put

H =
∞⋂
m=1

∞⋃
n=m

Hn.

Since
⋃∞
n=mHn ⊇

⋃∞
n=m+1Hn we have H =

⋂∞
m=M

∞⋃
n=m

Hn︸ ︷︷ ︸
∈FX

s+ 1
m

∀M ∈ N. We get

H ∈ FX
s+ 1

M

∀M ∈ N and therefore H ∈ FXs+ ⊆ FP
s . We show G ∈ FP

s by
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representing G = (G∪H)\ (H \G) = ((H∆G)∪H)\ (H \G) where we have
H ∈ FP

s , and H∆G ∈ N P will be shown below (which especially implies also
H \G ∈ N P). Indeed, we notice that H∆G = (H \G) ∪ (G \H),

H \G ⊆

(
∞⋃
n=1

Hn

)
\G =

∞⋃
n=1

(Hn \G) ∈ N P,

and

G \H = G ∩Hc = G ∩

(
∞⋂
m=1

∞⋃
n=m

Hn

)c

= G ∩

(
∞⋃
m=1

∞⋂
n=m

Hc
n

)

=
∞⋃
m=1

(
G ∩

∞⋂
n=m

Hc
n

)

⊆
∞⋃
m=1

 G ∩Hc
m︸ ︷︷ ︸

G\Hm⊆G∆Hm∈N P

 ∈ N P.

So H∆G ∈ N P and hence G ∈ FP
s .
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5 The semigroup/infinitesimal generator ap-

proach

5.1 Contraction semigroups

Definition 5.1 (semigroup). (1) Let B be a real Banach space with norm
‖ · ‖. A one-parameter family {T (t); t ≥ 0} of bounded linear operators
T (t) : B→ B is called a semigroup if

• T (0) = Id,

• T (s+ t) = T (s)T (t), ∀s, t ≥ 0.

(2) A semigroup {T (t); t ≥ 0} is called strongly continuous (or C0 semi-
group) if

lim
t↓0

T (t)f = f, ∀f ∈ B.

(3) The semigroup {T (t); t ≥ 0} is a contraction semigroup if

‖T (t)‖ = sup
‖f‖=1

‖T (t)f‖ ≤ 1, ∀t ≥ 0.

As a simple example consider B = Rd, let A be a d× d matrix and

T (t) := etA :=
∞∑
k=0

tk

k!
Ak, t ≥ 0,

with A0 as identity matrix. One can show that e(s+t)A = esAetA, ∀s, t ≥ 0,
{etA; t ≥ 0} is strongly continuous, and ‖etA‖ ≤ et‖A‖, t ≥ 0.

Definition 5.2. Let E be a separable metric space. By BE we denote the
space of bounded measurable functions

f : (E,B(E))→ (R,B(R))

with norm ‖f‖ := supx∈E |f(x)|.
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Lemma 5.3. Let E be a complete separable metric space and X a homo-
geneous Markov process with transition function {Pt(x,A)}. The space BE

defined in Definition 5.2 is a Banach space, and {T (t); t ≥ 0} with

T (t)f(x) :=

∫
E

f(y)Pt(x, dy), f ∈ BE

is a contraction semigroup.

Proof. Step 1 We realise that BE is indeed a Banach space:

• measurable and bounded functions form a vector space

• ‖f‖ := supx∈E |f(x)| is a norm

• BE is complete w.r.t. this norm.

Step 2 T (t) : BE → BE :
To show that

T (t)f : (E,B(E))→ (R,B(R))

we approximate f by fn =
∑Nn

k=1 a
n
k1Ank , A

n
k ∈ B(E), ank ∈ R such that

|fn| ↑ |f |. Then

T (t)fn(x) =

∫
E

Nn∑
k=1

ank1Ank (y)Pt(x, dy)

=
Nn∑
k=1

ank

∫
E

1Ank (y)Pt(x, dy)

=
Nn∑
k=1

ankPt(x,A
n
k).

Since
Pt(·, Ank) : (E,B(E))→ (R,B(R)),

we have this measurability for T (t)fn, and by dominated convergence also
for T (t)f.

‖T (t)f‖ = sup
x∈E
|T (t)f(x)|
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≤ sup
x∈E

∫
E

|f(y)|Pt(x, dy)

≤ sup
x∈E
‖f‖Pt(x,E) = ‖f‖. (13)

Hence T (t)f ∈ BE.
Step 3 {T (t); t ≥ 0} is a semigroup:
We have T (0)f(x) =

∫
E
f(y)P0(x, dy) =

∫
E
f(y)δx(dy) = f(x). This implies

that T (0) = Id. From Chapman Kolmogorov’s equation we derive

T (s)T (t)f(x) = T (s)(T (t)f)(x)

= T (s)

(∫
E

f(y)Pt(·, dy)

)
(x)

=

∫
E

∫
E

f(y)Pt(z, dy)Ps(x, dz)

=

∫
E

f(y)Pt+s(x, dy) = T (t+ s)f(x).

Step 4 We have already seen in (13) that {T (t); t ≥ 0} is a contraction.

5.2 Infinitesimal generator

Definition 5.4 (infinitesimal generator). Let {T (t); t ≥ 0} be a contraction
semigroup on BE. Define

Af := lim
t↓0

T (t)f − f
t

for each f ∈ BE for which it holds: there exists a g ∈ BE such that:

There exists a g ∈ BE such that

∥∥∥∥T (t)f − f
t

− g
∥∥∥∥→ 0, for t ↓ 0. (14)

Let D(A) := {f ∈ BE : (14) holds}. Then

A : D(A)→ BE

is called infinitesimal generator of {T (t); t ≥ 0}, and D(A) is the domain of
A.
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Example 5.5. If W is the Brownian motion (one-dimensional) then A =
1
2
d2

dx2
and C2

c (R) ⊆ D(A), where

C2
c (R) := {f : R→ R : twice continuously differentiable, compact support }

We have Pt(x,A) = P(Wt ∈ A|W0 = x) and

T (t)f(x) = E[f(Wt)|W0 = x]

= Ef(W̃t + x),

where W̃ is a standard Brownian motion starting in 0. By Itô’s formula,

f(W̃t + x) = f(x) +

∫ t

0

f ′(W̃s + x)dW̃s +
1

2

∫ t

0

f ′′(W̃s + x)ds.

Since f ′ is bounded, we have E
∫ t

0
(f ′(W̃s + x))2ds <∞ and therefore

E
∫ t

0

f ′(W̃s + x)dW̃s = 0.

This implies

Ef(W̃t + x) = f(x) +
1

2
E
∫ t

0

f ′′(W̃s + x)ds.

By Fubini’s Theorem we get E
∫ t

0
f ′′(W̃s + x)ds =

∫ t
0
Ef ′′(W̃s + x)ds. We

notice that g given by g(s) := Ef ′′(W̃s + x) is a continuous function. By the
mean value theorem we may write∫ t

0

Ef ′′(W̃s + x)ds =

∫ t

0

g(s)ds = g(ξ)t, for some ξ ∈ [0, t].

Hence

T (t)f(x)− f(x)

t
=

Ef(W̃t + x)− f(x)

t
=

1
2
E
∫ t

0
f ′′(W̃s + x)ds

t

=
1

2
Ef ′′(W̃ξ + x).

This implies that for any given ε > 0 we can find by uniform continuity of
f ′′ a δ > 0 and get Chebyshev’s inequality that
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∣∣∣∣T (t)f(x)− f(x)

t
− 1

2
f ′′(x)

∣∣∣∣
=

1

2

∣∣∣Ef ′′(W̃ξ + x)− f ′′(x)
∣∣∣

≤ 1

2

∣∣∣Ef ′′(W̃ξ + x)1{|W̃ξ|≤δ} − f
′′(x)

∣∣∣+
1

2

∣∣∣Ef ′′(W̃ξ + x)1{|W̃ξ|>δ}

∣∣∣
≤ 1

2
sup
|y−x|≤δ

|f ′′(y)− f ′′(x)|+ 1

2
sup
x∈R
|f ′′(x)|P(|W̃ξ| > δ)

≤ 1

2
ε+

1

2
sup
x∈R
|f ′′(x)|E|W̃ξ|2

δ2
≤ ε

for 0 ≤ ξ ≤ t small.

Theorem 5.6. Let {T (t); t ≥ 0} be a contraction semigroup and A its in-
finitesimal generator with domain D(A). Then

(i) If f ∈ BE such that limt↓0 T (t)f = f,

then for t ≥ 0 it holds
∫ t

0
T (s)fds ∈ D(A) and

T (t)f − f = A

∫ t

0

T (s)fds.

(ii) If f ∈ D(A) and t ≥ 0, then T (t)f ∈ D(A) and

lim
s↓0

T (t+ s)f − T (t)f

s
= AT (t)f = T (t)Af.

(iii) If f ∈ D(A) and t ≥ 0 then
∫ t

0
T (s)fds ∈ D(A) and

T (t)f − f = A

∫ t

0

T (s)fds =

∫ t

0

AT (s)fds =

∫ t

0

T (s)Afds.

Proof. (i) If limt↓0 T (t)f = f then

lim
s↓u

T (s)f = lim
t↓0

T (u+ t)f = lim
t↓0

T (u)T (t)f = T (u) lim
t↓0

T (t)f = T (u)f,

where we used the continuity of T (u) : BE → BE :

‖T (u)fn − T (u)f‖ = ‖T (u)(fn − f)‖ ≤ ‖fn − f‖
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Hence the Riemann integral ∫ t

0

T (s+ u)fdu

exists for all t, s ≥ 0. Set tni = ti
n
. Then

n∑
i=1

T (tni )f(tni − tni−1)→
∫ t

0

T (u)fdu, n→∞,

and therefore

T (s)

∫ t

0

T (u)fdu = T (s)

(∫ t

0

T (u)fdu−
n∑
i=1

T (tni )f(tni − tni−1)

)

+
n∑
i=1

T (s)T (tni )f(tni − tni−1)

→
∫ t

0

T (s+ u)fdu.

This implies

T (s)− I
s

∫ t

0

T (u)fdu =
1

s

(∫ t

0

T (s+ u)fdu−
∫ t

0

T (u)fdu

)
=

1

s

(∫ t+s

s

T (u)fdu−
∫ t

0

T (u)fdu

)
=

1

s

(∫ t+s

t

T (u)fdu−
∫ s

0

T (u)fdu

)
→ T (t)f − f, s ↓ 0.

Since the RHS converges to T (t)f − f ∈ BE we get
∫ t

0
T (u)fdu ∈ D(A) and

A

∫ t

0

T (u)fdu = T (t)f − f.

(ii) If f ∈ D(A), then

T (s)T (t)f − T (t)f

s
=

T (t)(T (s)f − f)

s
→ T (t)Af, s ↓ 0.
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Hence T (t)f ∈ D(A) and AT (t)f = T (t)Af.

(iii) If f ∈ D(A), then T (s)f−f
s
→ Af and therefore T (s)f − f → 0 for s ↓ 0.

Then, by (i), we get
∫ t

0
T (u)fdu ∈ D(A). From (ii) we get by integrating∫ t

0

lim
s↓0

T (s+ u)f − T (u)f

s
du =

∫ t

0

AT (u)fdu =

∫ t

0

T (u)Afdu.

On the other hand, in the proof of (i) we have shown that∫ t

0

T (s+ u)f − T (u)f

s
du =

T (s)− I
s

∫ t

0

T (u)fdu.

Since T (s+u)f−T (u)f
s

converges in BE we may interchange limit and integral:∫ t

0

lim
s↓0

T (s+ u)f − T (u)f

s
du = lim

s↓0

T (s)− I
s

∫ t

0

T (u)fdu

= A

∫ t

0

T (u)fdu.

5.3 Martingales and Dynkin’s formula

Definition 5.7 (martingale). An F-adapted stochastic process X = {Xt; t ∈
T}such that E|Xt| < ∞ ∀t ∈ T is called F-martingale (submartingale, su-
permartingale) if for all t, t+ h ∈ T with h ≥ 0 it holds

E[Xt+h|Ft] = (≥,≤)Xt a.s.

Theorem 5.8 (Dynkin’s formula). Let X be a homogeneous Markov pro-
cess with cádlág paths for all ω ∈ Ω and transition function {Pt(x,A)}. Let
{T (t); t ≥ 0} denote its semigroup T (t)f(x) =

∫
E
f(y)Pt(x, dy) (f ∈ BE)

and (A, D(A)) its generator. Then, for each g ∈ D(A) the stochastic process
{Mt; t ≥ 0} is an {FXt ; t ≥ 0} martingale, where

Mt := g(Xt)− g(X0)−
∫ t

0

Ag(Xs)ds. (15)
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(The integral
∫ t

0
Ag(Xs)ds is understood as a Lebesgue-integral for each ω:∫ t

0

Ag(Xs)(ω)ds :=

∫ t

0

Ag(Xs)(ω)λ(ds)

where λ denotes the Lebesgue measure.)

Proof. Since by Definition 5.4 we have A : D(A)→ BE, it follows Ag ∈ BE,
which means especially

Ag : (E,B(E))→ (R,B(R)).

Since X has cádlág paths and is adapted, it is (see Lemma 4.11) progressively
measurable:

X : ([0, t]× Ω,B([0, t])⊗Ft)→ (E,B(E)).

Hence for the composition we have

Ag(X·) : ([0, t]× Ω,B([0, t])⊗Ft)→ (R,B(R)).

Moreover, Ag is bounded as it is from BE. So the integral w.r.t. the Lebesgue
measure λ is well-defined:∫ t

0

Ag(Xs(ω))λ(ds), ω ∈ Ω.

Fubini’s theorem implies that Mt is FXt - measurable. Since g and Ag are
bounded we have that E|Mt| <∞. From (15)

E[Mt+h|FXt ] + g(X0)

= E[g(Xt+h)−
∫ t+h

0

Ag(Xs)ds|FXt ]

= E
[(
g(Xt+h)−

∫ t+h

t

Ag(Xs)ds

) ∣∣∣∣FXt ]− ∫ t

0

Ag(Xs)ds.

The Markov property from Definition 2.4(3) (equation (4)) implies that

E
[
g(Xt+h)|FXt

]
=

∫
E

g(y)Ph(Xt, dy).
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We show next that E
[∫ t+h

t
Ag(Xs)ds

∣∣∣∣FXt ] =
∫ t+h
t

E[Ag(Xs)|FXt ]ds. Since

g ∈ D(A) we know that Ag is a bounded function so that we can use Fubini’s
theorem to show that for any G ∈ FXt it holds∫

Ω

∫ t+h

t

Ag(Xs)ds1GdP =

∫ t+h

t

∫
Ω

Ag(Xs)1GdPds

=

∫ t+h

t

∫
Ω

E[Ag(Xs)|FXt ]1GdPds.

The Markov property implies that E[Ag(Xt+h)|FXt ] =
∫
E
Ag(y)Ph(Xt, dy).

Therefore we have

E
[(
g(Xt+h)−

∫ t+h

t

Ag(Xs)ds

) ∣∣∣∣FXt ]− ∫ t

0

Ag(Xs)ds

=

∫
E

g(y)Ph(Xt, dy)−
∫ t+h

t

∫
E

Ag(y)Ps−t(Xt, dy)ds

−
∫ t

0

Ag(Xs)ds.

The previous computations and relation T (h)f(Xt) =
∫
E
f(y)Ph(Xt, dy) im-

ply

E[Mt+h|FXt ] + g(X0)

=

∫
E

g(y)Ph(Xt, dy)−
∫ t+h

t

∫
E

Ag(y)dsPs−t(Xt, dy)ds−
∫ t

0

Ag(Xs)ds

= T (h)g(Xt)−
∫ t+h

t

T (s− t)Ag(Xt)ds−
∫ t

0

Ag(Xs)ds

= T (h)g(Xt)−
∫ h

0

T (u)Ag(Xt)du−
∫ t

0

Ag(Xs)ds

= T (h)g(Xt)− T (h)g(Xt) + g(Xt)−
∫ t

0

Ag(Xs)ds

= g(Xt)−
∫ t

0

Ag(Xs)ds

= Mt + g(X0),

where we used Theorem 5.6 (iii).
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6 Weak solutions of SDEs and martingale prob-

lems

We recall the definition of a weak solution of an SDE.

Definition 6.1. Assume that σij, bi : (Rd,B(Rd)) → (R,B(R)) are locally
bounded. A weak solution of

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x, t ≥ 0 (16)

is a triple (Xt, Bt)t≥0, (Ω,F ,P), (Ft)t≥0 such that

(i) (Ω,F ,P, (Ft)t≥0) satisfies the usual conditions:

• (Ω,F ,P) is complete,

• all null-sets of F belong to F0,

• the filtration is right-continuous,

(ii) X is a d-dimensional continuous and (Ft)t≥0 adapted process

(iii) (Bt)t≥0 is an m-dimensional (Ft)t≥0-Brownian motion,

(iv) X
(i)
t = x(i) +

∑m
j=1

∫ t
0
σij(Xu)dB

(j)
u +

∫ t
0
bi(Xu)du,

t ≥ 0, 1 ≤ i ≤ d, a.s.

Let aij(x) =
∑m

k=1 σik(x)σjk(x) (or using the matrices: a(x) = σ(x)σT (x)).
Consider now the differential operator

Af(x) =
1

2

∑
ij

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x).

with domain D(A) = C2
c (Rd), the twice continuously differentiable functions

with compact support in Rd. Then it follows from Itô’s formula that

f(Xt)− f(X0)−
∫ t

0

Af(X(s))ds =

∫ t

0

∇f(Xs)σ(Xs)dBs

is a martingale.
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By Ω := CRd [0,∞) we denote the space of continuous functions ω : [0,∞)→
Rd. One can introduce a metric on this space setting

d(ω, ω̄) =
∞∑
n=1

1

2n
sup0≤t≤n |ω(t)− ω̄(t)|

1 + sup0≤t≤n |ω(t)− ω̄(t)|
.

Then CRd [0,∞) with this metric is a complete separable metric space ([8,
Problem 2.4.1]). We set

Ft := σ{πs, s ∈ [0, t]}

where
πs : CRd [0,∞)→ Rd : ω 7→ ω(s)

is the coordinate mapping. For 0 ≤ t ≤ u we have

Ft ⊆ Fu ⊆ B(CRd [0,∞))

([8, Problem 2.4.2]). We define local martingales to introduce the concept of
a martingale problem.

Definition 6.2 (local martingale). A continuous (Ft)t≥0 adapted process
M = (Mt)t≥0 with M0 = 0 is a local martingale if there exists a sequence
of stopping times τ1 ≤ τ2 ≤ τ3... ↑ ∞ a.s. such that the stopped process M τn

given by M τn
t := Mτn∧t is a martingale for each n ≥ 1.

Example 6.3. The process which solves

Xt = 1 +

∫ t

0

Xα
s dBs

is a martingale if 0 ≤ α ≤ 1 and it is a local martingale but not a martingale
for α > 1.

See https://almostsure.wordpress.com/2010/08/16/failure-of-the-martingale-property/#more-816

Definition 6.4 (CRd [0,∞)- martingale problem). Given (s, x) ∈ [0,∞)×Rd,
a solution to the CRd [0,∞)- martingale problem for A is probability measure
P on
(CRd [0,∞),B(CRd [0,∞))) satisfying

P({ω ∈ Ω : ω(t) = x, 0 ≤ t ≤ s}) = 1
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such that for each f ∈ C∞c (Rd) the process {M f
t ; t ≥ s} with

M f
t := f(Xt)− f(Xs)−

∫ t

s

Af(Xu)du

is a P-martingale.

Theorem 6.5. X (or more exactly, the distribution of X given by a probabil-
ity measure P on (CRd [0,∞),B(CRd [0,∞)))) is a solution of the CRd [0,∞)-
martingale problem for A ⇐⇒ X is a weak solution of (16).

Proof. We have seen above that ⇐= follows from Itô’s formula.
We will show =⇒ only for the case d = m. See [8, Proposition 5.4.6] for the
general case. We assume that X is a solution of the CRd [0,∞)- martingale
problem for A.
One can conclude that then for any f(x) = xi (i = 1, ..., d) the process
{M i

t := M f
t ; t ≥ 0} is a continuous, local martingale. This can be seen as

follows: If we define the stopping times for n > max{|x(1)|, ..., |x(d)|}

τn := inf{t > 0 : max{|X(1)
t |, ..., |X

(d)
t |} = n},

then we can find a function gn ∈ C∞c (Rd) such that

(M i)τn = (M gn)τn .

By assumption M gn is a continuous martingale and it follows from the op-
tional sampling theorem that the stopped process (M gn)τn is also a continuous
martingale.
We have

M i
t = X

(i)
t − x(i) −

∫ t

0

bi(Xs)ds.

Since X is continuous and b locally bounded, it holds

P({ω :

∫ t

0

|bi(Xs(ω))|ds <∞; 0 ≤ t <∞}) = 1.

Also for f(x) = xixj the process M
(ij)
t := M f

t is a continuous, local martin-
gale.

M ij
t = X

(i)
t X

(j)
t − x(i)x(j) −

∫ t

0

X(i)
s bj(Xs) +X(j)

s bi(Xs) + aij(Xs)ds.
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We notice that

M i
tM

j
t −

∫ t

0

aij(Xs)ds = M ij
t − x(i)M j

t − x(j)M i
t −Rt

where

Rt =

∫ t

0

(X(i)
s −X

(i)
t )bj(Xs)ds+

∫ t

0

(X(j)
s −X

(j)
t )bi(Xs)ds

+

∫ t

0

bi(Xs)ds

∫ t

0

bj(Xs)ds.

Indeed,

M i
tM

j
t −

∫ t

0

aij(Xs)ds

=

(
X

(i)
t − x(i) −

∫ t

0

bi(Xs)ds

)(
X

(j)
t − x(j) −

∫ t

0

bj(Xs)ds

)
−
∫ t

0

aij(Xs)ds

= X
(i)
t X

(j)
t −X

(i)
t

(
x(j) +

∫ t

0

bj(Xs)ds

)
−
(
x(i) +

∫ t

0

bi(Xs)ds

)
X

(j)
t

+

(
x(j) +

∫ t

0

bj(Xs)ds

)(
x(i) +

∫ t

0

bi(Xs)ds

)
−
∫ t

0

aij(Xs)ds

= M ij
t + x(i)︸︷︷︸x(j) +

∫ t

0

X(i)
s bj(Xs) +X(j)

s bi(Xs)ds

−X(i)
t x(j) −X(j)

t x(i)︸︷︷︸−∫ t

0

X
(i)
t bj(Xs) +X

(j)
t bi(Xs)ds

+x(i)x(j) + x(j)

∫ t

0

bi(Xs)ds+ x(i)︸︷︷︸ ∫ t

0

bj(Xs)ds+

∫ t

0

bj(Xs)ds

∫ t

0

bi(Xs)ds

= M ij
t +

∫ t

0

(X(i)
s −X

(i)
t )bj(Xs) + (X(j)

s −X
(j)
t )bi(Xs)ds

− x(i)︸︷︷︸(−x(j) +X
(j)
t −

∫ t

0

bj(Xs)ds︸ ︷︷ ︸
Mj
t

)

−x(j)

(
− x(i) +X

(i)
t −

∫ t

0

bi(Xs)ds

)
+

∫ t

0

bj(Xs)ds

∫ t

0

bi(Xs)ds.
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Since X
(i)
s −X(i)

t = M i
s −M i

t +
∫ t
s
bj(Xu)du it follows by Itô’s formula that

Rt =

∫ t

0

(X(i)
s −X

(i)
t )bj(Xs)ds+

∫ t

0

(X(j)
s −X

(j)
t )bi(Xs)ds

+

∫ t

0

bi(Xs)ds

∫ t

0

bj(Xs)ds

=

∫ t

0

(M i
s −M i

t )bj(Xs)ds+

∫ t

0

(M j
s −M

j
t )bi(Xs)ds

= −
∫ t

0

∫ s

0

bj(Xu)dudM
i
s −

∫ t

0

∫ s

0

bi(Xu)dudM
j
s .

Since Rt is a continuous, local martingale and a process of bounded variation
at the same time, Rt = 0 a.s. for all t. Then

M i
tM

j
t −

∫ t

0

aij(Xs)ds

is a continuous, local martingale, and

〈M i,M j〉t =

∫ t

0

aij(Xs)ds.

By the Martingale Representation Theorem A.3 we know that there exists an
extension (Ω̃, F̃ , P̃) of (Ω,F ,P) carrying a d-dimensional (F̃t) Brownian mo-
tion B̃ such that (F̃t) satisfies the usual conditions, and measurable, adapted
processes ξi,j, i, j = 1, ..., d, with

P̃
(∫ t

0

(ξi,js )2ds <∞
)

= 1

such that

M i
t =

d∑
j=1

∫ t

0

ξi,js dB̃
j
s .

We have now

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

ξsdB̃s.
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It remains to show that there exists an d-dimensional (F̃t) Brownian motion
B on (Ω̃, F̃ , P̃) such that P̃ a.s.∫ t

0

ξsdB̃s =

∫ t

0

σ(Xs)dBs, t ∈ [0,∞).

For this we will use the following lemma.

Lemma 6.6. Let

D := {(ξ, σ); ξ and σ are d× d matrices with ξξT = σσT}.

On D there exists a Borel-measurable map R : (D,D∩B(Rd2)→ (Rd2 ,B(Rd2))
such that

σ = ξR(ξ, σ), R(ξ, σ)RT (ξ, σ) = I; (ξ, σ) ∈ D.

We set

Bt =

∫ t

0

RT (ξs, σ(Xs))dB̃s.

Then B is a continuous local martingale and

〈B(i), B(i)〉t =

∫ t

0

R(ξs, σ(Xs))R
T (ξs, σ(Xs))ds = tδij.

Lévy’s theorem (see [8, Theorem 3.3.16]) implies that B is a Brownian mo-
tion.

Definition 6.7. (1) Given an initial distribution µ on (Rd,B(Rd)), we say
that uniqueness holds for the CRd [0,∞)-martingale problem for (A, µ)
if any two solutions of the CRd [0,∞)-martingale problem for A with
initial distribution µ have the same finite dimensional distributions.

(2) Weak uniqueness holds for (16) with initial distribution µ if any two
weak solutions of (16) with initial distribution µ have the same finite
dimensional distributions.

Note that Theorem 6.5 does not assume uniqueness. Consequently, existence
and uniqueness for the two problems are equivalent.

Corollary 6.8. Let µ be a probability measure on (Rd,B(Rd)). The following
assertions are equivalent:
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(1) Uniqueness holds for the martingale problem for (A, µ).

(2) Weak uniqueness holds for (16) with initial distribution µ.

Remark 6.9. There exist sufficient conditions on σ and b such that the
martingale problem with a = σσT has a unique weak solution. For example,
it is enough to require that σ and b are continuous and bounded.

7 Feller processes

7.1 Feller semigroups, Feller transition functions and
Feller processes

Definition 7.1. .

(1) C0(Rd) := {f : Rd → R : f continuous, lim|x|→∞ |f(x)| = 0}.

(2) {T (t); t ≥ 0} is a Feller semigroup if

(a) T (t) : C0(Rd) → C0(Rd) is positive ∀t ≥ 0 (i.e. T (t)f(x) ≥ 0 ∀x
if f : Rd → [0,∞)),

(b) {T (t); t ≥ 0} is a strongly continuous contraction semigroup.

(3) A Feller semigroup is conservative if for all x ∈ Rd it holds

sup
f∈C0(Rd),‖f‖=1

|T (t)f(x)| = 1.

Proposition 7.2. Let {T (t); t ≥ 0} be a conservative Feller semigroup on
C0(Rd). Then there exists a (homogeneous) transition function {Pt(x,A)}
such that

T (t)f(x) =

∫
Rd
f(y)Pt(x, dy), ∀x ∈ Rd, f ∈ C0(Rd).

Proof. Recall the Riesz representation theorem (see, for example, [6, Theo-
rem 7.2]): If E is a locally compact Hausdorff space, L a positive linear func-
tional on Cc(E) := {F : E → R : continuous function with compact support},
then there exists a unique Radon measure µ on (E,B(E)) such that

LF =

∫
E

F (y)µ(dy).

————————————
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Definition 7.3. A Borel measure on (E,B(E)) (if E is a locally compact
Hausdorff space) is a Radon measure ⇐⇒df

(1) µ(K) <∞, ∀K compact,

(2) ∀A ∈ B(E) : µ(A) = inf{µ(U) : U ⊇ A,U open },

(3) ∀B open: µ(B) = sup{µ(K) : K ⊆ B,K compact },

Remark: Any probability measure on (Rd,B(Rd)) is a Radon measure.
————————————
By Riesz’ representation theorem we get for each x ∈ Rd and each T ≥ 0 a
measure Pt(x, ·) on (Rd,B(Rd)) such that

(T (t)f)(x) =

∫
Rd
f(y)Pt(x, dy), ∀f ∈ Cc(Rd).

We need to show that this family of measures {Pt(x, ·); t ≥ 0, x ∈ Rd} has
all properties of a transition function.

Step 1 The map A 7→ Pt(x,A) is a probability measure: Since {Pt(x, ·) is a
measure, we only need to check whether Pt(x,Rd) = 1. This left as
an exercise.

Step 2 For A ∈ B(Rd) we have to show that

x 7→ Pt(x,A) : (Rd,B(Rd))→ (R,B(R)). (17)

Using the monotone class theorem for

H = {f : Rd → R : B(Rd) measurable and bounded,

T (t)f is B(Rd) measurable }

we see that it is enough to show that

∀A ∈ A := {[a1, b1]× ...× [an, bn]; ak ≤ bk} ∪ ∅ : 1A ∈ H.

We will approximate such 1A by fn ∈ Cc(Rd) : Let fn(x1, ...xn) :=
fn,1(x1)...fn,d(xd) with linear, continuous functions

fn,k(xk) =

{
1 ak ≤ xk ≤ bk,
0 x ≤ ak − 1

n
or x ≥ bk + 1

n
.
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Then fn ↓ 1A.
Since T (t)f : C0(Rd)→ C0(Rd) and Cc(Rd) ⊆ C0(Rd), we get

T (t)fn : (Rd,B(Rd))→ (R,B(R)).

It holds T (t)fn(x) =
∫
Rd fn(y)Pt(x, dy)→ Pt(x,A) for n→∞. Hence

Pt(·, A) : (Rd,B(Rd))→ (R,B(R)), which means 1A ∈ H.

Step 3 The Chapman-Kolmogorov equation for {Pt(x,A)} we conclude from
T (t+s) = T (t)T (s) ∀s, t ≥ 0 (This can be again done by approximat-
ing 1A, A ∈ A and using dominated convergence and the Monotone
Class Theorem).

Step 4 T (0) = Id gives P0(x,A) = δx(A) (again by approximating).

Definition 7.4. A transition function associated to a Feller semigroup is
called a Feller transition function.

Proposition 7.5. A transition function {Pt(x,A)} is Feller ⇐⇒

(i) ∀t ≥ 0 :
∫
Rd f(y)Pt(·, dy) ∈ C0(Rd) for f ∈ C0(Rd),

(ii) ∀f ∈ C0(Rd), x ∈ Rd : limt↓0
∫
Rd f(y)Pt(x, dy) = f(x).

Proof. ⇐= We will show that (i) and (ii) imply that {T (t); t ≥ 0} with

T (t)f(x) =

∫
Rd
f(y)Pt(x, dy)

is a Feller semigroup. By know by Lemma 5.3 that {T (t); t ≥ 0} is a con-
traction semigroup. By (i) we have that T (t) : C0(Rd) → C0(Rd). Any T (t)
is positive. So we only have to show that ∀f ∈ C0(Rd)

‖T (t)f − f‖ → 0, t ↓ 0

which is the strong continuity.
Since by (i) T (t)f ∈ C0(Rd) we conclude by (ii) that for all x ∈ Rd :
lims↓0 T (t+ s)f(x) = T (t)f(x). Hence we have

t 7→ T (t)f(x) is right-continuous,
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x 7→ T (t)f(x) is continuous.

This implies (similarly to the proof ’right-continuous + adapted =⇒ pro-
gressively measurable’)

(t, x) 7→ T (t)f(x) : ([0,∞)× Rd,B([0,∞))⊗ B(Rd))→ (R,B(R)).

By Fubini’s Theorem we have for any p > 0, that

x 7→ Rpf(x) :=

∫ ∞
0

e−ptT (t)f(x)dt : (Rd,B(Rd))→ (R,B(R)),

where the map f 7→ Rpf is called the resolvent of order p of {T (t); t ≥ 0}.
It holds

lim
p→∞

pRpf(x) = f(x).

Indeed, since {T (t); t ≥ 0} is a contraction semigroup, it holds ‖T (u
p
)f‖ ≤

‖f‖. Hence we can use dominated convergence in the following expression,
and it follows from (ii) that

pRpf(x) =

∫ ∞
0

e−ptT (t)f(x)dt =

∫ ∞
0

e−uT

(
u

p

)
f(x)du→ f(x). (18)

for p→∞. Moreover, one can easily show that Rpf ∈ C0(Rd).
For the resolvent: f 7→ Rpf it holds

(q − p)RpRqf = (q − p)Rp

∫ ∞
0

e−qtT (t)fdt

= (q − p)
∫ ∞

0

e−psT (s)

∫ ∞
0

e−qtT (t)fdtds

= (q − p)
∫ ∞

0

e−(p−q)s
∫ ∞

0

e−q(t+s)T (t+ s)fdtds

= (q − p)
∫ ∞

0

e−(p−q)s
∫ ∞
s

e−quT (u)fduds

= (q − p)
∫ ∞

0

e−quT (u)f

∫ u

0

e−(p−q)sdsdu

= (q − p)
∫ ∞

0

e−quT (u)f
1

q − p
(e−(p−q)u − 1)du
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= −Rqf +

∫ ∞
0

e−puT (u)fdu

= Rpf −Rqf

= ...

= (q − p)RqRpf.

Let Dp := {Rpf ; f ∈ C0(Rd)}. Then Dp = Dq =: D. Indeed, if g ∈ Dp then
there exists f ∈ C0(Rd) : g = Rpf. Since

Rpf = Rqf − (q − p)RqRpf

we conclude g ∈ Dq and hence Dp ⊆ Dq and, by symmetry, Dq ⊆ Dp.
By (18)

‖pRpf‖ ≤ ‖f‖.

We show that D ⊆ C0(Rd) is dense. We follow [6, Section 7.3] and notice
that C0(Rd) is the closure of Cc(Rd) with respect to ‖f‖ := supx∈Rd |f(x)|.
A positive linear functional L on Cc(Rd) can be represented uniquely by a
Radon measure on (Rd,B(Rd)) :

L(f) =

∫
Rd
f(x)µ(dx).

Since µ(Rd) = sup{
∫
Rd f(x)µ(dx) : f ∈ Cc(Rd), 0 ≤ f ≤ 1}, we see that we

can extend L to a positive linear functional on C0(Rd) ⇐⇒ µ(Rd) <∞.
In fact, any positive linear functional on C0(Rd) has the representation
L(f) =

∫
Rd f(x)µ(dx) with a finite Radon measure µ ( [6, Proposition 7.16]).

Since D is a linear space in view of Hahn-Banach we should have a linear
functional L on C0(Rd) given by L(f) =

∫
Rd f(x)µ(dx) (here µ is a signed

measure) which is 0 on D and positive for an f ∈ C0(Rd) which is outside
the closure of D. But by dominated convergence we have

L(f) =

∫
Rd
f(x)µ(dx) = lim

p→∞

∫
Rd
pRpf(x)µ(dx) = 0,

which implies that D is dense. We have

T (t)Rpf(x) = T (t)

∫ ∞
0

e−puT (u)f(x)du
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= ept
∫ ∞
t

e−psT (s)f(x)ds.

This implies

‖T (t)Rpf −Rpf‖ = sup
x∈Rd

∣∣∣∣ept ∫ ∞
t

e−psT (s)f(x)du−
∫ ∞

0

e−puT (u)f(x)du

∣∣∣∣
≤ (ept − 1)‖Rpf‖+ t‖f‖ → 0, t ↓ 0.

So we have shown that {T (t); t ≥ 0} is strongly continuous on D. Since
D ⊆ C0(Rd) is dense, we can also show strong continuity on C0(Rd). The
direction =⇒ is obviously trivial.

Definition 7.6. A Markov process having a Feller transition function is
called a Feller process.

7.2 Càdlàg modifications of Feller processes

In Definition 4.14 we defined a Lévy process as a stochastic process with
a.s. càdlàg paths. In Theorem 4.15 we have shown that a Lévy process
(with càdlàg paths) is a strong Markov process. By the Daniell-Kolmogorov
Theorem (Theorem 3.2) we know that Markov processes exist. But this
Theorem does not say anything about path properties.
We will proceed with the definition of a Lévy process in law (and leave it as
an exercise to show that such a process is a Feller process). We will prove
then that any Feller process has a càdlàg modification.

Definition 7.7 (Lévy process in law). A stochastic process X = {Xt; t ≥ 0}
on (Ω,F ,P) with Xt : (Ω,F)→ (Rd,B(Rd)) is a Lévy process in law if

(1) X is continuous in probability, i.e. ∀t ≥ 0,∀ε > 0

lim
s→t,s≥0

P(|Xs −Xt| > ε) = 0,

(2) P(X0 = 0) = 1,

(3) ∀ 0 ≤ s ≤ t : Xt −Xs
d
= Xt−s,

(4) ∀ 0 ≤ s ≤ t : Xt −Xs is independent of FXs .

Theorem 7.8. Let X be an {Ft; t ≥ 0}-submartingale. Then it holds
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(i) For any countable dense subset D ⊆ [0,∞), ∃Ω∗ ∈ F with P(Ω∗) = 1,
such that for every ω ∈ Ω∗ :

Xt+(ω) := lim
s↓t,s∈D

Xs(ω) Xt−(ω) := lim
s↑t,s∈D

Xs(ω)

exists ∀t ≥ 0 (t > 0, respectively).

(ii) {Xt+; t ≥ 0} is an {Ft+; t ≥ 0} submartingale with a.s. càdlàg paths.

(iii) Assume that {Ft; t ≥ 0} satisfies the usual conditions. Then it holds:
X has a càdlàg modification ⇐⇒ t 7→ EXt is right-continuous.

Proof: See [8, Proposition 1.3.14 and Theorem 1.3.13]

Lemma 7.9. Let X be a Feller process. For any p > 0 and any f ∈
C0(Rd; [0,∞)) := {f ∈ C0(Rd) : f ≥ 0} the process {e−ptRpf(Xt); t ≥ 0}
is a supermartingale w.r.t. the natural filtration {FXt ; t ≥ 0} and for any
probability measure Pν :

Pν(X0 ∈ B) = ν(B), B ∈ B(Rd),

where ν denotes the initial distribution.

Proof. Recall that for p > 0 we defined in the proof of Proposition 7.5 the
resolvent

f 7→ Rpf :=

∫ ∞
0

e−ptT (t)fdt, f ∈ C0(Rd).

Step 1 We show that Rp : C0(Rd)→ C0(Rd) :

Since

‖Rpf‖ =

∥∥∥∥∫ ∞
0

e−ptT (t)fdt

∥∥∥∥ ≤ ∫ ∞
0

e−pt‖T (t)f‖dt

and ‖T (t)f‖ ≤ ‖f‖, we may use dominated convergence, and since T (t)f ∈
C0(Rd) it holds

lim
xn→x

Rpf(xn) = lim
xn→x

∫ ∞
0

e−ptT (t)f(xn)dt
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=

∫ ∞
0

e−pt lim
xn→x

T (t)f(xn)dt

= Rpf(x).

In the same way: lim|xn|→∞Rpf(xn) = 0.
Step 2 We show that ∀x ∈ Rd : e−phT (h)Rpf(x) ≤ Rpf(x) provided that
f ∈ C0(Rd; [0,∞)) and h > 0 :

e−phT (h)Rpf(x) = e−phT (h)

∫ ∞
0

e−ptT (t)f(x)dt

=

∫ ∞
0

e−p(t+h)T (t+ h)f(x)dt

=

∫ ∞
h

e−puT (u)f(x)du

≤
∫ ∞

0

e−puT (u)f(x)du = Rpf(x).

Step 3 {e−ptRpf(Xt); t ≥ 0} is a supermartingale:
Let 0 ≤ s ≤ t. Since X is a Feller process, it has a transition function, and
by Definition 2.4 (3) we may write

EPν [e
−ptRpf(Xt)|FXs ] = e−pt

∫
Rd
Rpf(y)Pt−s(Xs, dy)

= e−ptT (t− s)Rpf(Xs).

From Step 2 we conclude

e−ptT (t− s)Rpf(Xs) ≤ e−psRpf(Xs).

Lemma 7.10. Let Y1 and Y2 be random variables on (Ω,F ,P) with values
in Rd. Then

Y1 = Y2 a.s. ⇐⇒ Ef(Y1)g(Y2) = Ef(Y1)g(Y1)

∀f, g : Rd → R bounded and continuous

43



Proof. The direction =⇒ is clear.
We will use the Monotone Class Theorem (Theorem A.1) to show ⇐= . Let

H := {h : Rd × Rd → R : h bounded and measurable,

Eh(Y1, Y2) = Eh(Y1, Y1)}

As before we can approximate 1[a1,b1]×...×[a2d,b2d] by continuous functions with
values in [0, 1]. Since by the Monotone Class Theorem the equality

Eh(Y1, Y2) = Eh(Y1, Y1)

holds for all h : Rd×Rd → R which are bounded and measurable, we choose
h := 1{(x,y)∈Rd×Rd:x 6=y} and infer

P(Y1 6= Y2) = P(Y1 6= Y1) = 0.

Theorem 7.11. If X is a Feller process, then it has a càdlàg modification.

Proof. Step 1. We need instead of the Rd a compact space. We use the
one-point compactification (Alexandroff extension):
Let ∂ be a point not in Rd. We define a topology O′ on (Rd)∂ :=
Rd ∪ {∂} as follows: Denote by O the open sets of Rd. We define

O′ := {A ⊂ (Rd)∂ : either (A ∈ O) or (∂ ∈ A,
Ac is a compact subset of Rd)}.

Then ((Rd)∂,O′) is a compact Hausdorff space.

Remark. This construction can be done for any locally compact
Hausdorff space.

Step 2. Let (fn)∞n=1 ⊆ C0(Rd; [0,∞)) be a sequence which separates the
points: For any x, y ∈ (Rd)∂ with x 6= y ∃k ∈ N : fk(x) 6= fk(y).
(Such a sequence exists: exercise).
We want to show that then also

S := {Rpfn : p ∈ N∗, n ∈ N}
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is a countable set (this is clear) which separates points: It holds for
any p > 0

pRpf(x) = p

∫ ∞
0

e−ptT (t)f(x)dt

=

∫ ∞
0

e−uT

(
u

p

)
f(x)du

This implies

sup
x∈(Rd)∂

|pRpf(x)− f(x)| = sup
x∈(Rd)∂

∣∣∣∣∫ ∞
0

e−u(T

(
u

p

)
f(x)− f(x))du

∣∣∣∣
≤

∫ ∞
0

e−u‖T
(
u

p

)
f − f‖du→ 0, p→∞,

by dominated convergence since ‖T
(
u
p

)
f − f‖ ≤ 2‖f‖, and the

strong continuity of the semigroup implies ‖T
(
u
p

)
f − f‖ → 0 for

p→∞. Then, if x 6= y there exists a function fk with fk(x) 6= fk(y)
and can find a p ∈ N such that Rpfk(x) 6= Rpfk(y).

Step 3. We fix a set D ⊆ [0,∞) which is countable and dense. We show
that ∃Ω∗ ∈ F with P(Ω∗) = 1 :

∀ω ∈ Ω∗∀n, p ∈ N∗ : [0,∞) 3 t 7→ Rpfn(Xt(ω)) (19)

has right and left (for t > 0) limits along D.

For this we conclude from Lemma 7.9 that

{e−ptRpfn(Xt); t ≥ 0} is an {FXt ; t ≥ 0} supermartingale.

By Theorem 7.8 (i) we have for any p, n ∈ N∗ a set Ω∗n,p ∈ F with
P(Ω∗n,p) = 1 such that ∀ω ∈ Ω∗n,p∀t ≥ 0(t > 0)

∃ lim
s↓t,s∈D

e−psRpfn(Xs(ω)) (∃ lim
s↑t,s∈D

e−psRpfn(Xs(ω))

Since s 7→ eps is continuous we get assertion (19) by setting Ω∗ :=⋂∞
n=1

⋂∞
p=1 Ω∗n,p.
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Step 4. We show: ∀ω ∈ Ω∗ : t → Xt(ω) has right limits along D. If
6 ∃ lims↓t,s∈DXs(ω) then ∃x, y ∈ (Rd)∂ and sequences (sn)n, (s̄m)m ⊆
D with sn ↓ t, s̄m ↓ t, such that

lim
n→∞

Xsn(ω) = x, and lim
m→∞

Xs̄m(ω) = y

But ∃p, k : Rpfk(x) 6= Rpfk(y) which is a contradiction to the fact
that s 7→ Rpfk(Xs(ω)) has right limits along D.

Step 5. Construction of a right-continuous modification:
For ω ∈ Ω∗ set ∀t ≥ 0 :

X̃t(ω) := lim
s↓t,s∈D

Xs(ω),

For ω 6∈ Ω∗ we set X̃t(ω) = x where x ∈ Rd is arbitrary and fixed.
Then:

X̃t = Xt a.s. :

Since for f, g ∈ C((Rd)∂) we have

Ef(Xt)g(X̃t) = lim
s↓t,s∈D

Ef(Xt)g(Xs)

= lim
s↓t,s∈D

EE[f(Xt)g(Xs)|FXt ]

= lim
s↓t,s∈D

Ef(Xt)E[g(Xs)|FXt ]

= lim
s↓t,s∈D

Ef(Xt)T (s− t)g(Xt)

= Ef(Xt)g(Xt),

where we used the Markov property for the second last equation
while the last equation follows from the fact that ‖T (s−t)h−h‖ → t
for s ↓ 0. By Lemma 7.10 we conclude X̃t = Xt a.s.

We check that t → X̃t is right-continuous ∀ω ∈ Ω : For ω ∈ Ω∗

consider for δ > 0

|X̃t(ω)− X̃t+δ(ω)| ≤ |X̃t(ω)−Xs(ω)|+ |Xs(ω)− X̃t+δ(ω)|

where |X̃t(ω)−Xs(ω)| < ε for all s ∈ (t, t+ δ1(t))∩D and |Xs(ω)−
X̃t+δ(ω)| < ε for all δ < δ1(t) and s ∈ (t+ δ, t+ δ + δ2(t+ δ)) ∩D.
Hence t→ X̃t is right-continuous.
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Step 6. càdlàg modifications:
We use [8, Theorem 1.3.8(v)] which states that almost every path of
a right-continuous submartingale has left limits for any t ∈ (0,∞).
Since {−e−ptRpfn(X̃t); t ≥ 0} is a right-continuous submartingale,
we can proceed as above (using the fact that S separates the points)
so show that t 7→ X̃(ω) is càdlàg for almost all ω ∈ Ω.

Remark 7.12. Since we used the one point compactification of Rd, we are
not able to distinguish, for example, if a sequence (Xsn)n≥1 converges to −∞
or +∞ if d = 1.
However, for a Lévy process it can be shown (see [7, Theorem II.2.68] ) that
for every c > 0

P(sup{|Xs| : s ∈ [0, c] ∩D} <∞) = 1.

Consequently, limn |Xsn| = ∂ has probability 0 and X̃is a càdlàg version with
values in Rd.
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A Appendix

Theorem A.1 (Monotone Class Theorem for functions). Let A ⊆ 2Ω be a
π-system that contains Ω. Assume that for H ⊆ {f ; f : Ω→ R} it holds

(i) 1A ∈ H for A ∈ A,

(ii) linear combinations of elements of H are again in H,

(iii) If (fn)∞n=1 ⊆ H such that 0 ≤ fn ↑ f, and f is bounded =⇒ f ∈ H,

then H contains all bounded functions that are σ(A) measurable.

Proof. see [7].

Lemma A.2 (Factorization Lemma). Assume Ω 6= ∅, (E, E) be a measurable
space, maps g : Ω→ E and F : Ω→ R, and σ(g) = {g−1(B) : B ∈ E}. Then
the following assertions are equivalent:

(i) The map F is (Ω, σ(g))→ (R,B(R)) is measurable.

(ii) There exists a measurable h : (E, E)→ (R,B(R)) such that F = h ◦ g.

Proof. see [2, p. 62]

Theorem A.3. Suppose M1
t , ...,M

d
t are continuous, local martingales on

(Ω,F ,P) w.r.t. Ft. If for 1 ≤ i, j ≤ d the processes 〈M i,M j〉t is an absolutely
continuous function in t P- a.s. then there exists an extension (Ω̃, F̃ , P̃) of
(Ω,F ,P) carrying a d-dimensional F̃ Brownian motion B and measurable,
adapted processes {X i,j

t ; t ≥ 0} i, j = 1, ..., d with

P̃
(∫ t

0

(X i,j
s )2ds <∞

)
= 1, 1 ≤ i, j ≤ d; 0 ≤ t <∞,

such that P̃-a.s.

M i
t =

d∑
j=1

∫ t

0

X i,j
s dB

j
s , 1 ≤ i ≤ d; 0 ≤ t <∞,

〈M i,M j〉t =
d∑

k=1

∫ t

0

X i,k
s Xk,j

s ds 1 ≤ i, j ≤ d; 0 ≤ t <∞.
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Proof: [8, Theorem 3.4.2, page 170 ]
An Itô process has the form

X(t) = x+

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dB(s),

µ and σ are progressively measurable and satisfy∫ t

0

µ(s)ds <∞,
∫ t

0

σ(s)2ds <∞ a.s.

Lemma A.4 (Itô’s formula). If B(t) = (B1(t), ..., Bd(t)) is a d-dimensional
(Ft) Brownian motion and

Xi(t) = xi +

∫ t

0

µi(s)ds+
d∑
j=1

∫ t

0

σij(s)dBj(s),

are Itô processes, then for any C2 function f : Rd → R we have

f(X1(t), ..Xd(t)) = f(x1, .., xd) +
d∑
i=1

∫ t

0

∂

∂xi
f(X1(s), ..Xd(s))dXi(s)

+
1

2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
f(X1(s), ..Xd(s))d〈Xi, Xj〉s,

and d〈Xi, Xj〉s =
∑d

k=1 σikσjkds.
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[1] D. Applebaum, Lévy Processes and Stochastic Calculus (Second Edi-
tion), Cambridge 2007.

[2] H. Bauer, Measure and integration theory Walter de Gruyter, 2001.

[3] R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory.
Academic Press, New York, 1968.

[4] Erhan Cinlar, Probability and Statistics , Springer, 2011.

[5] S.N. Ethier, T.G. Kurtz, Markov Processes, Wiley, 2005.

[6] G. Folland, Real Analysis, 1999.

[7] Sheng-wu He, Jia-gang Wang, Jia-An Yan, Semimartingale Theory and
Stochastic Calculus, Taylor & Francis, 1992.

[8] I. Karatzas S. Shreve, Brownian Motion and Stochastic Calculus, 1991.

[9] F. Klebaner, Introduction to Stochastic Calculus

[10] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 1998

[11] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martin-
gales I, Cambridge University Press 1994.

[12] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martin-
gales II, Cambridge University Press 2000.

[13] T. Rolski, H. Schmidli, V. Schmidt and J.Teugels, Stochastic Processes
for Insurance and Finance, 1998.
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