Try to solve 3 of the problems below

some definitions:

(1) A stochastic process $(X_t)_{t \in [0,\infty)}$ is said to have independent increments provided that

$$\forall n \in \mathbb{N} : 0 = t_0 < t_1 < \ldots < t_n$$

$$X_{t_n} - X_{t_{n-1}}, \ldots, X_{t_1} - X_{t_0}$$

are independent. We say that the *increments are stationary* if for all $0 \le s < t, u > 0$

$$X_{t+u} - X_{s+u} \sim X_t - X_s$$

(where \sim stands for 'having the same distribution as').

(2) **Poisson process**

The stochastic process $N := (N_t)_{t \in [0,\infty)}$ is called a Poisson process with intensity $\lambda > 0$ if

- (a) $\mathbb{P}(\{\omega \in \Omega : N_0(\omega) = 0\}) = 1,$
- (b) N has independent, stationary increments,
- (c) $\mathbb{P}(\{\omega \in \Omega : N_t(\omega) = k\}) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \quad k \in \mathbb{N} \cup \{0\}.$

problems:

(1) Let $E := \{0, 1, 2, ...\}$ and $\mathcal{E} := 2^E$, the power set of E.

(a) Show that for the Poisson process $(N_t)_{t \in [0,\infty)}$ with intensity $\lambda > 0$ the map defined by

$$P_h(k,B) := \mathbb{P}(N_{s+h} \in B | N_s = k), \quad h > 0, s > 0, k \in E, B \in \mathcal{E}$$

is a transition function.

- (b) Poisson is Markov Take for F the natural filtration of N. Show that N is a Markov process w.r.t. F with transition function defined above. Hint: In oder to compute E[f(N_s)|F_t] write E[f((N_s−N_t)+N_t)|F_t] and use Proposition 7.4.6 from the lecture notes 'An introduction to probability theory'.
- (2) Markov property equivalences: the proof Complete the proof of Theorem 2.3 $(i) \implies (ii)$ (or $(iii) \implies (ii)$) by showing that the set

$$\mathcal{H} := \{Y : Y \text{ integrable and } \mathbb{E}[Y|\mathcal{F}_t] = \mathbb{E}[Y|X_t] \text{ holds} \}$$

satisfies the following properties from the **Monotone Class Theorem for functions** (see Theorem A.1 from the appendix of the lecture notes):

- (i) linear combinations of elements of \mathcal{H} are again in \mathcal{H} ,
- (ii) If $(f_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ such that $0 \leq f_n \uparrow f$, and f is bounded, then it follows $f \in \mathcal{H}$.

(3) conditional expectation

Let $([0,1], \mathcal{B}([0,1]), \lambda)$ be the probability space where $\mathcal{B}([0,1])$ denotes the Borel σ -algebra on [0,1] and λ the Lebesgue measure. Find the conditional expectation $\mathbb{E}[X|Y]$ if X, Y: $[0,1] \to \mathbb{R}$ are given by $X(x) = \sin(4\pi x)$ and $Y(x) = x \mathbb{I}_{[0,0.5]}(x)$. (In order to get $\mathbb{E}[X|Y] := \mathbb{E}[X|\sigma(Y)]$ find out first $\sigma(Y)$.)

(4) Markov property - a special case

Assume that the relation from **Definition 2.1**,

$$\mathbb{P}(A \cap B | X_t) = \mathbb{P}(A | X_t) \mathbb{P}(B | X_t)$$

holds for $A \in \mathcal{F}_t$ and $B \in \sigma(X_s; s \ge t)$. Show that if

$$A = B \in \mathcal{F}_t \cap \sigma(X_s; s \ge t)$$

then

$$\mathbb{P}(A|X_t) = \mathbb{I}_A \quad a.s.$$

- (5) **Gaussian process:** We say the process $(X_t)_{t\geq 0}$ is a Gaussian process, if for any $n \in \mathbb{N}$ and $0 \leq t_1 < t_2 < ... < t_n$ the 'random vector' $(X_{t_1}, ..., X_{t_n})$ has a Gaussian distribution.
 - (i) Explain why then also the vector of the increments

$$(X_{t_1}, X_{t_2} - X_{t_1}..., X_{t_n} - X_{t_{n-1}})$$

is Gaussian (see, for example, Proposition 9.4.7 of 'An introduction to probability theory' from Koppa).

(ii) Assume that X has independent increments, $X_0 = 0$, and that for any $s > t \ge 0$ the increment $X_s - X_t$ has expectation 0 and variance s - t. Determine the distribution of $(X_{t_1}, X_{t_2}, X_{t_3})$, where $0 \le t_1 < t_2 < t_3$, by finding out its expectation and covariance matrix.