Solutions for Demonstration 4

Problem 1. Let $C[0, \infty)$ be the family of continuous functions $f:[0, \infty) \rightarrow \mathbb{R}$. Define

$$
\mathcal{F}_{t}:=\sigma\{\{g \in C[0, \infty): g(s) \in B\}: s \in[0, t], B \in \mathcal{B}(\mathbb{R})\} .
$$

Fix $t>0$. We show the strict inclusion $\mathcal{F}_{t} \nsubseteq \mathcal{F}_{t+}$. Define

$$
A_{t}:=\{g \in C[0, \infty): g \text { attains a local maximum at } t\} .
$$

Since each element of A_{t} is a continuous function, it implies for all $N \in \mathbb{N}$ that

$$
A_{t}:=\bigcup_{n=N}^{\infty} \bigcap_{s \in\left(t-\frac{1}{n}, t+\frac{1}{n}\right) \cap \mathbb{Q}}\{g \in C[0, \infty): g(t) \geqslant g(s)\} \in \mathcal{F}_{t+\frac{1}{N}} .
$$

Hence

$$
A_{t} \in \cap_{N=1}^{\infty} \mathcal{F}_{t+\frac{1}{N}}=\mathcal{F}_{t+} .
$$

In order to show $A_{t} \notin \mathcal{F}_{t}$, we use the Fact: "Let $f_{1}, f_{2} \in C[0, \infty)$ such that $f_{1}(s)=f_{2}(s)$ for all $s \in[0, t]$. If $E \in \mathcal{F}_{t}$ and $f_{1} \in E$, then $f_{2} \in E$ ".

Consider $g_{1}(s)=s$ and

$$
g_{2}(s)= \begin{cases}s & \text { if } s \leqslant t \\ 2 t-s & \text { if } s>t\end{cases}
$$

It is clear that $g_{2} \in A_{t}$ and $g_{1}(s)=g_{2}(s)$ for all $s \in[0, t]$. If $A_{t} \in \mathcal{F}_{t}$, then it follows from the Fact above that $g_{1} \in A_{t}$, which leads to the contradiction. Therefore, $A_{t} \notin \mathcal{F}_{t}$.

Prove the Fact: Define

$$
\mathcal{E}_{t}:=\left\{E \in \mathcal{F}_{t}: \text { if } f \in E \text { and } \hat{f} \in C[0, \infty) \text { with } f(s)=\hat{f}(s) \forall s \in[0, t] \text {, then } \hat{f} \in E\right\} .
$$

We prove $\mathcal{E}_{t}=\mathcal{F}_{t}$ by showing that \mathcal{E}_{t} is a σ-algebra and

$$
\{g \in C[0, \infty): g(s) \in B\} \in \mathcal{E}_{t}, \quad \forall s \in[0, t], B \in \mathcal{B}(\mathbb{R}) .
$$

- It is clear that $C[0, \infty) \in \mathcal{E}_{t}$.
- Let $E \in \mathcal{\mathcal { E } _ { t }}$. Consider $f \in C[0, \infty) \backslash E$ and $\hat{f} \in C[0, \infty)$ with $f(s)=\hat{f}(s)$ for all $s \in[0, t]$.

If $\hat{f} \in E$, then the definition of \mathcal{E}_{t} implies that $f \in E$, which is the contradiction. Hence $\hat{f} \in C[0, \infty) \backslash E$, which means $C[0, \infty) \backslash E \in \mathcal{E}_{t}$.

- Let $E_{n} \in \mathcal{E}_{t}, n \geqslant 1$. Let $f \in \cup_{n \geqslant 1} E_{n}$ and $\hat{f} \in C[0, \infty)$ with $f(s)=\hat{f}(s)$ for all $s \in[0, t]$. Then there exists n_{0} such that $f \in E_{n_{0}}$. Since $E_{n_{0}} \in \mathcal{E}_{t}$, it asserts that $\hat{f} \in E_{n_{0}}$. Hence $\cup_{n \geqslant 1} E_{n} \in \mathcal{E}_{t}$.
- Let $s \in[0, t]$ and $B \in \mathcal{B}(\mathbb{R})$. Set $G:=\{g \in C[0, \infty): g(s) \in B\}$. If $f \in G$ and $\hat{f} \in C[0, \infty)$ such that $f(u)=\hat{f}(u)$ for all $u \in[0, t]$, then we have $\hat{f}(s)=f(s) \in B$, which means $\hat{f} \in G$. Thus $G \in \mathcal{\mathcal { E } _ { t }}$.

Problem 2. Let \bar{W} be a continuous modification of W. For any bounded Borel f, we have

$$
\int_{\mathbb{R}} f(y) P_{t}(x, d y)=\int_{\mathbb{R}} f(y) \mathbb{P}\left(W_{t}+x \in d y\right)=\int_{\mathbb{R}} f(y) \mathbb{P}_{W_{t}+x}(d y)=\mathbb{E} f\left(W_{t}+x\right),
$$

where $\mathbb{P}_{W_{t}+x}$ denote the image measure of \mathbb{P} via $W_{t}+x$. Since \bar{W} is a modification of W, we get $\bar{W}_{t}=W_{t}$ in distribution, and hence

$$
\int_{\mathbb{R}} f(y) P_{t}(x, d y)=\mathbb{E} f\left(\bar{W}_{t}+x\right) .
$$

(a) For $f=\sin$, we have that, for all $x \in \mathbb{R}$,

$$
\lim _{t \downarrow 0} \int_{\mathbb{R}} \sin (y) P_{t}(x, d y)=\lim _{t \downarrow 0} \mathbb{E} \sin \left(\bar{W}_{t}+x\right)=\mathbb{E} \lim _{t \downarrow 0} \sin \left(\bar{W}_{t}+x\right)=\sin x=f(x),
$$

where one applies the dominated convergence theorem to get the second equality.
(b) For $f=\mathbb{1}_{(-\infty, 0]}$, by choosing $x=0$ we have

$$
\lim _{t \downarrow 0} \int_{\mathbb{R}} \mathbb{1}_{(-\infty, 0]}(y) P_{t}(0, d y)=\lim _{t \downarrow 0} \mathbb{E} \mathbb{1}_{\left\{W_{t} \leqslant 0\right\}}=\lim _{t \downarrow 0} \mathbb{P}\left(W_{t} \leqslant 0\right)=\frac{1}{2},
$$

while $f(0)=1$. Hence $\lim _{t \downarrow 0} \int_{\mathbb{R}} \mathbb{1}_{(-\infty, 0]}(y) P_{t}(0, d y) \neq f(0)$.
Problem 3. Recall that $\mathcal{F}_{t}^{\mathbb{P}}=\mathcal{F}_{t}^{X} \vee \mathcal{N}^{\mathbb{P}}$. Define

$$
\mathcal{G}_{t}:=\left\{G \subseteq \Omega: \exists H \in \mathcal{F}_{t}^{X}: H \Delta G \in \mathcal{N}^{\mathbb{P}}\right\} .
$$

First, we show that \mathcal{G}_{t} is a σ-algebra. Indeed,

- $\Omega \in \mathcal{G}_{t}:$ clear;
- Let $G \in \mathcal{G}_{t}$. Then there is an $H \in \mathcal{F}_{t}^{X}$ such that $H \Delta G \in \mathcal{N}^{\mathbb{P}}$. Noticing that $H \Delta G=$ $(\Omega \backslash G) \Delta(\Omega \backslash H)$ and $\Omega \backslash H \in \mathcal{F}_{t}^{X}$, we obtain that $\Omega \backslash G \in \mathcal{G}_{t}$.
- Let $\left(G_{n}\right)_{n \geqslant 1} \subset \mathcal{G}_{t}$. There exists the corresponding $\left(H_{n}\right)_{n \geqslant 1} \subset \mathcal{F}_{t}^{X}$ such that $G_{n} \Delta H_{n} \in \mathcal{N}^{\mathbb{P}}$. Now,

$$
\left(\cup_{n \geqslant 1} G_{n}\right) \Delta\left(\cup_{n \geqslant 1} H_{n}\right) \subseteq \cup_{n \geqslant 1}\left(G_{n} \Delta H_{n}\right) \in \mathcal{N}^{\mathbb{P}} .
$$

By the definition of $\mathcal{N}^{\mathbb{P}}$, we get that $\left(\cup_{n \geqslant 1} G_{n}\right) \Delta\left(\cup_{n \geqslant 1} H_{n}\right) \in \mathcal{N}^{\mathbb{P}}$. Since $\cup_{n \geqslant 1} H_{n} \in \mathcal{F}_{t}^{X}$, it implies $\cup_{n \geqslant 1} G_{n} \in \mathcal{G}_{t}$.

Next, we prove that $\mathcal{F}_{t}^{\mathbb{P}}=\mathcal{G}_{t}$.
" \subseteq ": This direction is clear because $\mathcal{F}_{t}^{X} \subseteq \mathcal{G}_{t}$ and $\mathcal{N}^{\mathbb{P}} \subseteq \mathcal{G}_{t}$.
" \supseteq ": Let $G \in \mathcal{G}_{t}$. Then there is an $H \in \mathcal{F}_{t}^{X}$ such that $F:=G \Delta H \in \mathcal{N}^{\mathbb{P}}$. Since $G=H \Delta F$, we conclude that $G \in \mathcal{F}_{t}^{\mathbb{P}}$. Hence $\mathcal{G}_{t} \subseteq \mathcal{F}_{t}^{\mathbb{P}}$.

Problem 4. Let $X=\left(X_{t}\right)_{t \geqslant 0}$ be a d-dimensional Lévy process in law. Define

$$
f_{t}(u):=\mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle u, X_{t}\right\rangle}, \quad u \in \mathbb{R}^{d}, t \geqslant 0 .
$$

(a) For all $u \in \mathbb{R}^{d}, f_{0}(u)=\mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle u, X_{0}\right\rangle}=1$ a.s.
(b) For all $u \in \mathbb{R}^{d}, s, t \geqslant 0$,

$$
\begin{aligned}
f_{t+s}(u) & =\mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle u, X_{t+s}\right\rangle}=\mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle u, X_{t+s}-X_{t}\right\rangle+\mathrm{i}\left\langle u, X_{t}\right\rangle} \\
& X_{t+s}-X_{t} \perp X_{t} \\
= & \mathrm{e}^{\mathrm{i}\left\langle u, X_{t+s}-X_{t}\right\rangle} \mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle u, X_{t}\right\rangle} \stackrel{X_{t+s}-X_{t} \sim X_{s}}{=} \mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle u, X_{s}\right\rangle} \mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle u, X_{t}\right\rangle} \\
& =f_{t}(u) f_{s}(u) .
\end{aligned}
$$

(c) Let $u \in \mathbb{R}^{d}$ and $t \geqslant 0$. For any $n \in \mathbb{N}$, applying (b) we get

$$
f_{t}(u)=\left(f_{\frac{t}{n}}(u)\right)^{n}
$$

If $f_{t}(u)=0$, then $f_{t / n}(u)=0$ for all n. Since $X_{t / n} \rightarrow X_{0}=0$ as $n \rightarrow \infty$ in probability, the dominated convergence theorem implies that

$$
\lim _{n \rightarrow \infty} f_{\frac{t}{n}}(u)=\lim _{n \rightarrow \infty} \mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle u, X_{t / n}\right\rangle}=\mathbb{E} \lim _{n \rightarrow \infty} \mathrm{e}^{\mathrm{i}\left\langle u, X_{t / n}\right\rangle}=f_{0}(u)=1,
$$

which leads to a contradiction. Thus $f_{t}(u) \neq 0$ for all u, t.
Problem 5. Let X be a d-dimensional Lévy process in law. Fix $\theta \in \mathbb{R}^{d}$. Define

$$
Z_{t}:=\frac{\mathrm{e}^{\mathrm{i}\left\langle\theta, X_{t}\right\rangle}}{\mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle\theta, X_{t}\right\rangle}} .
$$

We show that $\left(Z_{t}\right)_{t \geqslant 0}$ is a martingale w.r.t. $\left(\mathcal{F}_{t}^{X}\right)_{t \geqslant 0}$.

- Z_{t} is \mathcal{F}_{t}^{X}-measurable: clear.
- For $t \geqslant 0$, due to problem 4(c) we have

$$
\mathbb{E}\left|Z_{t}\right|=\mathbb{E}\left|\frac{1}{\mathbb{E} \mathrm{e}^{\mathrm{i}\left(\theta, X_{t}\right)}}\right|=\frac{1}{\left|f_{t}(\theta)\right|}<\infty .
$$

- For $0 \leqslant s \leqslant t$,

$$
\mathbb{E}\left[Z_{t} \mid \mathcal{F}_{s}^{X}\right]=\mathbb{E}\left[\left.\frac{\mathrm{e}^{\mathrm{i}\left\langle\left(\theta, X_{t}-X_{s}\right\rangle\right.} \mathrm{e}^{\mathrm{i}\left\langle\theta, X_{s}\right\rangle}}{\mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle\theta, X_{t}-X_{s}\right\rangle} \mathbb{E} \mathrm{e}^{\mathrm{i}\left\langle\theta, X_{s}\right\rangle}} \right\rvert\, \mathcal{F}_{s}^{X}\right]=\frac{\mathrm{e}^{\mathrm{i}\left\langle\theta, X_{s}\right\rangle}}{\mathbb{E} \mathrm{e}^{\mathrm{i}\left(\theta, X_{s}\right\rangle}}=Z_{s} \quad \text { a.s. }
$$

