UNIVERSITY OF JYVÄSKYLÄ, DEPARTMENT OF MATHEMATICS AND STATISTICS Autumn 2019/MATS256-Advanced Markov Processes

Solutions for Demonstration 7

Problem 1. We show that there exists a countable dense subset $(f_k)_{k \ge 1}$ of $C_0(\mathbb{R})$ separating points of $\mathbb{R}^{\partial} := \mathbb{R} \cup \partial$, where ∂ is a point outside \mathbb{R} and plays a role of the one-point compactification of \mathbb{R} . In the sequel, we consider the supremum norm.

Step 1: For each $N \in \mathbb{N}, N \ge 1$, denote

C[-N, N]: the family of all continuous functions on [-N, N]

 $P_N(\mathbb{R})$: the family of all polynomials defined on [-N, N] with real coefficients

 $P_N(\mathbb{Q})$: the family of all polynomials defined on [-N, N] with rational coefficients.

First, it is straightforward to see that $P_N(\mathbb{Q})$ is dense in $P_N(\mathbb{R})$. Secondly, the Stone-Weierstrass theorem ¹ verifies that $P_N(\mathbb{R})$ is dense in C[-N, N]. Hence $P_N(\mathbb{Q})$ is dense in C[-N, N].

Step 2: Observe that $P_N(\mathbb{Q})$ is countable. Then

$$P(\mathbb{Q}) := \bigcup_{N=1}^{\infty} P_N(\mathbb{Q})$$

is countable.

For each polynomial $p_N \in P_N(\mathbb{Q}) \subset P(\mathbb{Q})$, we extend it to \hat{p}_N by (draw a graph)

$$\hat{p}_N(x) := \begin{cases} p_N(x) & \text{if } |x| \leq N\\ p_N(N)(N+1-x) & \text{if } x \in [N, N+1]\\ p_N(-N)(N+1+x) & \text{if } x \in [-N-1, -N]\\ 0 & \text{if } |x| > N+1 \end{cases}$$

Then $\hat{p}_N \in C_0(\mathbb{R})$. Moreover, $|\hat{p}_N(x)| \leq \max\{|p_N(-N)|, |p_N(N)|\}$ for $|x| \geq N$.

Step 3: Denote by $\widehat{P}(\mathbb{Q})$ the family of such \widehat{p}_N , $p \in P_N(\mathbb{Q})$, $N \ge 1$. Then $\widehat{P}(\mathbb{Q})$ is also countable. We now show that $\widehat{P}(\mathbb{Q})$ is dense in $C_0(\mathbb{R})$. Indeed, for each $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|f(x)| \le \varepsilon$ for all $|x| \ge N_{\varepsilon}$. By Step 1, there is a $p_{N_{\varepsilon}} \in P_{N_{\varepsilon}}(\mathbb{Q})$ such that

$$\sup_{x\in [-N_{\varepsilon},N_{\varepsilon}]}|p_{N_{\varepsilon}}(x)-f(x)|\leqslant \varepsilon.$$

Consequently, $|p_{N_{\varepsilon}}(\pm N_{\varepsilon})| \leq 2\varepsilon$. For the corresponding extension $\hat{p}_{N_{\varepsilon}} \in \widehat{P}(\mathbb{Q})$ in Step 2, we have

$$\sup_{x \in \mathbb{R}} |\hat{p}_{N_{\varepsilon}}(x) - f(x)| \leq \underbrace{\sup_{\substack{|x| \ge N_{\varepsilon}}} |\hat{p}_{N_{\varepsilon}}(x)|}_{\leqslant \max\{\hat{p}_{N_{\varepsilon}}(-N_{\varepsilon}), \hat{p}_{N_{\varepsilon}}(N_{\varepsilon})\} \leqslant 2\varepsilon} + \sup_{|x| \ge N_{\varepsilon}} |f(x)| + \sup_{x \in [-N_{\varepsilon}, N_{\varepsilon}]} |p_{N_{\varepsilon}}(x) - f(x)|$$
$$\leqslant 2\varepsilon + \varepsilon + \varepsilon = 4\varepsilon.$$

Hence $\widehat{P}(\mathbb{Q})$ is dense in $C_0(\mathbb{R})$.

Step 4: Verify that $\widehat{P}(\mathbb{Q})$ separates points of \mathbb{R}^{∂} . Let $x, y \in \mathbb{R}^{\partial}, x \neq y$.

• If $x, y \in [-N, N]$ for some $N \in \mathbb{N}$, then we choose $p_N(u) := u$. Then $p_N \in P_N(\mathbb{Q})$ and its extension $\hat{p}_N \in \hat{P}(\mathbb{Q})$ satisfies $|\hat{p}_N(x) - \hat{p}_N(y)| = |p_N(x) - p_N(y)| = |x - y| \neq 0$.

• If $x \in [-N, N]$ and $y = \partial$, then we choose $p_N(u) := u^2 + 1$. Then $p_N \in P_N(\mathbb{Q})$ and its extension $\hat{p}_N \in \hat{P}(\mathbb{Q})$ satisfies $|\hat{p}_N(x) - \hat{p}_N(y)| = |p_N(x) - 0| = x^2 + 1 \neq 0$.

Conclusion: $\widehat{P}(\mathbb{Q})$ is a countable dense subset of $C_0(\mathbb{R})$ and separates points of \mathbb{R}^{∂} .

¹Stone-Weierstrass approximation theorem: Let X be a compact Hausdorff space and $C(X, \mathbb{R})$ consists of all real-valued continuous function on X. Suppose that \mathcal{A} is a sub-algebra of $C(X, \mathbb{R})$ containing constant functions. Then \mathcal{A} is dense in $C(X, \mathbb{R})$ w.r.t. the supremum-norm if and only if \mathcal{A} separates points of X.

Problem 2. Let X be a Lévy process and τ an exponentially distributed random variable with parameter p > 0, independent from X. Let For $f \in C_0(\mathbb{R})$, $x \in \mathbb{R}$ we have

$$\mathbb{E}f(x+X_{\tau}) = \int_{\Omega} f(x+X_{\tau(\omega)}(\omega))d\mathbb{P}(\omega) \stackrel{\tau\perp(X_t)}{=} \int_{\Omega} \int_{\widetilde{\Omega}} f(x+X_{\widetilde{\tau}(\widetilde{\omega})}(\omega))d\widetilde{\mathbb{P}}(\widetilde{\omega})d\mathbb{P}(\omega)$$
$$= p \int_{\Omega} \int_{0}^{\infty} f(x+X_t(\omega)) e^{-pt} dt d\mathbb{P}(\omega) \stackrel{Fubini}{=} p \int_{0}^{\infty} e^{-pt} T_t f(x) dt = p\mathcal{R}_p f(x),$$

where $\tilde{\tau}$ is a random variable defined on another probability space $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$ and $\tilde{\tau} \stackrel{d}{=} \tau$.

Remark that in order to show

$$\int_{\Omega} f(x + X_{\tau(\omega)}(\omega)) d\mathbb{P}(\omega) \stackrel{\tau \perp (X_t)}{=} \int_{\Omega} \int_{\widetilde{\Omega}} f(x + X_{\widetilde{\tau}(\widetilde{\omega})}(\omega)) d\widetilde{\mathbb{P}}(\widetilde{\omega}) d\mathbb{P}(\omega),$$

one can use the fact that $\tau_n \downarrow \tau$, where

$$\tau_n := \sum_{k=1}^{\infty} \frac{k}{2^n} \mathbb{1}_{\left\{\frac{k-1}{2^n} \leqslant \tau < \frac{k}{2^n}\right\}},$$

together with the right-continuity of X, and a DCT argument.