(1) a filtration, which is not right-continuous

Let $C[0,\infty)$ be the space of continuous functions on $[0,\infty)$. Let

 $\mathcal{F}_t := \sigma\{\{g \in C[0,\infty) : g(s) \in B\} : s \in [0,t], B \in \mathcal{B}(\mathbb{R})\},\$

i.e. \mathcal{F}_t is the smallest σ -algebra, such that all coordinate mappings

 $\pi_s: C[0,\infty) \to \mathbb{R}: g \mapsto g(s), \quad s \in [0,t]$

are measurable. Show that the strict inclusion $\mathcal{F}_t \subset \mathcal{F}_{t+}$ holds by constructing a set which is in \mathcal{F}_{t+} but not in \mathcal{F}_t .

Hint: You can, for example, consider the set

$$A_{t,m} := \{ g \in C[0,\infty) : g(t+\frac{1}{n}) \ge g(t), \ \forall n = m, m+1, \dots \}$$

and show that $A := \bigcup_{m=1}^{\infty} A_{t,m} \in \mathcal{F}_{t+}$ but not in \mathcal{F}_t .

(2) Brownian motion semigroup

If $W = (W_t)_{t \in [0,\infty)}$ is the (standard) Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$ (defined on sheet -2-), then for $t \ge 0, x \in \mathbb{R}$ and $B \in \mathcal{B}(\mathbb{R})$ we put

$$P_t(x,B) := \mathbb{P}(W_t + x \in B).$$

(One can show that $\{P_t(x, B)\}$ is a family of transition functions; and from Kolmogorov's continuity criterium it follows that there exists a modification \overline{W} of W such that for almost all $\omega \in \Omega$ the paths

 $t \mapsto \bar{W}_t(\omega)$

are continuous. Assume both as known.) Check whether it holds $\lim_{t\downarrow 0} \int_{\mathbb{R}} f(y) P_t(x, dy) = f(x)$ for all $x \in \mathbb{R}$ if

- (a) $f = \sin$,
- (b) $f = \mathbb{I}_{(-\infty,0]}$.

Hint: The answer is very easy if one uses that (and explains why)

$$\int_{\mathbb{R}} f(y) P_t(x, dy) = \mathbb{E}f(W_t + x) = \mathbb{E}f(\bar{W}_t + x)$$

(3) augmented natural filtration

Show that $\mathcal{F}_t^{\mathbb{P}} = \{ G \subseteq \Omega : \exists H \in \mathcal{F}_t^X : H \Delta G \in \mathcal{N}^{\mathbb{P}} \}.$

Hint: One can prove the equality using the following steps:

- (a) Show that $\mathcal{G} := \{ G \subseteq \Omega : \exists H \in \mathcal{F}_t^X : H \Delta G \in \mathcal{N}^{\mathbb{P}} \}$ is a σ -algebra.
- (b) The relation $(F = H\Delta G \iff G = H\Delta F)$ implies $\mathcal{G} \subseteq \mathcal{F}_t^{\mathbb{P}}$.
- (c) Notice that $\mathcal{N}^{\mathbb{P}} \subseteq \mathcal{G}$ and $\mathcal{F}_t^X \subseteq \mathcal{G}$ and conclude $\mathcal{F}_t^{\mathbb{P}} \subseteq \mathcal{G}$.

(4) properties of the characteristic function of a Lévy process Assume that X with $X_t : (\Omega, \mathcal{F}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ is a Lévy process in law, i.e.

- (i) $X_0 = 0$ a.s.
- (ii) X has independent and homogeneous increments
- (iii) X is continuous in probability, i.e. for all $\delta > 0$:

$$\lim_{s \downarrow t} \mathbb{P}(|X_s - X_t| > \delta) = 0.$$

For $u \in \mathbb{R}^d$ and $t \ge 0$ define

$$f_t(u) := \mathbb{E}e^{i\langle u, X_t \rangle}$$

with $\langle u, X_t \rangle := \sum_{k=1}^d u_k X_t^{(k)}$. Show that the following holds:

- (a) $\forall u \in \mathbb{R}^d$: $f_0(u) = 1$,
- (b) $\forall u \in \mathbb{R}^d$, $t, s \ge 0$: $f_{t+s}(u) = f_t(u)f_s(u)$,
- (c) $\forall u \in \mathbb{R}^d, \ \forall t \ge 0: \ f_t(u) \neq 0.$

(5) martingale

Let $\{X_t : t \ge 0\}$ be a Lévy process in law like in the previous exercise. Fix $\theta \in \mathbb{R}^d$. Show with the help of (4)(c) that $\{Z_t : t \ge 0\}$ given by

$$Z_t := \frac{e^{i\langle \theta, X_t \rangle}}{\mathbb{E} e^{i\langle \theta, X_t \rangle}}$$

is a martingale w.r.t. $\{\mathcal{F}_t^X; t \ge 0\}$.