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Problem 1. Let f : [0,∞) → R be a càdlàg function and let T > 0. Then, there exists a partition
0 = t0 < t1 < · · · < tn = T such that max16k6n sups,t∈[tk−1,tk) |f(s)− f(t)| < 1. Then we have

sup
06t6T

|f(t)| = max
{

max
16k6n

sup
[tk−1,tk)

|f(t)|, |f(T )|
}

6 |f(T )|+
∑

16k6n

sup
s,t∈[tk−1,tk)

|f(t)− f(s)|+
∑

16k6n

|f(tk−1)| <∞.

Problem 2. Let X be a Lévy process in law and Ttf(x) = Ef(x + Xt), f ∈ C0(Rd). We will show
that (Tt)t>0 is a conservative Feller semi-group.

(a) Since any f ∈ C0(Rd) is bounded, the DCT asserts the continuity of x 7→ Ttf(x) on Rd.
Moreover, f(x + Xt) → 0 as |x| → ∞ and the DCT again implies Ttf(x) → 0 as |x| → ∞. Hence
Ttf ∈ C0(Rd) whenever f ∈ C0(Rd).

(b) Fix t > 0 and x ∈ Rd. We show that supf∈C0(Rd), 06f61 Ttf(x) = 1. First, it is clear that

sup
f∈C0(Rd), 06f61

Ttf(x) 6 1. (1)

Let ε ∈ (0, 1). Since P(|x + Xt| > n) → 0 as n → ∞, there is an nε ∈ N such that P(|x + Xt| 6
nε) > 1 − ε. We consider a continuous function fε ∈ C0(Rd) which is equal to 1 for all |x| 6 nε, is 0
for all |x| > nε + 1 and 0 6 fε 6 1. Then

Ttfε(x) = Efε(x+Xt) > Efε(x+Xt)1{|x+Xt|6nε} = P(|x+Xt| 6 nε) > 1− ε.

Combining this with (1) yields the desired conclusion.
(c) We show Ts+tf(x) = TtTsf(x) for any s, t > 0, x ∈ Rd and f ∈ C0(Rd). Indeed,

TtTsf(x) = E
(
Tsf(x+Xt)

)
= E

(
Ẽf(x+Xt + X̃s)

)
= E

(
Ẽf(x+Xt + X̃s+t − X̃t)

)
= Ef(x+Xs+t −Xt +Xt) = Ts+tf(x),

where X̃ is an independent copy of X and Ẽ is the corresponding expectation.
(d) For t > 0 and f ∈ C0(Rd), one has

‖Ttf‖ = sup
x∈Rd

|Ef(x+Xt)| 6 E sup
x∈Rd

|f(x+Xt)| 6 ‖f‖.

(e) For f ∈ C0(Rd), one has Ef(x+X0) = f(x) for any x ∈ Rd. Hence T0f = f .
(f) Notice that if f ∈ C0(Rd), then f is uniformly continuous on Rd. Hence, for ε > 0 one can find

δ > 0 such that |f(x)− f(y)| < ε whenever |x− y| < δ. Then

‖Ttf − f‖ = sup
x∈Rd

|Ttf(x)− f(x)| 6 sup
x∈Rd

E|f(x+Xt)− f(x)|

6 sup
x∈Rd

E|f(x+Xt)− f(x)|1{|Xt|<δ} + sup
x∈Rd

E|f(x+Xt)− f(x)|1{|Xt|>δ}

6 ε+ 2‖f‖P(|Xt| > δ)→ ε as t ↓ 0.

By the arbitrariness of ε, we obtain ‖Ttf − f‖ → 0 as t ↓ 0. �

Problem 3. Let N and Ñ be two independent Poisson processes with intensities λ and λ̃ respectively.
Let a, b ∈ R, and define Xt = aNt + bÑt. W.l.o.g., assume that ab 6= 0.

First, we show that X is a Lévy process in law.
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• X0 = 0 a.s.;

• P(|Xt+s −Xs| > ε) 6 P(|Nt+s − Ns| > ε
2|a|) + P(|Ñt+s − Ñs| > ε

2|b|) → 0 as t ↓ 0. Hence X is
continuous in probability.

• Check the stationary increments:

ϕXs+t−Xs(u) = E
(

eiu(Xs+t−Xs)
)

= E
(

eiua(Ns+t−Ns)
)
E
(

eiub(Ñs+t−Ñs)
)

= E
(
eiuaNt

)
E
(

eiubÑt

)
= E

(
eiuXt

)
= ϕXt(u).

• Check the independent increments: let 0 6 t0 6 t1 6 t2 6 · · · 6 tn and denote

X = (Xtn −Xtn−1 , . . . , X1−X0) = a(Ntn −Ntn−1 , . . . , N1−N0) + b(Ñtn − Ñtn−1 , . . . , Ñ1− Ñ0).

Then we have for any u = (uk)
n
k=1 ∈ Rn that

ϕX(u) = E eiu·X =
n∏
k=1

E eiuka(Ntk
−Ntk−1

) E eiukb(Ñtk
−Ñtk−1

) =
n∏
k=1

ϕXtk
−Xtk−1

(uk).

Secondly, we compute the characteristic functions:

ϕaNt(u) = E eiuaNt = eλt(e
iua−1), ϕ

bÑt
(u) = E eiubÑt = eλ̃t(e

iub−1) .

Hence it follows from the independence of N and Ñ that

ϕXt(u) = ϕaNt(u)ϕ
bÑt

(u) = eλt(e
iua−1)+λ̃t(eiub−1) . (2)

Thirdly, we can compute the characteristic functions for a compound Poisson process as follows:

Assume that Zt =
∑N̄t

k=1 Yk is a compound Poisson process, where N̄ is a Poisson process with intensity
λ̄. Then

ϕZt(u) = E eiuZt = E

( ∞∑
n=0

eiu
∑n

k=1 Yk 1{N̄t=n}

)
(Yk)⊥N

=
∞∑
n=0

E
(

eiu
∑n

k=1 Yk
)
P(N̄t = n)

=
∞∑
n=0

[
E
(
eiuY1

)]n P(N̄t = n) =
∞∑
n=0

[
E
(
eiuY1

)]n
e−λ̄t

(λ̄t)n

n!

= eλ̄t[E(eiuY1 )−1] . (3)

Now, we compare (2) and (3) and realize that if Y1 is a random variable having the distribution

P(Y1 = a) =
λ

λ+ λ̃
, P(Y1 = b) =

λ̃

λ+ λ̃
, (4)

and let
λ̄ = λ+ λ̃,

then
ϕZt = ϕXt .

Hence X is a compound Poisson process, where the corresponding Poisson process has intensity λ+ λ̃,
and the sequence of i.i.d. random variable (Yk) has the common distribution as in (4).
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Problem 4. Let (Xn)∞n=0 be an (Fn)∞n=0 martingale, and let τ : Ω→ N∪{∞} be an (Fn)∞n=0 stopping
time. Define the stopped process Xτ by

Xτ
n := Xτ∧n.

We show that Xτ is an (Fn)∞n=0 martingale. Indeed, observe that

Xτ∧n =
n−1∑
k=0

Xk1{τ=k} +Xn1{τ>n}.

• One has

E|Xτ∧n| 6
n−1∑
k=0

E|Xk|+ E|Xn| <∞.

• Since τ is a stopping time, it implies that {τ > n} = Ω\{τ 6 n − 1} ∈ Fn−1. Hence Xτ∧n is
Fn- measurable.

• For any n > 0, a.s.,

E
[
Xτ∧(n+1)|Fn

]
= E

[
n∑
k=0

Xk1{τ=k} +Xn+11{τ>n+1}

∣∣∣Fn]

=
n∑
k=0

Xk1{τ=k} + E
[
Xn+11{τ>n+1}

∣∣∣Fn]
=

n∑
k=0

Xk1{τ=k} + 1{τ>n+1}E
[
Xn+1

∣∣∣Fn]
=

n∑
k=0

Xk1{τ=k} + 1{τ>n+1}Xn

=

n−1∑
k=0

Xk1{τ=k} + 1{τ>n}Xn

= Xτ∧n.
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