UNIVERSITY OF JYVÄSKYLÄ, DEPARTMENT OF MATHEMATICS AND STATISTICS Autumn 2019/MATS256-Advanced Markov Processes

Solutions for Demonstration 4

Problem 1. Let $C[0,\infty)$ be the family of continuous functions $f:[0,\infty)\to\mathbb{R}$. Define

$$\mathcal{F}_t := \sigma\{\{g \in C[0,\infty) : g(s) \in B\} : s \in [0,t], B \in \mathcal{B}(\mathbb{R})\}.$$

Fix t > 0. We show the strict inclusion $\mathcal{F}_t \subsetneq \mathcal{F}_{t+}$. Define

 $A_t := \{g \in C[0, \infty) : g \text{ attains a local maximum at } t\}.$

Since each element of A_t is a continuous function, it implies for all $N \in \mathbb{N}$ that

$$A_t := \bigcup_{n=N}^{\infty} \bigcap_{s \in (t-\frac{1}{n}, t+\frac{1}{n}) \cap \mathbb{Q}} \{g \in C[0, \infty) : g(t) \ge g(s)\} \in \mathcal{F}_{t+\frac{1}{N}}.$$

Hence

$$A_t \in \bigcap_{N=1}^{\infty} \mathcal{F}_{t+\frac{1}{N}} = \mathcal{F}_{t+}.$$

In order to show $A_t \notin \mathcal{F}_t$, we use the Fact: "Let $f_1, f_2 \in C[0, \infty)$ such that $f_1(s) = f_2(s)$ for all $s \in [0, t]$. If $E \in \mathcal{F}_t$ and $f_1 \in E$, then $f_2 \in E$ ".

Consider $g_1(s) = s$ and

$$g_2(s) = \begin{cases} s & \text{if } s \leqslant t \\ 2t - s & \text{if } s > t. \end{cases}$$

It is clear that $g_2 \in A_t$ and $g_1(s) = g_2(s)$ for all $s \in [0, t]$. If $A_t \in \mathcal{F}_t$, then it follows from the Fact above that $g_1 \in A_t$, which leads to the contradiction. Therefore, $A_t \notin \mathcal{F}_t$.

Prove the Fact: Define

$$\mathcal{E}_t := \{ E \in \mathcal{F}_t : \text{if } f \in E \text{ and } \hat{f} \in C[0,\infty) \text{ with } f(s) = \hat{f}(s) \forall s \in [0,t], \text{ then } \hat{f} \in E \}.$$

We prove $\mathcal{E}_t = \mathcal{F}_t$ by showing that \mathcal{E}_t is a σ -algebra and

$$\{g \in C[0,\infty) : g(s) \in B\} \in \mathcal{E}_t, \quad \forall s \in [0,t], B \in \mathcal{B}(\mathbb{R}).$$

- It is clear that $C[0,\infty) \in \mathcal{E}_t$.
- Let $E \in \mathcal{E}_t$. Consider $f \in C[0,\infty) \setminus E$ and $\hat{f} \in C[0,\infty)$ with $f(s) = \hat{f}(s)$ for all $s \in [0,t]$. If $\hat{f} \in E$, then the definition of \mathcal{E}_t implies that $f \in E$, which is the contradiction. Hence $\hat{f} \in C[0,\infty) \setminus E$, which means $C[0,\infty) \setminus E \in \mathcal{E}_t$.
- Let $E_n \in \mathcal{E}_t$, $n \ge 1$. Let $f \in \bigcup_{n \ge 1} E_n$ and $\hat{f} \in C[0, \infty)$ with $f(s) = \hat{f}(s)$ for all $s \in [0, t]$. Then there exists n_0 such that $f \in E_{n_0}$. Since $E_{n_0} \in \mathcal{E}_t$, it asserts that $\hat{f} \in E_{n_0}$. Hence $\bigcup_{n \ge 1} E_n \in \mathcal{E}_t$.
- Let $s \in [0, t]$ and $B \in \mathcal{B}(\mathbb{R})$. Set $G := \{g \in C[0, \infty) : g(s) \in B\}$. If $f \in G$ and $\hat{f} \in C[0, \infty)$ such that $f(u) = \hat{f}(u)$ for all $u \in [0, t]$, then we have $\hat{f}(s) = f(s) \in B$, which means $\hat{f} \in G$. Thus $G \in \mathcal{E}_t$.

Problem 2. Let \overline{W} be a *continuous* modification of W. For any bounded Borel f, we have

$$\int_{\mathbb{R}} f(y) P_t(x, dy) = \int_{\mathbb{R}} f(y) \mathbb{P}(W_t + x \in dy) = \int_{\mathbb{R}} f(y) \mathbb{P}_{W_t + x}(dy) = \mathbb{E}f(W_t + x),$$

where \mathbb{P}_{W_t+x} denote the image measure of \mathbb{P} via $W_t + x$. Since \overline{W} is a modification of W, we get $\overline{W}_t = W_t$ in distribution, and hence

$$\int_{\mathbb{R}} f(y) P_t(x, dy) = \mathbb{E}f(\bar{W}_t + x)$$

(a) For $f = \sin$, we have that, for all $x \in \mathbb{R}$,

$$\lim_{t\downarrow 0} \int_{\mathbb{R}} \sin(y) P_t(x, dy) = \lim_{t\downarrow 0} \mathbb{E} \sin(\bar{W}_t + x) = \mathbb{E} \lim_{t\downarrow 0} \sin(\bar{W}_t + x) = \sin x = f(x),$$

where one applies the dominated convergence theorem to get the second equality.

(b) For $f = \mathbb{1}_{(-\infty,0]}$, by choosing x = 0 we have

$$\lim_{t\downarrow 0} \int_{\mathbb{R}} \mathbb{1}_{(-\infty,0]}(y) P_t(0,dy) = \lim_{t\downarrow 0} \mathbb{E}\mathbb{1}_{\{W_t \leqslant 0\}} = \lim_{t\downarrow 0} \mathbb{P}(W_t \leqslant 0) = \frac{1}{2}$$

while f(0) = 1. Hence $\lim_{t \downarrow 0} \int_{\mathbb{R}} \mathbb{1}_{(-\infty,0]}(y) P_t(0, dy) \neq f(0)$.

Problem 3. Recall that $\mathcal{F}_t^{\mathbb{P}} = \mathcal{F}_t^X \vee \mathcal{N}^{\mathbb{P}}$. Define

$$\mathcal{G}_t := \{ G \subseteq \Omega : \exists H \in \mathcal{F}_t^X : H \Delta G \in \mathcal{N}^{\mathbb{P}} \}.$$

First, we show that \mathcal{G}_t is a σ -algebra. Indeed,

- $\Omega \in \mathcal{G}_t$: clear;
- Let $G \in \mathcal{G}_t$. Then there is an $H \in \mathcal{F}_t^X$ such that $H\Delta G \in \mathcal{N}^{\mathbb{P}}$. Noticing that $H\Delta G =$ $(\Omega \setminus G) \Delta(\Omega \setminus H)$ and $\Omega \setminus H \in \mathcal{F}_t^X$, we obtain that $\Omega \setminus G \in \mathcal{G}_t$.
- Let $(G_n)_{n \ge 1} \subset \mathcal{G}_t$. There exists the corresponding $(H_n)_{n \ge 1} \subset \mathcal{F}_t^X$ such that $G_n \Delta H_n \in \mathcal{N}^{\mathbb{P}}$. Now,

$$\left(\bigcup_{n\geq 1}G_n\right)\Delta\left(\bigcup_{n\geq 1}H_n\right)\subseteq\bigcup_{n\geq 1}(G_n\Delta H_n)\in\mathcal{N}^{\mathbb{P}}.$$

By the definition of $\mathcal{N}^{\mathbb{P}}$, we get that $\left(\bigcup_{n\geq 1} G_n\right)\Delta\left(\bigcup_{n\geq 1} H_n\right)\in\mathcal{N}^{\mathbb{P}}$. Since $\bigcup_{n\geq 1} H_n\in\mathcal{F}_t^X$, it implies $\bigcup_{n \ge 1} G_n \in \mathcal{G}_t$.

Next, we prove that $\mathcal{F}_t^{\mathbb{P}} = \mathcal{G}_t$.

" \subseteq ": This direction is clear because $\mathcal{F}_t^X \subseteq \mathcal{G}_t$ and $\mathcal{N}^{\mathbb{P}} \subseteq \mathcal{G}_t$. " \supseteq ": Let $G \in \mathcal{G}_t$. Then there is an $H \in \mathcal{F}_t^X$ such that $F := G\Delta H \in \mathcal{N}^{\mathbb{P}}$. Since $G = H\Delta F$, we conclude that $G \in \mathcal{F}_t^{\mathbb{P}}$. Hence $\mathcal{G}_t \subseteq \mathcal{F}_t^{\mathbb{P}}$.

Problem 4. Let $X = (X_t)_{t \ge 0}$ be a *d*-dimensional Lévy process in law. Define

$$f_t(u) := \mathbb{E} e^{i\langle u, X_t \rangle}, \quad u \in \mathbb{R}^d, t \ge 0.$$

- (a) For all $u \in \mathbb{R}^d$, $f_0(u) = \mathbb{E} e^{i\langle u, X_0 \rangle} = 1$ a.s.
- (b) For all $u \in \mathbb{R}^d$, $s, t \ge 0$,

$$f_{t+s}(u) = \mathbb{E} e^{i\langle u, X_{t+s} \rangle} = \mathbb{E} e^{i\langle u, X_{t+s} - X_t \rangle + i\langle u, X_t \rangle}$$

$$\stackrel{X_{t+s} - X_t \perp X_t}{=} \mathbb{E} e^{i\langle u, X_{t+s} - X_t \rangle} \mathbb{E} e^{i\langle u, X_t \rangle} \stackrel{X_{t+s} - X_t \sim X_s}{=} \mathbb{E} e^{i\langle u, X_s \rangle} \mathbb{E} e^{i\langle u, X_t \rangle}$$

$$= f_t(u) f_s(u).$$

(c) Let $u \in \mathbb{R}^d$ and $t \ge 0$. For any $n \in \mathbb{N}$, applying (b) we get

$$f_t(u) = \left(f_{\frac{t}{n}}(u)\right)^n.$$

If $f_t(u) = 0$, then $f_{t/n}(u) = 0$ for all n. Since $X_{t/n} \to X_0 = 0$ as $n \to \infty$ in probability, the dominated convergence theorem implies that

$$\lim_{n \to \infty} f_{\frac{t}{n}}(u) = \lim_{n \to \infty} \mathbb{E} e^{i\langle u, X_{t/n} \rangle} = \mathbb{E} \lim_{n \to \infty} e^{i\langle u, X_{t/n} \rangle} = f_0(u) = 1,$$

which leads to a contradiction. Thus $f_t(u) \neq 0$ for all u, t.

Problem 5. Let X be a d-dimensional Lévy process in law. Fix $\theta \in \mathbb{R}^d$. Define

$$Z_t := \frac{\mathrm{e}^{\mathrm{i}\langle \theta, X_t \rangle}}{\mathbb{E} \, \mathrm{e}^{\mathrm{i}\langle \theta, X_t \rangle}}.$$

We show that $(Z_t)_{t \ge 0}$ is a martingale w.r.t. $(\mathcal{F}_t^X)_{t \ge 0}$.

- Z_t is \mathcal{F}_t^X -measurable: clear.
- For $t \ge 0$, due to problem 4(c) we have

$$\mathbb{E}|Z_t| = \mathbb{E}\left|\frac{1}{\mathbb{E}e^{\mathrm{i}\langle\theta, X_t\rangle}}\right| = \frac{1}{|f_t(\theta)|} < \infty.$$

• For $0 \leq s \leq t$,

$$\mathbb{E}[Z_t | \mathcal{F}_s^X] = \mathbb{E}\left[\frac{\mathrm{e}^{\mathrm{i}\langle\theta, X_t - X_s\rangle} \mathrm{e}^{\mathrm{i}\langle\theta, X_s\rangle}}{\mathbb{E} \mathrm{e}^{\mathrm{i}\langle\theta, X_t - X_s\rangle} \mathbb{E} \mathrm{e}^{\mathrm{i}\langle\theta, X_s\rangle}}\Big| \mathcal{F}_s^X\right] = \frac{\mathrm{e}^{\mathrm{i}\langle\theta, X_s\rangle}}{\mathbb{E} \mathrm{e}^{\mathrm{i}\langle\theta, X_s\rangle}} = Z_s \quad a.s.$$