Solutions for Demonstration 3

Problem 1. For each $k=1, \ldots, 4$, let $X^{(k)}$ be \mathbb{F}-adapted with $X^{(k)}=0$. Define

$$
\tau_{k}:=\inf \left\{t>0: X_{t}^{(k)}>1\right\} .
$$

First, observe that for any $k=1, \ldots, 4$, the process $X^{(k)}$ is left-continuous or right-continuous, then for all $t>0$ one has

$$
\left\{\tau_{k}<t\right\}=\bigcup_{s<t}\left\{X_{s}^{(k)}>1\right\}=\bigcup_{s<t, s \in \mathbb{Q}}\left\{X_{s}^{(k)}>1\right\} \in \mathcal{F}_{t} .
$$

Hence τ_{k} is an optional time w.r.t. \mathbb{F}.
We now check whether τ_{k} is a stopping time. For $t>0$, since $\left\{\tau_{k} \leqslant t\right\}=\left\{\tau_{k}<t\right\} \cup\left\{\tau_{k}=t\right\}$ and $\left\{\tau_{k}<t\right\} \in \mathcal{F}_{t}$, it is equivalent to check whether $\left\{\tau_{k}=t\right\} \in \mathcal{F}_{t}$.
(a) The construction of paths of $X^{(1)}$ implies that τ_{1} is the second jump time of $X^{(1)}$, which means

$$
\left\{\tau_{1}=t\right\}=\left\{X_{t}^{(1)}>1\right\}=\left\{X_{t}^{(1)}=2\right\} \in \mathcal{F}_{t} .
$$

Hence τ_{1} is a stopping time w.r.t \mathbb{F}.
(b) $X_{t}^{(2)}=\lim _{s \uparrow t} X_{s}^{(1)}, t>0$.

Let ε be an random variable with $\mathbb{P}(\varepsilon=1)=\mathbb{P}(\varepsilon=0)=\frac{1}{2}$. Define

$$
X_{t}^{(2)}(\omega)= \begin{cases}0 & \text { if } t \in[0,1] \\ 1 & \text { if } t \in(1,2] \\ \mathbb{1}_{\{\varepsilon=0\}}(\omega)+2 \mathbb{1}_{\{\varepsilon=1\}}(\omega) & \text { if } t>2 .\end{cases}
$$

Let $\mathcal{F}_{t}^{(2)}=\sigma\left\{X_{s}^{(2)}: s \leqslant t\right\}$. Then we have $\mathcal{F}_{2}^{(2)}=\{\emptyset, \Omega\}$, however

$$
\left\{\tau_{2}=2\right\}=\{\varepsilon=1\} \notin \mathcal{F}_{2}^{(2)} .
$$

Hence τ_{2} is not a stopping time.
(c) Consider the random variable ε as in (b). Define the following continuous process

$$
X_{t}^{(3)}(\omega)= \begin{cases}t & \text { if } t \in[0,1] \\ \mathbb{1}_{\{\varepsilon=0\}}(\omega)+t \mathbb{1}_{\{\varepsilon=1\}}(\omega) & \text { if } t>1 .\end{cases}
$$

Let $\mathcal{F}_{t}^{(3)}=\sigma\left\{X_{s}^{(3)}: s \leqslant t\right\}$. Then we have $\mathcal{F}_{1}^{(3)}=\{\emptyset, \Omega\}$, however

$$
\left\{\tau_{3}=1\right\}=\{\varepsilon=1\} \notin \mathcal{F}_{1}^{(3)} .
$$

Hence τ_{3} is not a stopping time.
(d) Consider the random variable ε as in (b). Define

$$
X_{t}^{(4)}(\omega)= \begin{cases}0 & \text { if } t \in[0,1) \\ 1 & \text { if } t \in[1,2] \\ \mathbb{1}_{\{\varepsilon=0\}}(\omega)+\mathbb{1}_{\{\varepsilon=1\}}(\omega)\left[1+\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \chi_{\left[2+\frac{1}{2^{n+1}}, 2+\frac{1}{2^{n}}\right)}(t)+\chi_{[3, \infty)}(t)\right] & \text { if } t>2 .\end{cases}
$$

Notice that $X_{t}^{(4)}$ is continuous at $t=2$.
Let $\mathcal{F}_{t}^{(4)}=\sigma\left\{X_{s}^{(4)}: s \leqslant t\right\}$. Then we have $\mathcal{F}_{2}^{(4)}=\{\emptyset, \Omega\}$, however

$$
\left\{\tau_{4}=2\right\}=\{\varepsilon=1\} \notin \mathcal{F}_{2}^{(4)} .
$$

Hence τ_{4} is not a stopping time.

Problem 2. We show that

$$
\left\{A \in \mathcal{F}: A \cap\{\tau \leqslant t\} \in \mathcal{F}_{t+} \quad \forall t \in[0, \infty)\right\}=\left\{A \in \mathcal{F}: A \cap\{\tau<t\} \in \mathcal{F}_{t} \quad \forall t \in[0, \infty)\right\}
$$

" \subset ": Let $A \in \mathcal{F}$ be such that $A \cap\{\tau \leqslant t\} \in \mathcal{F}_{t+}$ for all $t \in[0, \infty)$. Then $A \cap\{\tau<0\}=\emptyset \in \mathcal{F}_{0}$ and for $t \in(0, \infty)$,

$$
A \cap\{\tau<t\}=\cup_{n>\frac{1}{t}}^{\infty} \underbrace{\left(A \cap\left\{\tau \leqslant t-\frac{1}{n}\right\}\right)}_{\in \mathcal{F}_{\left(t-\frac{1}{n}\right)+} \subset \mathcal{F}_{t}} \in \mathcal{F}_{t} .
$$

" \supset ": Let $A \in \mathcal{F}$ be such that $A \cap\{\tau<t\} \in \mathcal{F}_{t}, \forall t \in[0, \infty)$. Then we have

$$
A \cap\{\tau \leqslant t\}=\cup_{n=N}^{\infty}\left(A \cap\left\{\tau<t+\frac{1}{n}\right\}\right) \in \mathcal{F}_{t+\frac{1}{N}}, \quad \forall N \in \mathbb{N} .
$$

Hence $A \cap\{\tau \leqslant t\} \in \cap_{N=1}^{\infty} \mathcal{F}_{t+\frac{1}{N}}=\mathcal{F}_{t+}$.
Problem 3. We have

$$
\bigcap_{s>t} \mathcal{F}_{s}=\bigcap_{n=1}^{\infty} \bigcap_{s \geqslant t+\frac{1}{n}} \mathcal{F}_{s}=\bigcap_{n=1}^{\infty} \mathcal{F}_{t+\frac{1}{n}} .
$$

Problem 4. Let τ and η be stopping times. Then $\tau \wedge \eta$ is a stopping times and we prove that $\mathcal{F}_{\tau} \cap \mathcal{F}_{\eta}=\mathcal{F}_{\tau \wedge \eta}$.
" \subset ": Let $A \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\eta}$, which means $A \cap\{\tau \leqslant t\} \in \mathcal{F}_{t}$ and $A \cap\{\eta \leqslant t\} \in \mathcal{F}_{t}$ for all t. Then

$$
A \cap\{\tau \wedge \eta \leqslant t\}=A \cap(\{\tau \leqslant t\} \cup\{\eta \leqslant t\})=(A \cap\{\tau \leqslant t\}) \cup(A \cap\{\eta \leqslant t\}) \in \mathcal{F}_{t} .
$$

" \supset ": Let $A \cap\{\tau \wedge \eta \leqslant t\} \in \mathcal{F}_{t}$ for all t. We have

$$
A \cap\{\tau \leqslant t\}=A \cap(\{\tau \wedge \eta \leqslant t\} \cap\{\tau \leqslant t\})=(A \cap\{\tau \wedge \eta \leqslant t\}) \cap\{\tau \leqslant t\} \in \mathcal{F}_{t}
$$

Similarly, $A \cap\{\eta \leqslant t\} \in \mathcal{F}_{t}$ for all t. Hence $A \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\eta}$.

