(1) separating points

Show that there exists a sequence $\left(f_{n}\right)_{n=1}^{\infty} \subseteq C_{0}(\mathbb{R})$ which is dense in $C_{0}(\mathbb{R})$ and separates the points: for any $x, y \in \mathbb{R}^{\partial}:=\mathbb{R} \cup \partial$, (where ∂ is a point outside of \mathbb{R}, which is used for the one-point compactification of $\mathbb{R}) \exists k \in \mathbb{N}, k \geq 1$ such that

$$
f_{k}(x) \neq f_{k}(y)
$$

Hints:

(a) By Stone-Weierstrass, for any $N \geq 1$, the polynomials considered on $[-N, N]$ are dense in $C[-N, N]$. But then also

$$
P_{N}=\{p:[-N, N] \rightarrow \mathbb{R}: p \text { polynomial with rational coefficients }\}
$$

is countable and dense in $C[-N, N]$.
(b) Extend each $p \in \bigcup_{N \geq 1} P_{N}$ to a continuous function \hat{p} on \mathbb{R} such that the extension is in $C_{0}(\mathbb{R})$.
(c) Explain why $\left\{\hat{p}: p \in \bigcup_{N \geq 1} P_{N}\right\}$ is countable and show this set is dense in $C_{0}(\mathbb{R})$.
(d) Describe which function \hat{p} could be used for example to separate the points $x, y \in$ $[-N, N]$ and which \hat{p} one could use to separate $x \in[-N, N]$ and $y=\partial$.

(2) exponential stopping and resolvents

Let $X:=\left\{X_{t} ; t \geq 0\right\}$ be a Lévy process and τ an exponentially distributed random variable with parameter $p>0$, independent from X. Consider the random variable given by $X_{\tau}(\omega):=X_{\tau(\omega)}(\omega)$. Find out the connection between the expression

$$
\mathbb{E} f\left(x+X_{\tau}\right), \quad f \in C_{0}(\mathbb{R})
$$

and the resolvent \mathcal{R}_{p} of the semigroup given by $T(t) f(x)=\mathbb{E} f\left(x+X_{t}\right)$.
(3) Up- and downcrossings: the secret behind the càdlàg versions

Explain the proof of Theorem 1 from
https://almostsure.wordpress.com/2009/12/06/upcrossings-downcrossings-and-martingale-convergence/

