Solutions for Demonstration 5

Problem 1. Assume that $Y=\left(Y_{1}, \ldots, Y_{d}\right)$ and

$$
\mathbb{E}\left(\mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)} \mathbb{1}_{G}\right)=\mathbb{P}(G) \mathbb{E} \mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)}, \quad \forall x \in \mathbb{R}^{d}, G \in \mathcal{G} .
$$

We prove that Y and \mathcal{G} are independent. Indeed, for any $G \in \mathcal{G}$ and any $x_{i}, y \in \mathbb{R}$ we have

$$
\begin{aligned}
\mathbb{E}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}+y \mathbb{1}_{G}\right)} & =\mathbb{E}\left(\mathbb{1}_{G} \mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}+y \mathbb{1}_{G}\right)}\right)+\mathbb{E}\left(\mathbb{1}_{\Omega \backslash G} \mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}+\mathbb{1}_{G}\right)}\right) \\
& =\mathbb{E}\left(\mathbb{1}_{G} \mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}+y\right)}\right)+\mathbb{E}\left(\mathbb{1}_{\Omega \backslash G} \mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)}\right) \\
& =\mathrm{e}^{\mathrm{i} y} \mathbb{P}(G) \mathbb{E} \mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)}+\mathbb{P}(\Omega \backslash G) \mathbb{E} \mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)} \\
& =\mathbb{E} \mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)} \mathbb{E} \mathrm{e}^{\mathrm{i} y \mathbb{1}_{G}},
\end{aligned}
$$

which implies that Y and \mathcal{G} are independent.
Alternative proof: We use Taylor's expansion

$$
\begin{aligned}
& \mathbb{E}\left(\mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right.} \mathrm{e}^{\mathrm{i} y \mathbb{1}_{G}}\right)=\mathbb{E}\left(\mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)} \sum_{n=0}^{\infty} \frac{\left(\mathrm{i} y \mathbb{1}_{G}\right)^{n}}{n!}\right) \\
& \stackrel{D C T}{=} \mathbb{E}\left(\mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)}\right)+\mathbb{E}\left(\mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)} \mathbb{1}_{G}\right) \sum_{n=1}^{\infty} \frac{(\mathrm{i} y)^{n}}{n!}=\mathbb{E} \mathrm{e}^{\mathrm{i} y \mathbb{1}_{G}} \mathbb{E} \mathrm{e}^{\mathrm{i}\left(x_{1} Y_{1}+\cdots+x_{d} Y_{d}\right)} .
\end{aligned}
$$

Problem 2. Let $E:=\mathbb{N}$ and $2^{\mathbb{N}}:=\mathcal{B}(E)$. Assume that $\left(N_{t}\right)_{t \geqslant 0}$ is a Poisson process with parameter $\lambda>0$ and

$$
T(t) f(x)=\mathbb{E} f\left(N_{t}+x\right), \quad f \in B_{b}(E),
$$

where $B_{b}(E)$ denotes the family of bounded Borel measurable functions on E.
(a) We show that the infinitesimal generator A of $(T(t))_{t \geqslant 0}$ is

$$
A f(x)=\lambda(f(x+1)-f(x)) \quad \text { for } f \in D(A)=B_{b}(E) .
$$

First, observe that $A f \in B_{b}(E)$ whenever $f \in B_{b}(E)$. Next, we need to prove

$$
\begin{equation*}
\lim _{t \downarrow 0}\left\|\frac{T(t) f-f}{t}-A f\right\|_{B_{b}(E)}=\lim _{t \downarrow 0} \sup _{x \in E}\left|\frac{T(t) f(x)-f(x)}{t}-A f(x)\right|=0 . \tag{1}
\end{equation*}
$$

For any $f \in B_{b}(E)$ and $x \in E$,

$$
\begin{aligned}
& \left|\frac{T(t) f(x)-f(x)}{t}-A f(x)\right|=\left|\frac{\mathbb{E} f\left(N_{t}+x\right)-f(x)}{t}-\lambda(f(x+1)-f(x))\right| \\
& =\frac{1}{t}\left|\mathbb{E}\left[f\left(N_{t}+x\right)-f(x)\right]-\lambda t(f(x+1)-f(x))\right| \\
& =\frac{1}{t}\left|\left(\mathrm{e}^{-\lambda t} \sum_{n=0}^{\infty}[f(n+x)-f(x)] \frac{(\lambda t)^{n}}{n!}\right)-\lambda t(f(x+1)-f(x))\right| \\
& =\frac{1}{t}\left|\lambda t\left(\mathrm{e}^{-\lambda t}-1\right)(f(x+1)-f(x))+\mathrm{e}^{-\lambda t} \sum_{n=2}^{\infty}[f(n+x)-f(x)] \frac{(\lambda t)^{n}}{n!}\right| \\
& \leqslant \lambda\left|\mathrm{e}^{-\lambda t}-1\right||f(x+1)-f(x)|+\left|\mathrm{e}^{-\lambda t} \sum_{n=2}^{\infty}[f(n+x)-f(x)] \frac{\lambda^{n} t^{n-1}}{n!}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant 2\|f\|_{B_{b}(E)} \lambda\left|\mathrm{e}^{-\lambda t}-1\right|+2\|f\|_{B_{b}(E)} \mathrm{e}^{-\lambda t} \sum_{n=2}^{\infty} \frac{\lambda^{n} t^{n-1}}{n!} \\
& \leqslant 2\|f\|_{B_{b}(E)} \lambda\left|\mathrm{e}^{-\lambda t}-1\right|+2\|f\|_{B_{b}(E)} \lambda^{2} t .
\end{aligned}
$$

Then

$$
\lim _{t \downarrow 0} \sup _{x \in E}\left|\frac{T(t) f(x)-f(x)}{t}-A f(x)\right| \leqslant \lim _{t \downarrow 0}\left(\|f\|_{B_{b}(E)} \lambda\left|\mathrm{e}^{-\lambda t}-1\right|+2\|f\|_{B_{b}(E)} \lambda^{2} t\right)=0
$$

which verifies (1).
(b) In the case of compound Poisson process $\left(X_{t}\right)_{t \geqslant 0}$ where $X_{t}=\sum_{k=1}^{N_{t}} Y_{k}$ and the \mathbb{R}^{d}-valued iid $\left(Y_{k}\right)$ is independent from $\left(N_{t}\right)$.
Let $E:=\mathbb{R}^{d}$. We define the measure

$$
\nu:=\lambda \mathbb{P}_{Y_{1}},
$$

then we can prove by using the same arguments as above that the infinitesimal generator of $(T(t))_{t \geqslant 0}$ associated with $\left(X_{t}\right)_{t \geqslant 0}, T(t) f(x)=\mathbb{E} f\left(X_{t}+x\right), x \in \mathbb{R}^{d}, f \in B_{b}\left(\mathbb{R}^{d}\right)$, is

$$
A f(x)=\int_{\mathbb{R}^{d}}(f(x+y)-f(x)) \nu(d y), \quad x \in \mathbb{R}^{d}, f \in B_{b}\left(\mathbb{R}^{d}\right) .
$$

Indeed, we have for $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ that

$$
\begin{aligned}
\mathbb{P}_{X_{t}}(B) & =\mathbb{P}\left(X_{t} \in B\right)=\mathrm{e}^{-\lambda t} \delta_{0}(B)+\sum_{k=1}^{\infty} \mathbb{P}\left(\sum_{i=1}^{k} Y_{i} \in B\right) \mathbb{P}\left(N_{t}=k\right) \\
& =\mathrm{e}^{-t \nu\left(\mathbb{R}^{d}\right)}\left(\delta_{0}(B)+\sum_{k=1}^{\infty} \mathbb{P}_{Y_{1}}^{* k}(B) \frac{(\lambda t)^{k}}{k!}\right)=\mathrm{e}^{-t \nu\left(\mathbb{R}^{d}\right)} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} \nu^{* k}(B) .
\end{aligned}
$$

We now show that $A f(x)=\int_{\mathbb{R}^{d}}(f(y+x)-f(x)) \nu(d y)$ for $f \in B_{b}\left(\mathbb{R}^{d}\right)$. Indeed, since

$$
T(t) f(x)=\mathbb{E} f\left(X_{t}+x\right)=\int_{\mathbb{R}^{d}} f(y+x) \mathbb{P}_{X_{t}}(d y)=\mathrm{e}^{-t \nu\left(\mathbb{R}^{d}\right)} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} \int_{\mathbb{R}^{d}} f(y+x) \nu^{* k}(d y)
$$

one has

$$
\begin{aligned}
\frac{T(t) f(x)-f(x)}{t} & =\frac{1}{t} \mathrm{e}^{-t \nu\left(\mathbb{R}^{d}\right)} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} \int_{\mathbb{R}^{d}}(f(y+x)-f(x)) \nu^{* k}(d y) \\
& =\mathrm{e}^{-t \nu\left(\mathbb{R}^{d}\right)} \int_{\mathbb{R}^{d}}(f(y+x)-f(x)) \nu(d y)+\frac{1}{t} \mathrm{e}^{-t \nu\left(\mathbb{R}^{d}\right)} \sum_{n=2}^{\infty} \frac{t^{k}}{k!} \int_{\mathbb{R}^{d}}(f(y+x)-f(x)) \nu^{* k}(d y) .
\end{aligned}
$$

Thus, with $\lambda=\nu\left(\mathbb{R}^{d}\right)$ we obtain

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}^{d}}\left|\frac{T(t) f(x)-f(x)}{t}-\int_{\mathbb{R}^{d}}(f(y+x)-f(x)) \nu(d y)\right| \\
& \leqslant 2 \lambda\left|\mathrm{e}^{-\lambda t}-1\right|\|f\|_{B_{b}\left(\mathbb{R}^{d}\right)}+2\|f\|_{B_{b}\left(\mathbb{R}^{d}\right)}\left|\frac{1}{t} \sum_{k=2}^{\infty} \mathrm{e}^{-\lambda t} \frac{(\lambda t)^{k}}{k!}\right| \\
& \leqslant 2 \lambda\left|\mathrm{e}^{-\lambda t}-1\right|\|f\|_{B_{b}\left(\mathbb{R}^{d}\right)}+2\|f\|_{B_{b}\left(\mathbb{R}^{d}\right)} \mathrm{e}^{-\lambda t} \lambda^{2} t \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{(k+2)!} \\
& \leqslant 2 \lambda\left|\mathrm{e}^{-\lambda t}-1\right|\|f\|_{B_{b}\left(\mathbb{R}^{d}\right)}+2\|f\|_{B_{b}\left(\mathbb{R}^{d}\right)} \lambda^{2} t \\
& \rightarrow 0 \text { as } t \downarrow 0 .
\end{aligned}
$$

Therefore $A f(x)=\int_{\mathbb{R}^{d}}(f(y+x)-f(x)) \nu(d y)$ and $D(A) \supseteq B_{b}\left(\mathbb{R}^{d}\right)$.

Problem 3. (a) $\left(N_{t}\right)_{t \geqslant 0}$: Poisson process with intensity $\lambda>0$. The characteristic function of N_{t} is

$$
\varphi_{N_{t}}(u)=\mathbb{E} \mathrm{e}^{\mathrm{i} u N_{t}}=\mathrm{e}^{\lambda t\left(\mathrm{e}^{\mathrm{i} u}-1\right)}, \quad u \in \mathbb{R} .
$$

Let $T(t) f(x)=\mathbb{E} f\left(N_{t}+x\right)$ and $f_{u}(x)=\mathrm{e}^{i u x}$ for $u, x \in \mathbb{R}$. We have

$$
\begin{aligned}
\frac{T(t) f_{u}(x)-f_{u}(x)}{t} & =\frac{\mathbb{E} f_{u}\left(N_{t}+x\right)-f_{u}(x)}{t}=\frac{\mathbb{E} \mathrm{e}^{\mathrm{i} u\left(N_{t}+x\right)}-\mathrm{e}^{\mathrm{i} u x}}{t}=\frac{\mathrm{e}^{\mathrm{i} u x x} \mathrm{e}^{\lambda t\left(\mathrm{e}^{\mathrm{i} u}-1\right)}}{t} \\
& \rightarrow \lambda \mathrm{e}^{\mathrm{i} u x}\left(\mathrm{e}^{\mathrm{i} u}-1\right)=\lambda\left(\mathrm{e}^{\mathrm{i} u(x+1)}-\mathrm{e}^{\mathrm{i} u x}\right)=\lambda\left(f_{u}(x+1)-f_{u}(x)\right) \text { as } t \downarrow 0 .
\end{aligned}
$$

Moreover, by the same arguments as in Problem 2, one can show that

$$
\operatorname{lims}_{t \downarrow 0} \sup _{x \in \mathbb{R}}\left|\frac{T(t) f_{u}(x)-f_{u}(x)}{t}-\lambda\left(f_{u}(x+1)-f_{u}(x)\right)\right|=0
$$

Hence,

$$
\lim _{t \downarrow 0} \frac{T(t) f_{u}-f_{u}}{t}=A f_{u} .
$$

(b) Let W be a standard Brownian motion and $f_{u}(x)=\mathrm{e}^{\mathrm{i} u x}$ for $x, u \in \mathbb{R}$. We have

$$
\frac{T(t) f_{u}(x)-f_{u}(x)}{t}=\frac{\mathbb{E} f_{u}\left(W_{t}+x\right)-f(x)}{t}=\frac{\left(\mathbb{E} \mathrm{e}^{\mathrm{i} u W_{t}}-1\right) \mathrm{e}^{\mathrm{i} u x}}{t}=\frac{\mathrm{e}^{\mathrm{i} u x}\left(\mathrm{e}^{-\frac{t x^{2}}{2}}-1\right)}{t} .
$$

Hence

$$
\begin{aligned}
& \limsup _{t \downarrow 0} \sup _{x \in \mathbb{R}}\left|\frac{T(t) f_{u}-f_{u}}{t}-A f_{u}\right|=\lim _{t \downarrow 0} \sup _{x \in \mathbb{R}}\left|\frac{T(t) f_{u}-f_{u}}{t}-\frac{1}{2} \frac{d^{2} f_{u}}{d x^{2}}\right| \\
& =\lim _{t \downarrow 0} \sup _{x \in \mathbb{R}}\left|\frac{\mathrm{e}^{\mathrm{i} u x}\left(\mathrm{e}^{-\frac{t u^{2}}{2}}-1\right)}{t}+\frac{u^{2}}{2} \mathrm{e}^{\mathrm{i} u x}\right| \leqslant \lim _{t \downarrow 0}\left|\frac{\mathrm{e}^{-\frac{t u^{2}}{2}}-1}{t}+\frac{u^{2}}{2}\right|=0 .
\end{aligned}
$$

Problem 4. Let $x \in \mathbb{R}$ and assume that X^{x} solves the following SDE

$$
X_{t}^{x}=x+\int_{0}^{t} a\left(X_{s}^{x}\right) d s+\int_{0}^{t} \sigma\left(X_{s}^{x}\right) d B_{s}
$$

where a, σ are Lipschitz and bounded functions. For $f \in C_{c}^{2}(\mathbb{R})$ we define

$$
A f(x):=a(x) f^{\prime}(x)+\frac{1}{2} \sigma^{2}(x) f^{\prime \prime}(x)
$$

and let $T(t) f(x):=\mathbb{E} f\left(X_{t}^{x}\right)$. Applying Itô's formula gives

$$
\begin{aligned}
f\left(X_{t}^{x}\right) & =f\left(X_{0}^{x}\right)+\int_{0}^{t} f^{\prime}\left(X_{s}^{x}\right) a\left(X_{s}^{x}\right) d s+\int_{0}^{t} f^{\prime}\left(X_{s}^{x}\right) \sigma\left(X_{s}^{x}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}^{x}\right) \sigma^{2}\left(X_{s}^{x}\right) d s \\
& =f(x)+\int_{0}^{t} A f\left(X_{s}^{x}\right) d s+\int_{0}^{t} f^{\prime}\left(X_{s}^{x}\right) \sigma\left(X_{s}^{x}\right) d B_{s} .
\end{aligned}
$$

Since f has compact support and σ is bounded, it implies that $f^{\prime} \sigma$ is bounded. Hence $\int_{0}^{r} f^{\prime}\left(X_{s}^{x}\right) \sigma\left(X_{s}^{x}\right) d B_{s}$ is a martingale with zero mean. Then

$$
T(t) f(x)=\mathbb{E} f\left(X_{t}^{x}\right)=f(x)+\mathbb{E} \int_{0}^{t} A f\left(X_{s}^{x}\right) d s=f(x)+\int_{0}^{t} \mathbb{E} A f\left(X_{s}^{x}\right) d s
$$

where in the last equality we may interchange the expectation and the integral because of Fubini's theorem and boundedness of $A f$.

