Solutions for Demonstration 2

Problem 1. Let $E=\{0,1,2, \ldots\}$ and $\mathcal{E}=2^{E}$. We define for $h \geqslant 0, s>0, k \in E, B \in \mathcal{E}$ that

$$
\begin{equation*}
P_{h}(k, B):=\mathbb{P}\left(N_{s+h} \in B \mid N_{s}=k\right) . \tag{1}
\end{equation*}
$$

(a) We show that $\left(P_{h}(k, B)\right)$ is a transition function.

- By properties of conditional probability, $B \mapsto P_{h}(k, B)$ is a probability measure on \mathcal{E} for each $h \geqslant 0, k \in E$.
- Since $\mathcal{E}=2^{E}$, it is obvious to verify the measurability of $E \ni k \mapsto P_{h}(k, B)$.
- $P_{0}(k, B)=\mathbb{P}\left(N_{s} \in B \mid N_{s}=k\right)=\delta_{k}(B)$.
- Check the Chapman-Kolmogorov condition: let $u, v \geqslant 0$, one has

$$
\begin{aligned}
& P_{u+v}(k, B)=\mathbb{P}\left(N_{s+u+v} \in B \mid N_{s}=k\right)=\mathbb{P}\left(N_{s+u+v}-N_{s}+N_{s} \in B \mid N_{s}=k\right) \\
&\left(N_{\left.s+u+v-N_{s}\right) \perp N_{s}}^{=} \mathbb{P}\left(N_{s+u+v}-N_{s}+k \in B\right) .\right.
\end{aligned}
$$

We also have

$$
\begin{aligned}
\int_{E} P_{u}(y, B) P_{v}(k, d y) & =\sum_{m=0}^{\infty} P_{u}(m, B) P_{v}(k,\{m\}) \\
& =\sum_{m=0}^{\infty} \mathbb{P}\left(N_{s+u+v} \in B \mid N_{s+v}=m\right) \mathbb{P}\left(N_{s+v}=m \mid N_{s}=k\right) \\
& =\sum_{m=0}^{\infty} \mathbb{P}\left(N_{s+u+v}-N_{s+v}+m \in B\right) \mathbb{P}\left(N_{s+v}-N_{s}+k=m\right) \\
& =\sum_{m=0}^{\infty} \mathbb{P}\left(N_{s+u+v}-N_{s+v}+m \in B, N_{s+v}-N_{s}+k=m\right) \\
& =\sum_{m=0}^{\infty} \mathbb{P}\left(N_{s+u+v}-N_{s}+k \in B, N_{s+v}-N_{s}+k=m\right) \\
& =\mathbb{P}\left(N_{s+u+v}-N_{s}+k \in B\right) .
\end{aligned}
$$

Hence $\int_{E} P_{u}(y, B) P_{v}(k, d y)=P_{u+v}(k, B)$, which asserts the Chapman-Kolmgorov condition.
(b) Let \mathbb{F} be the natural filtration of $\left(N_{t}\right)_{t \geqslant 0}$.

Let $f:(E, \mathcal{E}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be bounded. For $s \leqslant t$, we have

$$
\mathbb{E}\left(f\left(N_{t}\right) \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(f\left(N_{t}-N_{s}+N_{s}\right) \mid \mathcal{F}_{s}\right)=\left.\mathbb{E} f\left(N_{t}-N_{s}+m\right)\right|_{m=N_{s}},
$$

and

$$
\begin{aligned}
\int_{E} f(y) P_{t-s}\left(N_{s}, d y\right) & =\left[\sum_{k=0}^{\infty} f(k) P_{t-s}(m,\{k\})\right]_{m=N_{s}}=\left[\sum_{k=0}^{\infty} f(k) \mathbb{P}\left(N_{t}=k \mid N_{s}=m\right)\right]_{m=N_{s}} \\
& =\left[\sum_{k=0}^{\infty} f(k) \mathbb{P}\left(N_{t}-N_{s}+m=k\right)\right]_{m=N_{s}}=\left.\mathbb{E} f\left(N_{t}-N_{s}+m\right)\right|_{m=N_{s}} .
\end{aligned}
$$

Thus

$$
\mathbb{E}\left(f\left(N_{t}\right) \mid \mathcal{F}_{s}\right)=\int_{E} f(y) P_{t-s}\left(N_{s}, d y\right),
$$

which implies that $\left(N_{t}\right)$ is a Markov process w.r.t. \mathbb{F} with the transition function above.

Problem 2. Let $M_{t}:=\frac{\mathrm{e}^{\mathrm{i} a W_{t}}}{\mathbb{E} \mathrm{e}^{\mathrm{i} a W_{t}}}$, where W is a standard Brownian motion. We show that M is a martingale w.r.t. $\mathbb{F}^{W}=\left(\mathcal{F}_{t}^{W}\right)_{t \geqslant 0}$.

- It is clear that M is adapted;
- Since $\mathbb{E} \mathrm{e}^{\mathrm{i} a W_{t}}=\mathrm{e}^{-\frac{a^{2} t}{2}}>0$ for any $a \in \mathbb{R}, t \geqslant 0$, one has $\mathbb{E}\left|M_{t}\right|=\frac{1}{\left|\mathbb{E} \mathrm{e}^{i a W_{t}}\right|}<\infty$;
- For $0 \leqslant s<t$, we have

$$
\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}^{W}\right)=\mathbb{E}\left(\left.\frac{\mathrm{e}^{\mathrm{i} a\left(W_{t}-W_{s}\right)} \mathrm{e}^{\mathrm{i} a W_{s}}}{\mathbb{E} \mathrm{e}^{\mathrm{i} a\left(W_{t}-W_{s}\right)} \mathrm{e}^{\mathrm{i} a W_{s}}} \right\rvert\, \mathcal{F}_{s}^{W}\right)=\frac{\mathrm{e}^{\mathrm{i} a W_{s}}}{\mathbb{E} \mathrm{e}^{\mathrm{i} a W_{s}}}=M_{s} \quad \text { a.s. }
$$

Hence M is a martingale w.r.t. \mathbb{F}^{W}.
Problem 3. Let $(\mathcal{F})_{t \geqslant 0}$ be a filtration and define $\mathcal{G}_{t}:=\mathcal{F}_{t+}=\cap_{u>t} \mathcal{F}_{u}$. We have

$$
\mathcal{G}_{t+}=\cap_{u>t} \mathcal{G}_{u}=\cap_{u>t} \cap_{s>u} \mathcal{F}_{s}=\cap_{s>t} \mathcal{F}_{s}=\mathcal{F}_{t+}=\mathcal{G}_{t}
$$

which means that \mathcal{G} is right continuous.
Problem 4. Let $X=\left(X_{t}\right)_{t \geqslant 0}$ be a process such that $X_{t}-X_{s}$ is independent of \mathcal{F}_{s}^{X} for all $0 \leqslant s \leqslant t$.

Let $0 \leqslant s \leqslant t_{0}<t_{1}<\cdots<t_{n}$. We show that the vector $Y_{n}:=\left(X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}\right)$ is independent of \mathcal{F}_{s}^{X}. Take $D \in \mathcal{F}_{s}^{X}$ arbitrarily.
The characteristic function of $\left(X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}, \mathbb{1}_{D}\right)$ is

$$
\begin{aligned}
\varphi\left(x_{1}, \ldots, x_{n}, y\right) & :=\mathbb{E} \mathrm{e}^{\mathrm{i}\left[\sum_{k=1}^{n} x_{k}\left(X_{t_{k}}-X_{t_{k-1}}\right)+y \mathbb{1}_{D}\right]} \\
& =\mathbb{E} \mathrm{e}^{\mathrm{i} x_{n}\left(X_{t_{n}}-X_{t_{n-1}}\right)+\mathrm{i}\left[\sum_{k=1}^{n-1} x_{n}\left(X_{t_{k}}-X_{t_{k-1}}\right)+y \mathbb{1}_{D}\right]} \\
& X_{t_{n}-X_{t_{n-1}} \perp \mathcal{F}_{t_{n-1}}^{X}}^{=} \mathbb{E} \mathrm{e}^{\mathrm{i} x_{n}\left(X_{t_{n}}-X_{t_{n-1}}\right)} \mathbb{E} \mathrm{e}^{\mathrm{i}\left[\sum_{k=1}^{n-1} x_{n}\left(X_{t_{k}}-X_{t_{k-1}}\right)+y \mathbb{1}_{D}\right]} \\
& =\mathbb{E} \mathrm{e}^{\mathrm{i} x_{n}\left(X_{t_{n}}-X_{t_{n-1}}\right)} \cdots \mathbb{E} \mathrm{e}^{\mathrm{i} x_{2}\left(X_{t_{2}}-X_{t_{1}}\right)} \mathbb{E} \mathrm{e}^{\mathrm{i} x_{1}\left(X_{t_{1}}-X_{t_{0}}\right)} \mathbb{E} \mathrm{e}^{\mathrm{i} y \mathbb{1}_{D}} \\
& =\mathbb{E} \mathrm{e}^{\mathrm{i} x_{n}\left(X_{t_{n}}-X_{t_{n-1}}\right)} \cdots \mathbb{E} \mathrm{e}^{\mathrm{i} x_{2}\left(X_{t_{2}}-X_{t_{1}}\right)+\mathrm{i} x_{1}\left(X_{t_{1}}-X_{t_{0}}\right)} \mathbb{E} \mathrm{e}^{\mathrm{i} y \mathbb{1}_{D}} \\
& =\mathbb{E} \mathrm{e}^{\mathrm{i}\left[\sum_{k=1}^{n} x_{k}\left(X_{t_{k}}-X_{t_{k-1}}\right)\right]} \mathbb{E} \mathrm{e}^{\mathrm{i} y \mathbb{1}_{D}} \\
& =\varphi_{Y_{n}}\left(x_{1}, \ldots, x_{n}\right) \varphi_{\mathbb{1}_{D}}(y),
\end{aligned}
$$

where $\varphi_{Y_{n}}$ and $\varphi_{\mathbb{1}_{D}}$ is the characteristic function of Y_{n} and $\mathbb{1}_{D}$ respectively. Thus we conclude that Y_{n} and \mathcal{F}_{s}^{X} are independent.

Problem 5. Let X have independent increments with $X_{0} \equiv 0$. We prove that $X_{t}-X_{s}$ is independent of \mathcal{F}_{s}^{X}.

- We first observe that

$$
\begin{aligned}
\mathcal{F}_{s}^{X} & =\sigma\left\{X_{u}: 0 \leqslant u \leqslant s\right\}=\sigma\left\{X_{u}-X_{v}: 0 \leqslant v<u \leqslant s\right\} \\
& =\sigma\left\{\left(X_{u_{n}}-X_{u_{n-1}}, \ldots, X_{u_{1}}-X_{u_{0}}\right): 0 \leqslant u_{0}<u_{1}<\cdots<u_{n} \leqslant s, \text { for all } n\right\}
\end{aligned}
$$

Define

$$
\mathcal{A}_{s}:=\bigcup_{n=1}^{\infty} \bigcup_{0 \leqslant u_{0}<u_{1}<\cdots<u_{n} \leqslant s} \sigma\left\{X_{u_{n}}-X_{u_{n-1}}, \ldots, X_{u_{1}}-X_{u_{0}}\right\}
$$

It is clear that \mathcal{A} is an algebra and $\mathcal{F}_{s}^{X}=\sigma\left(\mathcal{A}_{s}\right)$.
Since X has independent increment, $X_{t}-X_{s}$ is independent of \mathcal{A}_{s}. Denote

$$
\mathcal{G}_{s}=\left\{G \in \mathcal{F}_{s}^{X}: \mathbb{P}\left(\left(X_{t}-X_{s} \in B\right) \cap G\right)=\mathbb{P}\left(X_{t}-X_{s} \in B\right) \mathbb{P}(G) \text { for all } B \in \mathcal{B}(\mathbb{R})\right\}
$$

We have $\mathcal{A}_{s} \subset \mathcal{G}_{s} \subset \mathcal{F}_{s}^{X}$. It is easy to show that \mathcal{G}_{s} is a monotone class (or a λ-class). Using the monotone class theorem (or $\pi-\lambda$ Dynkin's theorem, resp.) we conclude that $\mathcal{F}_{s}^{X}=\sigma\left(\mathcal{A}_{s}\right) \subset \mathcal{G}_{s}$. Therefore, $\mathcal{G}_{s}=\mathcal{F}_{s}^{X}$, and we conclude that $X_{t}-X_{s}$ is independent of \mathcal{F}_{s}^{X}.

