(1) a filtration, which is not right-continuous

Let $C[0, \infty)$ be the space of continuous functions on $[0, \infty)$. Let

$$
\mathcal{F}_{t}:=\sigma\{\{g \in C[0, \infty): g(s) \in B\}: s \in[0, t], B \in \mathcal{B}(\mathbb{R})\}
$$

i.e. \mathcal{F}_{t} is the smallest σ-algebra, such that all coordinate mappings

$$
\pi_{s}: C[0, \infty) \rightarrow \mathbb{R}: g \mapsto g(s), \quad s \in[0, t]
$$

are measurable. Show that the strict inclusion $\mathcal{F}_{t} \subset \mathcal{F}_{t+}$ holds by constructing a set which is in \mathcal{F}_{t+} but not in \mathcal{F}_{t}.
Hint: You can, for example, consider the set

$$
A_{t, m}:=\left\{g \in C[0, \infty): g\left(t+\frac{1}{n}\right) \geq g(t), \forall n=m, m+1, \ldots\right\}
$$

and show that $A:=\bigcup_{m=1}^{\infty} A_{t, m} \in \mathcal{F}_{t+}$ but not in \mathcal{F}_{t}.
(2) Brownian motion semigroup

If $W=\left(W_{t}\right)_{t \in[0, \infty)}$ is the (standard) Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$ (defined on sheet -2-), then for $t \geq 0, x \in \mathbb{R}$ and $B \in \mathcal{B}(\mathbb{R})$ we put

$$
P_{t}(x, B):=\mathbb{P}\left(W_{t}+x \in B\right)
$$

(One can show that $\left\{P_{t}(x, B)\right\}$ is a family of transition functions; and from Kolmogorov's continuity criterium it follows that there exists a modification \bar{W} of W such that for almost all $\omega \in \Omega$ the paths

$$
t \mapsto \bar{W}_{t}(\omega)
$$

are continuous. Assume both as known.)
Check whether it holds $\lim _{t \downarrow 0} \int_{\mathbb{R}} f(y) P_{t}(x, d y)=f(x)$ for all $x \in \mathbb{R}$ if
(a) $f=\sin$,
(b) $f=\mathbb{1}_{(-\infty, 0]}$.

Hint: The answer is very easy if one uses that (and explains why)

$$
\int_{\mathbb{R}} f(y) P_{t}(x, d y)=\mathbb{E} f\left(W_{t}+x\right)=\mathbb{E} f\left(\bar{W}_{t}+x\right)
$$

(3) augmented natural filtration

Show that $\mathcal{F}_{t}^{\mathbb{P}}=\left\{G \subseteq \Omega: \exists H \in \mathcal{F}_{t}^{X}: H \Delta G \in \mathcal{N}^{\mathbb{P}}\right\}$.
Hint: One can prove the equality using the following steps:
(a) Show that $\mathcal{G}:=\left\{G \subseteq \Omega: \exists H \in \mathcal{F}_{t}^{X}: H \Delta G \in \mathcal{N}^{\mathbb{P}}\right\}$ is a σ-algebra.
(b) The relation $(F=H \Delta G \Longleftrightarrow G=H \Delta F)$ implies $\mathcal{G} \subseteq \mathcal{F}_{t}^{\mathbb{P}}$.
(c) Notice that $\mathcal{N}^{\mathbb{P}} \subseteq \mathcal{G}$ and $\mathcal{F}_{t}^{X} \subseteq \mathcal{G}$ and conclude $\mathcal{F}_{t}^{\mathbb{P}} \subseteq \mathcal{G}$.
(4) properties of the characteristic function of a Lévy process

Assume that X with $X_{t}:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ is a Lévy process in law, i.e.
(i) $X_{0}=0$ a.s.
(ii) X has independent and homogeneous increments
(iii) X is continuous in probability, i.e. for all $\delta>0$:

$$
\lim _{s \downarrow t} \mathbb{P}\left(\left|X_{s}-X_{t}\right|>\delta\right)=0 .
$$

For $u \in \mathbb{R}^{d}$ and $t \geq 0$ define

$$
f_{t}(u):=\mathbb{E} e^{i\left\langle u, X_{t}\right\rangle}
$$

with $\left\langle u, X_{t}\right\rangle:=\sum_{k=1}^{d} u_{k} X_{t}^{(k)}$. Show that the following holds:
(a) $\forall u \in \mathbb{R}^{d}: f_{0}(u)=1$,
(b) $\forall u \in \mathbb{R}^{d}, t, s \geq 0: \quad f_{t+s}(u)=f_{t}(u) f_{s}(u)$,
(c) $\forall u \in \mathbb{R}^{d}, \forall t \geq 0: \quad f_{t}(u) \neq 0$.
(5) martingale

Let $\left\{X_{t}: t \geq 0\right\}$ be a Lévy process in law like in the previous exercise. Fix $\theta \in \mathbb{R}^{d}$. Show with the help of (4)(c) that $\left\{Z_{t}: t \geq 0\right\}$ given by

$$
Z_{t}:=\frac{e^{i\left\langle\theta, X_{t}\right\rangle}}{\mathbb{E} e^{i\left(\theta, X_{t}\right\rangle}}
$$

is a martingale w.r.t. $\left\{\mathcal{F}_{t}^{X} ; t \geq 0\right\}$.

