some definitions:

(1) Brownian motion

The stochastic process $W:=\left(W_{t}\right)_{t \in[0, \infty)}$ is called a (standard) Brownian motion if
(a) $\mathbb{P}\left(\left\{\omega \in \Omega: W_{0}(\omega)=0\right\}\right)=1$,
(b) its increments are independent and stationary,
(c) $W_{t} \sim \mathcal{N}(0, t)\left(\right.$ i.e. $\left.\mathbb{P}\left(\left\{\omega \in \Omega: W_{t}(\omega) \in(a, b)\right\}\right)=\frac{1}{\sqrt{2 \pi t}} \int_{a}^{b} e^{-\frac{z^{2}}{2 t}} d z\right)$.
(2) martingale

Assume we have a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in[0, \infty)}$. A stochastic process $M:=\left(M_{t}\right)_{t \in[0, \infty)}$ with $M_{t}: \Omega \rightarrow \mathbb{C}$ (or \mathbb{R}) is a martingale, if it is \mathbb{F}-adapted, $\mathbb{E}\left|M_{t}\right|<\infty$ for all $t \geq 0$ and

$$
\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s} \quad \text { a.s. } \quad \text { for } t \geq s
$$

Try to solve 4 of the problems below

(1) transition function

Let $E:=\{0,1,2, \ldots\}$ and $\mathcal{E}:=2^{E}$, the power set of E.
(a) Show that for the Poisson process $\left(N_{t}\right)_{t \in[0, \infty)}$ with intensity $\lambda>0$ (see the definition on sheet -1-) the map defined by

$$
P_{h}(k, B):=\mathbb{P}\left(N_{s+h} \in B \mid N_{s}=k\right), \quad h>0, s>0, k \in E, B \in \mathcal{E}
$$

is a transition function.
(b) Poisson is Markov Take for \mathbb{F} the natural filtration of N. Show that N is a Markov process w.r.t. \mathbb{F} with transition function defined above.
Hint: In oder to compute $\mathbb{E}\left[f\left(N_{s}\right) \mid \mathcal{F}_{t}\right]$ write $\mathbb{E}\left[f\left(\left(N_{s}-N_{t}\right)+N_{t}\right) \mid \mathcal{F}_{t}\right]$ and use Proposition 7.4.6 from the lecture notes 'An introduction to probability theory'.

(2) a martingale

Show that for any $a \in \mathbb{R}$ the process given by

$$
M_{t}:=\frac{e^{i a W_{t}}}{\mathbb{E} e^{i a W_{t}}}
$$

is a martingale w.r.t. $\left\{\mathcal{F}_{t}^{W} ; t \geq 0\right\}$, where W is a standard Brownian motion.
Hint: Use exercise (5) below. You may work with complex valued conditional expectation like with the real valued one.

(3) a right-continuous filtration

Consider on Ω the filtration $\left\{\mathcal{F}_{t}, t \geq 0\right\}$, and for each $t \geq 0$ define $\mathcal{G}_{t}=\mathcal{F}_{t+}:=\bigcap_{s>t} \mathcal{F}_{s}$. Show that $\left\{\mathcal{G}_{t}, t \geq 0\right\}$ is right-continuous, i.e. it holds

$$
\mathcal{G}_{t}=\bigcap_{s>t} \mathcal{G}_{s}, \quad t \geq 0
$$

Hint: It is a one-line proof.

(4) independence

Let $X=\left\{X_{t} ; t \geq 0\right\}$ is a stochastic process such that for all $0 \leq s \leq t$ it holds $X_{t}-X_{s}$ and \mathcal{F}_{s}^{X} are independent. Show that then for $s \leq t_{1}<t_{2}<\ldots<t_{n}$ the vector and the σ -algebra,

$$
\left(X_{t_{n}}-X_{t_{n-1}}, \ldots, X_{t_{2}}-X_{t_{1}}\right) \text { and } \mathcal{F}_{s}^{X}
$$

are independent.
Hint: For any $D \in \mathcal{F}_{s}^{X}$ show the following: If $\varphi\left(x_{1}, \ldots, x_{n+1}\right)$ is the characteristic function of the vector $\left(X_{t_{n}}-X_{t_{n-1}}, \ldots, X_{t_{2}}-X_{t_{1}}, \mathbb{I}_{D}\right)$, and $\varphi_{1}\left(x_{1}, \ldots, x_{n}\right)$ that of $\left(X_{t_{n}}-X_{t_{n-1}}, \ldots, X_{t_{2}}-\right.$ $\left.X_{t_{1}}\right)$ and $\varphi_{2}(y)$ that of \mathbb{I}_{D}, then it holds

$$
\varphi\left(x_{1}, \ldots, x_{n+1}\right)=\varphi_{1}\left(x_{1}, \ldots, x_{n}\right) \varphi_{2}\left(x_{n+1}\right)
$$

This can be done by applying the tower property in a suitable way.
(5) independent increments and σ-algebras

Assume $X=\left\{X_{t} ; t \in[0, \infty)\right\}$ is a stochastic process with independent increments and $X_{0}(\omega)=0$ for all $\omega \in \Omega$. Show that

$$
\text { if } 0 \leq s \leq t<u \text { then } \mathcal{F}_{s}^{X} \text { is independent from } X_{u}-X_{t} .
$$

For the proof one can use the following steps:
(a) Recall that

$$
\mathcal{A}=\left\{\left\{X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}\right\}: n \in \mathbb{N}, B_{k} \in \mathcal{B}(\mathbb{R}), t_{k} \in[0, s], k=1, \ldots, n\right\}
$$

is a π-system and that $\sigma(\mathcal{A})=\sigma\left(X_{r}: r \in[0, s]\right)=: \mathcal{F}_{s}^{X}$.
(b) Fix $B_{0} \in \mathcal{B}(\mathbb{R})$. Define the probability measure \mathbb{Q} by

$$
\mathbb{Q}(C):=\mathbb{P}\left(C \mid\left\{X_{u}-X_{t} \in B_{0}\right\}\right), \quad C \in \mathcal{F}_{s}^{X}
$$

Explain why for $0 \leq t_{1}<\ldots<t_{n} \leq s \leq t<u$ it holds

$$
\mathbb{Q}\left(\left\{X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}\right\}\right)=\mathbb{P}\left(\left\{X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}\right\}\right)
$$

(c) Why can one conclude that for all $C \in \mathcal{F}_{s}^{X}$ and $B_{0} \in \mathcal{B}(\mathbb{R})$

$$
\mathbb{P}\left(C \mid\left\{X_{u}-X_{t} \in B_{0}\right\}\right)=\mathbb{P}(C)
$$

(which means in fact that \mathcal{F}_{s}^{X} is independent from $X_{u}-X_{t}$)?

