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Solutions for Demonstration 2
Problem 1. Let E = {0,1,2,...} and £ = 2F. We define for h > 0,5 > 0,k € E, B € £ that
Py(k, B) := P(N,,p, € B|N, = k). 1)
(a) We show that (Py(k, B)) is a transition function.

e By properties of conditional probability, B +— P}, (k, B) is a probability measure on & for
each h > 0,k € E.

e Since £ = 2% it is obvious to verify the measurability of E > k + Py (k, B).
e Py(k,B) =P(Ns € B|Ns; = k) = 6(B).
e Check the Chapman-Kolmogorov condition: let u,v > 0, one has
Puyv(k, B) = P(Nstutv € B|Ns = k) = P(Nstutv — Ns + Ns € B|Ns = k)
(Ns+tutv—Ns) LNs

- P(Ns+u+U—N5+k€B).

We also have
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/E Pu(y, B)Pu(k,dy) = 3 Pu(m, B)Py(k, {m})
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P(Nstuso € B|Noso = m)P(Nypy = m|N, = k)
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]P(Nerquv — Ngyp+me B)]P)(Nerv —Ns+k= m)
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ol

3
]
o

=Y P(Neputv — Ne+ & € B,Nyyy — Ny + k =m)
m=0

== P(Ns—i-u—i-’u —Ns + k S B)

Hence [ Pu(y, B)P,(k,dy) = Pyy.(k, B), which asserts the Chapman-Kolmgorov condition.
(b) Let F be the natural filtration of (N¢)i>o.
Let f: (E,&) — (R,B(R)) be bounded. For s < ¢, we have

E(f(Ni)|Fs) = E(f (Nt — Ns + Ng)|Fs) = Ef(Ny — Ns + m)|m=n,,

and
/ F () Pres(Ny, dy) = [Z f(k)Pr—s(m, {k})] = [Z FR)P(Ny = k|N; = m)
E k=0 m=N, k=0 m=Ng
- [Z F(k)P(N; — Ny +m = k)] = Ef(Nt — Ny + m)|m=n,.
k=0 m=Ng

Thus
E(f(N)|F) = [E @) Prs(Ns, dy),

which implies that (Ny) is a Markov process w.r.t. F with the transition function above.
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Problem 2. Let M; := 5w, , where W is a standard Brownian motion. We show that M is
a martingale w.r.t. FW = (FV);>0.

e It is clear that M is adapted;

. a2t
e Since Ee®™t =¢~ "z > 0 for any a € R,t > 0, one has E|M;| = m < o0

e For 0 < s < t, we have

eia(W,g—I/Vs) eiaWS iaWs

E eia(W,ngS) eilaWs

W

e
K ) = F oV =M, a.s.

E(M|FY) = E(

Hence M is a martingale w.r.t. F'V. O
Problem 3. Let (F);>o be a filtration and define G; := Fi = Ny>¢Fy. We have

Gt = NustGu = Nust Ns>u Fs = NsxtFs = Figr = Gi,
which means that G is right continuous. O

Problem 4. Let X = (X;);>0 be a process such that X; — X, is independent of FX for all
0<s«<t.

Let 0 < s <tp <ty <--- <ty. Weshow that the vector Y,, :== (X3, — X4y, ..., Xe, — X4, 1)
is independent of F2X. Take D € FX arbitrarily.
The characteristic function of (X¢, — X4, ..., X, — Xz, ,,1p) is

o1, .. xn,y) = E ei[Eﬁzl ok (Xt =Xty )+y1p)]
—E eixn(th =Xty 1 )+i[ZZ;11 on (X, =Xty )+y]lD]

X, =Xt LFX . ) 1
" ! fn-1 Eem”(th*anq) Eel[ZZ:l x"(th_kaq)"‘y]lD]

_ Eeixn(th _thfl) L. EeixQ(Xzz —th) Eeixl(th —Xto) Eeiy]lp
— ]Eeixn(th 7th_1) . EeixQ(XtQ 7Xt1)+i.’£1 (th 7Xt0) Eeiy]lD
—-F ei[ZZ:l (Xt —th_1)] E el¥lD

= 90Yn<$17 .. 7:[’.71)901D(y)7

where ¢y, and ¢j, is the characteristic function of Y,, and 1p respectively. Thus we conclude
that Y,, and F are independent. ]

Problem 5. Let X have independent increments with Xg = 0. We prove that X; — X is
independent of F2X.
- We first observe that

FX=0{X,:0<u<s}=0{X, - X,:0<v<u<s}
:a{(Xun—Xunfl,...,Xul—Xuo):0<u0<u1<---<un<s, foralln}.

Define

o0

A= U o{ X, — Xup_yse o Xy — Xup -

n=1 0<ug<u; <---<un<s

It is clear that A is an algebra and FX = o(A,).
Since X has independent increment, X; — X is independent of As. Denote

G ={G e FX :P(X;— X, € B)NG) =P(X; — Xs € B)P(G) for all B € B(R)}.

We have A; C Gy C FX. It is easy to show that G, is a monotone class (or a A-class). Using the
monotone class theorem (or m-A Dynkin’s theorem, resp.) we conclude that FX = o(A,) C Gs.
Therefore, G5 = ]:SX , and we conclude that X; — X is independent of ./’-'ﬁ( .
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