(1) separating points

Show that there exists a sequence $(f_n)_{n=1}^{\infty} \subseteq C_0(\mathbb{R})$ which is dense in $C_0(\mathbb{R})$ and separates the points: for any $x, y \in \mathbb{R}^{\partial} := \mathbb{R} \cup \partial$, (where ∂ is a point outside of \mathbb{R} , which is used for the one-point compactification of \mathbb{R}) $\exists k \in \mathbb{N}, k \geq 1$ such that

$$f_k(x) \neq f_k(y).$$

Hints:

(a) By Stone-Weierstrass, for any $N \ge 1$, the polynomials considered on [-N, N] are dense in C[-N, N]. But then also

 $P_N = \{p : [-N, N] \to \mathbb{R} : p \text{ polynomial with rational coefficients } \}$

is countable and dense in C[-N, N].

- (b) Extend each $p \in \bigcup_{N \ge 1} P_N$ to a continuous function \hat{p} on \mathbb{R} such that the extension is in $C_0(\mathbb{R})$.
- (c) Explain why $\{\hat{p}: p \in \bigcup_{N>1} P_N\}$ is countable and show this set is dense in $C_0(\mathbb{R})$.
- (d) Describe which function \hat{p} could be used for example to separate the points $x, y \in [-N, N]$ and which \hat{p} one could use to separate $x \in [-N, N]$ and $y = \partial$.

(2) exponential stopping and resolvents

Let $X := \{X_t; t \ge 0\}$ be a Lévy process and τ an exponentially distributed random variable with parameter p > 0, independent from X. Consider the random variable given by $X_{\tau}(\omega) := X_{\tau(\omega)}(\omega)$. Find out the connection between the expression

$$\mathbb{E}f(x+X_{\tau}), \quad f \in C_0(\mathbb{R})$$

and the resolvent \mathcal{R}_p of the semigroup given by $T(t)f(x) = \mathbb{E}f(x + X_t)$.

(3) Up- and downcrossings: the secret behind the càdlàg versions
Explain the proof of Theorem 1 from
https://almostsure.wordpress.com/2009/12/06/upcrossings-downcrossings-and-martingale-convergence/